]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mmc/host/mmci.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
38
39 #include <asm/div64.h>
40 #include <asm/io.h>
41
42 #include "mmci.h"
43
44 #define DRIVER_NAME "mmci-pl18x"
45
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500v2_variant_init(struct mmci_host *host);
48
49 static unsigned int fmax = 515633;
50
51 static struct variant_data variant_arm = {
52 .fifosize = 16 * 4,
53 .fifohalfsize = 8 * 4,
54 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
55 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
56 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
57 .cmdreg_srsp = MCI_CPSM_RESPONSE,
58 .datalength_bits = 16,
59 .datactrl_blocksz = 11,
60 .pwrreg_powerup = MCI_PWR_UP,
61 .f_max = 100000000,
62 .reversed_irq_handling = true,
63 .mmcimask1 = true,
64 .irq_pio_mask = MCI_IRQ_PIO_MASK,
65 .start_err = MCI_STARTBITERR,
66 .opendrain = MCI_ROD,
67 .init = mmci_variant_init,
68 };
69
70 static struct variant_data variant_arm_extended_fifo = {
71 .fifosize = 128 * 4,
72 .fifohalfsize = 64 * 4,
73 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
74 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
75 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
76 .cmdreg_srsp = MCI_CPSM_RESPONSE,
77 .datalength_bits = 16,
78 .datactrl_blocksz = 11,
79 .pwrreg_powerup = MCI_PWR_UP,
80 .f_max = 100000000,
81 .mmcimask1 = true,
82 .irq_pio_mask = MCI_IRQ_PIO_MASK,
83 .start_err = MCI_STARTBITERR,
84 .opendrain = MCI_ROD,
85 .init = mmci_variant_init,
86 };
87
88 static struct variant_data variant_arm_extended_fifo_hwfc = {
89 .fifosize = 128 * 4,
90 .fifohalfsize = 64 * 4,
91 .clkreg_enable = MCI_ARM_HWFCEN,
92 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
93 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
94 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
95 .cmdreg_srsp = MCI_CPSM_RESPONSE,
96 .datalength_bits = 16,
97 .datactrl_blocksz = 11,
98 .pwrreg_powerup = MCI_PWR_UP,
99 .f_max = 100000000,
100 .mmcimask1 = true,
101 .irq_pio_mask = MCI_IRQ_PIO_MASK,
102 .start_err = MCI_STARTBITERR,
103 .opendrain = MCI_ROD,
104 .init = mmci_variant_init,
105 };
106
107 static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
112 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
113 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
114 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
115 .cmdreg_srsp = MCI_CPSM_RESPONSE,
116 .datalength_bits = 16,
117 .datactrl_blocksz = 11,
118 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
119 .st_sdio = true,
120 .pwrreg_powerup = MCI_PWR_ON,
121 .f_max = 100000000,
122 .signal_direction = true,
123 .pwrreg_clkgate = true,
124 .pwrreg_nopower = true,
125 .mmcimask1 = true,
126 .irq_pio_mask = MCI_IRQ_PIO_MASK,
127 .start_err = MCI_STARTBITERR,
128 .opendrain = MCI_OD,
129 .init = mmci_variant_init,
130 };
131
132 static struct variant_data variant_nomadik = {
133 .fifosize = 16 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
137 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
138 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
139 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
140 .cmdreg_srsp = MCI_CPSM_RESPONSE,
141 .datalength_bits = 24,
142 .datactrl_blocksz = 11,
143 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
144 .st_sdio = true,
145 .st_clkdiv = true,
146 .pwrreg_powerup = MCI_PWR_ON,
147 .f_max = 100000000,
148 .signal_direction = true,
149 .pwrreg_clkgate = true,
150 .pwrreg_nopower = true,
151 .mmcimask1 = true,
152 .irq_pio_mask = MCI_IRQ_PIO_MASK,
153 .start_err = MCI_STARTBITERR,
154 .opendrain = MCI_OD,
155 .init = mmci_variant_init,
156 };
157
158 static struct variant_data variant_ux500 = {
159 .fifosize = 30 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg = MCI_CLK_ENABLE,
162 .clkreg_enable = MCI_ST_UX500_HWFCEN,
163 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
165 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
166 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
167 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
168 .cmdreg_srsp = MCI_CPSM_RESPONSE,
169 .datalength_bits = 24,
170 .datactrl_blocksz = 11,
171 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
172 .st_sdio = true,
173 .st_clkdiv = true,
174 .pwrreg_powerup = MCI_PWR_ON,
175 .f_max = 100000000,
176 .signal_direction = true,
177 .pwrreg_clkgate = true,
178 .busy_detect = true,
179 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
180 .busy_detect_flag = MCI_ST_CARDBUSY,
181 .busy_detect_mask = MCI_ST_BUSYENDMASK,
182 .pwrreg_nopower = true,
183 .mmcimask1 = true,
184 .irq_pio_mask = MCI_IRQ_PIO_MASK,
185 .start_err = MCI_STARTBITERR,
186 .opendrain = MCI_OD,
187 .init = mmci_variant_init,
188 };
189
190 static struct variant_data variant_ux500v2 = {
191 .fifosize = 30 * 4,
192 .fifohalfsize = 8 * 4,
193 .clkreg = MCI_CLK_ENABLE,
194 .clkreg_enable = MCI_ST_UX500_HWFCEN,
195 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
196 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
197 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
198 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
199 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
200 .cmdreg_srsp = MCI_CPSM_RESPONSE,
201 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
202 .datalength_bits = 24,
203 .datactrl_blocksz = 11,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .pwrreg_powerup = MCI_PWR_ON,
208 .f_max = 100000000,
209 .signal_direction = true,
210 .pwrreg_clkgate = true,
211 .busy_detect = true,
212 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
213 .busy_detect_flag = MCI_ST_CARDBUSY,
214 .busy_detect_mask = MCI_ST_BUSYENDMASK,
215 .pwrreg_nopower = true,
216 .mmcimask1 = true,
217 .irq_pio_mask = MCI_IRQ_PIO_MASK,
218 .start_err = MCI_STARTBITERR,
219 .opendrain = MCI_OD,
220 .init = ux500v2_variant_init,
221 };
222
223 static struct variant_data variant_stm32 = {
224 .fifosize = 32 * 4,
225 .fifohalfsize = 8 * 4,
226 .clkreg = MCI_CLK_ENABLE,
227 .clkreg_enable = MCI_ST_UX500_HWFCEN,
228 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
229 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
230 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
231 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
232 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
233 .cmdreg_srsp = MCI_CPSM_RESPONSE,
234 .irq_pio_mask = MCI_IRQ_PIO_MASK,
235 .datalength_bits = 24,
236 .datactrl_blocksz = 11,
237 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
238 .st_sdio = true,
239 .st_clkdiv = true,
240 .pwrreg_powerup = MCI_PWR_ON,
241 .f_max = 48000000,
242 .pwrreg_clkgate = true,
243 .pwrreg_nopower = true,
244 .init = mmci_variant_init,
245 };
246
247 static struct variant_data variant_stm32_sdmmc = {
248 .fifosize = 16 * 4,
249 .fifohalfsize = 8 * 4,
250 .f_max = 208000000,
251 .stm32_clkdiv = true,
252 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
253 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
254 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
255 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
256 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
257 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
258 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
259 .datactrl_first = true,
260 .datacnt_useless = true,
261 .datalength_bits = 25,
262 .datactrl_blocksz = 14,
263 .stm32_idmabsize_mask = GENMASK(12, 5),
264 .init = sdmmc_variant_init,
265 };
266
267 static struct variant_data variant_qcom = {
268 .fifosize = 16 * 4,
269 .fifohalfsize = 8 * 4,
270 .clkreg = MCI_CLK_ENABLE,
271 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
272 MCI_QCOM_CLK_SELECT_IN_FBCLK,
273 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
274 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
275 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
276 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
277 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
278 .cmdreg_srsp = MCI_CPSM_RESPONSE,
279 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
280 .datalength_bits = 24,
281 .datactrl_blocksz = 11,
282 .pwrreg_powerup = MCI_PWR_UP,
283 .f_max = 208000000,
284 .explicit_mclk_control = true,
285 .qcom_fifo = true,
286 .qcom_dml = true,
287 .mmcimask1 = true,
288 .irq_pio_mask = MCI_IRQ_PIO_MASK,
289 .start_err = MCI_STARTBITERR,
290 .opendrain = MCI_ROD,
291 .init = qcom_variant_init,
292 };
293
294 /* Busy detection for the ST Micro variant */
295 static int mmci_card_busy(struct mmc_host *mmc)
296 {
297 struct mmci_host *host = mmc_priv(mmc);
298 unsigned long flags;
299 int busy = 0;
300
301 spin_lock_irqsave(&host->lock, flags);
302 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
303 busy = 1;
304 spin_unlock_irqrestore(&host->lock, flags);
305
306 return busy;
307 }
308
309 static void mmci_reg_delay(struct mmci_host *host)
310 {
311 /*
312 * According to the spec, at least three feedback clock cycles
313 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
314 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
315 * Worst delay time during card init is at 100 kHz => 30 us.
316 * Worst delay time when up and running is at 25 MHz => 120 ns.
317 */
318 if (host->cclk < 25000000)
319 udelay(30);
320 else
321 ndelay(120);
322 }
323
324 /*
325 * This must be called with host->lock held
326 */
327 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
328 {
329 if (host->clk_reg != clk) {
330 host->clk_reg = clk;
331 writel(clk, host->base + MMCICLOCK);
332 }
333 }
334
335 /*
336 * This must be called with host->lock held
337 */
338 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
339 {
340 if (host->pwr_reg != pwr) {
341 host->pwr_reg = pwr;
342 writel(pwr, host->base + MMCIPOWER);
343 }
344 }
345
346 /*
347 * This must be called with host->lock held
348 */
349 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
350 {
351 /* Keep busy mode in DPSM if enabled */
352 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
353
354 if (host->datactrl_reg != datactrl) {
355 host->datactrl_reg = datactrl;
356 writel(datactrl, host->base + MMCIDATACTRL);
357 }
358 }
359
360 /*
361 * This must be called with host->lock held
362 */
363 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
364 {
365 struct variant_data *variant = host->variant;
366 u32 clk = variant->clkreg;
367
368 /* Make sure cclk reflects the current calculated clock */
369 host->cclk = 0;
370
371 if (desired) {
372 if (variant->explicit_mclk_control) {
373 host->cclk = host->mclk;
374 } else if (desired >= host->mclk) {
375 clk = MCI_CLK_BYPASS;
376 if (variant->st_clkdiv)
377 clk |= MCI_ST_UX500_NEG_EDGE;
378 host->cclk = host->mclk;
379 } else if (variant->st_clkdiv) {
380 /*
381 * DB8500 TRM says f = mclk / (clkdiv + 2)
382 * => clkdiv = (mclk / f) - 2
383 * Round the divider up so we don't exceed the max
384 * frequency
385 */
386 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
387 if (clk >= 256)
388 clk = 255;
389 host->cclk = host->mclk / (clk + 2);
390 } else {
391 /*
392 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
393 * => clkdiv = mclk / (2 * f) - 1
394 */
395 clk = host->mclk / (2 * desired) - 1;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (2 * (clk + 1));
399 }
400
401 clk |= variant->clkreg_enable;
402 clk |= MCI_CLK_ENABLE;
403 /* This hasn't proven to be worthwhile */
404 /* clk |= MCI_CLK_PWRSAVE; */
405 }
406
407 /* Set actual clock for debug */
408 host->mmc->actual_clock = host->cclk;
409
410 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
411 clk |= MCI_4BIT_BUS;
412 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
413 clk |= variant->clkreg_8bit_bus_enable;
414
415 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
416 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
417 clk |= variant->clkreg_neg_edge_enable;
418
419 mmci_write_clkreg(host, clk);
420 }
421
422 void mmci_dma_release(struct mmci_host *host)
423 {
424 if (host->ops && host->ops->dma_release)
425 host->ops->dma_release(host);
426
427 host->use_dma = false;
428 }
429
430 void mmci_dma_setup(struct mmci_host *host)
431 {
432 if (!host->ops || !host->ops->dma_setup)
433 return;
434
435 if (host->ops->dma_setup(host))
436 return;
437
438 /* initialize pre request cookie */
439 host->next_cookie = 1;
440
441 host->use_dma = true;
442 }
443
444 /*
445 * Validate mmc prerequisites
446 */
447 static int mmci_validate_data(struct mmci_host *host,
448 struct mmc_data *data)
449 {
450 if (!data)
451 return 0;
452
453 if (!is_power_of_2(data->blksz)) {
454 dev_err(mmc_dev(host->mmc),
455 "unsupported block size (%d bytes)\n", data->blksz);
456 return -EINVAL;
457 }
458
459 if (host->ops && host->ops->validate_data)
460 return host->ops->validate_data(host, data);
461
462 return 0;
463 }
464
465 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
466 {
467 int err;
468
469 if (!host->ops || !host->ops->prep_data)
470 return 0;
471
472 err = host->ops->prep_data(host, data, next);
473
474 if (next && !err)
475 data->host_cookie = ++host->next_cookie < 0 ?
476 1 : host->next_cookie;
477
478 return err;
479 }
480
481 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
482 int err)
483 {
484 if (host->ops && host->ops->unprep_data)
485 host->ops->unprep_data(host, data, err);
486
487 data->host_cookie = 0;
488 }
489
490 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
491 {
492 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
493
494 if (host->ops && host->ops->get_next_data)
495 host->ops->get_next_data(host, data);
496 }
497
498 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
499 {
500 struct mmc_data *data = host->data;
501 int ret;
502
503 if (!host->use_dma)
504 return -EINVAL;
505
506 ret = mmci_prep_data(host, data, false);
507 if (ret)
508 return ret;
509
510 if (!host->ops || !host->ops->dma_start)
511 return -EINVAL;
512
513 /* Okay, go for it. */
514 dev_vdbg(mmc_dev(host->mmc),
515 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
516 data->sg_len, data->blksz, data->blocks, data->flags);
517
518 host->ops->dma_start(host, &datactrl);
519
520 /* Trigger the DMA transfer */
521 mmci_write_datactrlreg(host, datactrl);
522
523 /*
524 * Let the MMCI say when the data is ended and it's time
525 * to fire next DMA request. When that happens, MMCI will
526 * call mmci_data_end()
527 */
528 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
529 host->base + MMCIMASK0);
530 return 0;
531 }
532
533 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
534 {
535 if (!host->use_dma)
536 return;
537
538 if (host->ops && host->ops->dma_finalize)
539 host->ops->dma_finalize(host, data);
540 }
541
542 void mmci_dma_error(struct mmci_host *host)
543 {
544 if (!host->use_dma)
545 return;
546
547 if (host->ops && host->ops->dma_error)
548 host->ops->dma_error(host);
549 }
550
551 static void
552 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
553 {
554 writel(0, host->base + MMCICOMMAND);
555
556 BUG_ON(host->data);
557
558 host->mrq = NULL;
559 host->cmd = NULL;
560
561 mmc_request_done(host->mmc, mrq);
562 }
563
564 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
565 {
566 void __iomem *base = host->base;
567 struct variant_data *variant = host->variant;
568
569 if (host->singleirq) {
570 unsigned int mask0 = readl(base + MMCIMASK0);
571
572 mask0 &= ~variant->irq_pio_mask;
573 mask0 |= mask;
574
575 writel(mask0, base + MMCIMASK0);
576 }
577
578 if (variant->mmcimask1)
579 writel(mask, base + MMCIMASK1);
580
581 host->mask1_reg = mask;
582 }
583
584 static void mmci_stop_data(struct mmci_host *host)
585 {
586 mmci_write_datactrlreg(host, 0);
587 mmci_set_mask1(host, 0);
588 host->data = NULL;
589 }
590
591 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
592 {
593 unsigned int flags = SG_MITER_ATOMIC;
594
595 if (data->flags & MMC_DATA_READ)
596 flags |= SG_MITER_TO_SG;
597 else
598 flags |= SG_MITER_FROM_SG;
599
600 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
601 }
602
603 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
604 {
605 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
606 }
607
608 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
609 {
610 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
611 }
612
613 /*
614 * All the DMA operation mode stuff goes inside this ifdef.
615 * This assumes that you have a generic DMA device interface,
616 * no custom DMA interfaces are supported.
617 */
618 #ifdef CONFIG_DMA_ENGINE
619 struct mmci_dmae_next {
620 struct dma_async_tx_descriptor *desc;
621 struct dma_chan *chan;
622 };
623
624 struct mmci_dmae_priv {
625 struct dma_chan *cur;
626 struct dma_chan *rx_channel;
627 struct dma_chan *tx_channel;
628 struct dma_async_tx_descriptor *desc_current;
629 struct mmci_dmae_next next_data;
630 };
631
632 int mmci_dmae_setup(struct mmci_host *host)
633 {
634 const char *rxname, *txname;
635 struct mmci_dmae_priv *dmae;
636
637 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
638 if (!dmae)
639 return -ENOMEM;
640
641 host->dma_priv = dmae;
642
643 dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
644 "rx");
645 dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
646 "tx");
647
648 /*
649 * If only an RX channel is specified, the driver will
650 * attempt to use it bidirectionally, however if it is
651 * is specified but cannot be located, DMA will be disabled.
652 */
653 if (dmae->rx_channel && !dmae->tx_channel)
654 dmae->tx_channel = dmae->rx_channel;
655
656 if (dmae->rx_channel)
657 rxname = dma_chan_name(dmae->rx_channel);
658 else
659 rxname = "none";
660
661 if (dmae->tx_channel)
662 txname = dma_chan_name(dmae->tx_channel);
663 else
664 txname = "none";
665
666 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
667 rxname, txname);
668
669 /*
670 * Limit the maximum segment size in any SG entry according to
671 * the parameters of the DMA engine device.
672 */
673 if (dmae->tx_channel) {
674 struct device *dev = dmae->tx_channel->device->dev;
675 unsigned int max_seg_size = dma_get_max_seg_size(dev);
676
677 if (max_seg_size < host->mmc->max_seg_size)
678 host->mmc->max_seg_size = max_seg_size;
679 }
680 if (dmae->rx_channel) {
681 struct device *dev = dmae->rx_channel->device->dev;
682 unsigned int max_seg_size = dma_get_max_seg_size(dev);
683
684 if (max_seg_size < host->mmc->max_seg_size)
685 host->mmc->max_seg_size = max_seg_size;
686 }
687
688 if (!dmae->tx_channel || !dmae->rx_channel) {
689 mmci_dmae_release(host);
690 return -EINVAL;
691 }
692
693 return 0;
694 }
695
696 /*
697 * This is used in or so inline it
698 * so it can be discarded.
699 */
700 void mmci_dmae_release(struct mmci_host *host)
701 {
702 struct mmci_dmae_priv *dmae = host->dma_priv;
703
704 if (dmae->rx_channel)
705 dma_release_channel(dmae->rx_channel);
706 if (dmae->tx_channel)
707 dma_release_channel(dmae->tx_channel);
708 dmae->rx_channel = dmae->tx_channel = NULL;
709 }
710
711 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
712 {
713 struct mmci_dmae_priv *dmae = host->dma_priv;
714 struct dma_chan *chan;
715
716 if (data->flags & MMC_DATA_READ)
717 chan = dmae->rx_channel;
718 else
719 chan = dmae->tx_channel;
720
721 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
722 mmc_get_dma_dir(data));
723 }
724
725 void mmci_dmae_error(struct mmci_host *host)
726 {
727 struct mmci_dmae_priv *dmae = host->dma_priv;
728
729 if (!dma_inprogress(host))
730 return;
731
732 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
733 dmaengine_terminate_all(dmae->cur);
734 host->dma_in_progress = false;
735 dmae->cur = NULL;
736 dmae->desc_current = NULL;
737 host->data->host_cookie = 0;
738
739 mmci_dma_unmap(host, host->data);
740 }
741
742 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
743 {
744 struct mmci_dmae_priv *dmae = host->dma_priv;
745 u32 status;
746 int i;
747
748 if (!dma_inprogress(host))
749 return;
750
751 /* Wait up to 1ms for the DMA to complete */
752 for (i = 0; ; i++) {
753 status = readl(host->base + MMCISTATUS);
754 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
755 break;
756 udelay(10);
757 }
758
759 /*
760 * Check to see whether we still have some data left in the FIFO -
761 * this catches DMA controllers which are unable to monitor the
762 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
763 * contiguous buffers. On TX, we'll get a FIFO underrun error.
764 */
765 if (status & MCI_RXDATAAVLBLMASK) {
766 mmci_dma_error(host);
767 if (!data->error)
768 data->error = -EIO;
769 } else if (!data->host_cookie) {
770 mmci_dma_unmap(host, data);
771 }
772
773 /*
774 * Use of DMA with scatter-gather is impossible.
775 * Give up with DMA and switch back to PIO mode.
776 */
777 if (status & MCI_RXDATAAVLBLMASK) {
778 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
779 mmci_dma_release(host);
780 }
781
782 host->dma_in_progress = false;
783 dmae->cur = NULL;
784 dmae->desc_current = NULL;
785 }
786
787 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
788 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
789 struct dma_chan **dma_chan,
790 struct dma_async_tx_descriptor **dma_desc)
791 {
792 struct mmci_dmae_priv *dmae = host->dma_priv;
793 struct variant_data *variant = host->variant;
794 struct dma_slave_config conf = {
795 .src_addr = host->phybase + MMCIFIFO,
796 .dst_addr = host->phybase + MMCIFIFO,
797 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
798 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
799 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
800 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
801 .device_fc = false,
802 };
803 struct dma_chan *chan;
804 struct dma_device *device;
805 struct dma_async_tx_descriptor *desc;
806 int nr_sg;
807 unsigned long flags = DMA_CTRL_ACK;
808
809 if (data->flags & MMC_DATA_READ) {
810 conf.direction = DMA_DEV_TO_MEM;
811 chan = dmae->rx_channel;
812 } else {
813 conf.direction = DMA_MEM_TO_DEV;
814 chan = dmae->tx_channel;
815 }
816
817 /* If there's no DMA channel, fall back to PIO */
818 if (!chan)
819 return -EINVAL;
820
821 /* If less than or equal to the fifo size, don't bother with DMA */
822 if (data->blksz * data->blocks <= variant->fifosize)
823 return -EINVAL;
824
825 device = chan->device;
826 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
827 mmc_get_dma_dir(data));
828 if (nr_sg == 0)
829 return -EINVAL;
830
831 if (host->variant->qcom_dml)
832 flags |= DMA_PREP_INTERRUPT;
833
834 dmaengine_slave_config(chan, &conf);
835 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
836 conf.direction, flags);
837 if (!desc)
838 goto unmap_exit;
839
840 *dma_chan = chan;
841 *dma_desc = desc;
842
843 return 0;
844
845 unmap_exit:
846 dma_unmap_sg(device->dev, data->sg, data->sg_len,
847 mmc_get_dma_dir(data));
848 return -ENOMEM;
849 }
850
851 int mmci_dmae_prep_data(struct mmci_host *host,
852 struct mmc_data *data,
853 bool next)
854 {
855 struct mmci_dmae_priv *dmae = host->dma_priv;
856 struct mmci_dmae_next *nd = &dmae->next_data;
857
858 if (!host->use_dma)
859 return -EINVAL;
860
861 if (next)
862 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
863 /* Check if next job is already prepared. */
864 if (dmae->cur && dmae->desc_current)
865 return 0;
866
867 /* No job were prepared thus do it now. */
868 return _mmci_dmae_prep_data(host, data, &dmae->cur,
869 &dmae->desc_current);
870 }
871
872 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
873 {
874 struct mmci_dmae_priv *dmae = host->dma_priv;
875
876 host->dma_in_progress = true;
877 dmaengine_submit(dmae->desc_current);
878 dma_async_issue_pending(dmae->cur);
879
880 *datactrl |= MCI_DPSM_DMAENABLE;
881
882 return 0;
883 }
884
885 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
886 {
887 struct mmci_dmae_priv *dmae = host->dma_priv;
888 struct mmci_dmae_next *next = &dmae->next_data;
889
890 if (!host->use_dma)
891 return;
892
893 WARN_ON(!data->host_cookie && (next->desc || next->chan));
894
895 dmae->desc_current = next->desc;
896 dmae->cur = next->chan;
897 next->desc = NULL;
898 next->chan = NULL;
899 }
900
901 void mmci_dmae_unprep_data(struct mmci_host *host,
902 struct mmc_data *data, int err)
903
904 {
905 struct mmci_dmae_priv *dmae = host->dma_priv;
906
907 if (!host->use_dma)
908 return;
909
910 mmci_dma_unmap(host, data);
911
912 if (err) {
913 struct mmci_dmae_next *next = &dmae->next_data;
914 struct dma_chan *chan;
915 if (data->flags & MMC_DATA_READ)
916 chan = dmae->rx_channel;
917 else
918 chan = dmae->tx_channel;
919 dmaengine_terminate_all(chan);
920
921 if (dmae->desc_current == next->desc)
922 dmae->desc_current = NULL;
923
924 if (dmae->cur == next->chan) {
925 host->dma_in_progress = false;
926 dmae->cur = NULL;
927 }
928
929 next->desc = NULL;
930 next->chan = NULL;
931 }
932 }
933
934 static struct mmci_host_ops mmci_variant_ops = {
935 .prep_data = mmci_dmae_prep_data,
936 .unprep_data = mmci_dmae_unprep_data,
937 .get_datactrl_cfg = mmci_get_dctrl_cfg,
938 .get_next_data = mmci_dmae_get_next_data,
939 .dma_setup = mmci_dmae_setup,
940 .dma_release = mmci_dmae_release,
941 .dma_start = mmci_dmae_start,
942 .dma_finalize = mmci_dmae_finalize,
943 .dma_error = mmci_dmae_error,
944 };
945 #else
946 static struct mmci_host_ops mmci_variant_ops = {
947 .get_datactrl_cfg = mmci_get_dctrl_cfg,
948 };
949 #endif
950
951 void mmci_variant_init(struct mmci_host *host)
952 {
953 host->ops = &mmci_variant_ops;
954 }
955
956 void ux500v2_variant_init(struct mmci_host *host)
957 {
958 host->ops = &mmci_variant_ops;
959 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
960 }
961
962 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
963 {
964 struct mmci_host *host = mmc_priv(mmc);
965 struct mmc_data *data = mrq->data;
966
967 if (!data)
968 return;
969
970 WARN_ON(data->host_cookie);
971
972 if (mmci_validate_data(host, data))
973 return;
974
975 mmci_prep_data(host, data, true);
976 }
977
978 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
979 int err)
980 {
981 struct mmci_host *host = mmc_priv(mmc);
982 struct mmc_data *data = mrq->data;
983
984 if (!data || !data->host_cookie)
985 return;
986
987 mmci_unprep_data(host, data, err);
988 }
989
990 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
991 {
992 struct variant_data *variant = host->variant;
993 unsigned int datactrl, timeout, irqmask;
994 unsigned long long clks;
995 void __iomem *base;
996
997 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
998 data->blksz, data->blocks, data->flags);
999
1000 host->data = data;
1001 host->size = data->blksz * data->blocks;
1002 data->bytes_xfered = 0;
1003
1004 clks = (unsigned long long)data->timeout_ns * host->cclk;
1005 do_div(clks, NSEC_PER_SEC);
1006
1007 timeout = data->timeout_clks + (unsigned int)clks;
1008
1009 base = host->base;
1010 writel(timeout, base + MMCIDATATIMER);
1011 writel(host->size, base + MMCIDATALENGTH);
1012
1013 datactrl = host->ops->get_datactrl_cfg(host);
1014 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017 u32 clk;
1018
1019 datactrl |= variant->datactrl_mask_sdio;
1020
1021 /*
1022 * The ST Micro variant for SDIO small write transfers
1023 * needs to have clock H/W flow control disabled,
1024 * otherwise the transfer will not start. The threshold
1025 * depends on the rate of MCLK.
1026 */
1027 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028 (host->size < 8 ||
1029 (host->size <= 8 && host->mclk > 50000000)))
1030 clk = host->clk_reg & ~variant->clkreg_enable;
1031 else
1032 clk = host->clk_reg | variant->clkreg_enable;
1033
1034 mmci_write_clkreg(host, clk);
1035 }
1036
1037 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039 datactrl |= variant->datactrl_mask_ddrmode;
1040
1041 /*
1042 * Attempt to use DMA operation mode, if this
1043 * should fail, fall back to PIO mode
1044 */
1045 if (!mmci_dma_start(host, datactrl))
1046 return;
1047
1048 /* IRQ mode, map the SG list for CPU reading/writing */
1049 mmci_init_sg(host, data);
1050
1051 if (data->flags & MMC_DATA_READ) {
1052 irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054 /*
1055 * If we have less than the fifo 'half-full' threshold to
1056 * transfer, trigger a PIO interrupt as soon as any data
1057 * is available.
1058 */
1059 if (host->size < variant->fifohalfsize)
1060 irqmask |= MCI_RXDATAAVLBLMASK;
1061 } else {
1062 /*
1063 * We don't actually need to include "FIFO empty" here
1064 * since its implicit in "FIFO half empty".
1065 */
1066 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067 }
1068
1069 mmci_write_datactrlreg(host, datactrl);
1070 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071 mmci_set_mask1(host, irqmask);
1072 }
1073
1074 static void
1075 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076 {
1077 void __iomem *base = host->base;
1078
1079 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080 cmd->opcode, cmd->arg, cmd->flags);
1081
1082 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083 writel(0, base + MMCICOMMAND);
1084 mmci_reg_delay(host);
1085 }
1086
1087 if (host->variant->cmdreg_stop &&
1088 cmd->opcode == MMC_STOP_TRANSMISSION)
1089 c |= host->variant->cmdreg_stop;
1090
1091 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092 if (cmd->flags & MMC_RSP_PRESENT) {
1093 if (cmd->flags & MMC_RSP_136)
1094 c |= host->variant->cmdreg_lrsp_crc;
1095 else if (cmd->flags & MMC_RSP_CRC)
1096 c |= host->variant->cmdreg_srsp_crc;
1097 else
1098 c |= host->variant->cmdreg_srsp;
1099 }
1100 if (/*interrupt*/0)
1101 c |= MCI_CPSM_INTERRUPT;
1102
1103 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104 c |= host->variant->data_cmd_enable;
1105
1106 host->cmd = cmd;
1107
1108 writel(cmd->arg, base + MMCIARGUMENT);
1109 writel(c, base + MMCICOMMAND);
1110 }
1111
1112 static void mmci_stop_command(struct mmci_host *host)
1113 {
1114 host->stop_abort.error = 0;
1115 mmci_start_command(host, &host->stop_abort, 0);
1116 }
1117
1118 static void
1119 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120 unsigned int status)
1121 {
1122 unsigned int status_err;
1123
1124 /* Make sure we have data to handle */
1125 if (!data)
1126 return;
1127
1128 /* First check for errors */
1129 status_err = status & (host->variant->start_err |
1130 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133 if (status_err) {
1134 u32 remain, success;
1135
1136 /* Terminate the DMA transfer */
1137 mmci_dma_error(host);
1138
1139 /*
1140 * Calculate how far we are into the transfer. Note that
1141 * the data counter gives the number of bytes transferred
1142 * on the MMC bus, not on the host side. On reads, this
1143 * can be as much as a FIFO-worth of data ahead. This
1144 * matters for FIFO overruns only.
1145 */
1146 if (!host->variant->datacnt_useless) {
1147 remain = readl(host->base + MMCIDATACNT);
1148 success = data->blksz * data->blocks - remain;
1149 } else {
1150 success = 0;
1151 }
1152
1153 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154 status_err, success);
1155 if (status_err & MCI_DATACRCFAIL) {
1156 /* Last block was not successful */
1157 success -= 1;
1158 data->error = -EILSEQ;
1159 } else if (status_err & MCI_DATATIMEOUT) {
1160 data->error = -ETIMEDOUT;
1161 } else if (status_err & MCI_STARTBITERR) {
1162 data->error = -ECOMM;
1163 } else if (status_err & MCI_TXUNDERRUN) {
1164 data->error = -EIO;
1165 } else if (status_err & MCI_RXOVERRUN) {
1166 if (success > host->variant->fifosize)
1167 success -= host->variant->fifosize;
1168 else
1169 success = 0;
1170 data->error = -EIO;
1171 }
1172 data->bytes_xfered = round_down(success, data->blksz);
1173 }
1174
1175 if (status & MCI_DATABLOCKEND)
1176 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178 if (status & MCI_DATAEND || data->error) {
1179 mmci_dma_finalize(host, data);
1180
1181 mmci_stop_data(host);
1182
1183 if (!data->error)
1184 /* The error clause is handled above, success! */
1185 data->bytes_xfered = data->blksz * data->blocks;
1186
1187 if (!data->stop) {
1188 if (host->variant->cmdreg_stop && data->error)
1189 mmci_stop_command(host);
1190 else
1191 mmci_request_end(host, data->mrq);
1192 } else if (host->mrq->sbc && !data->error) {
1193 mmci_request_end(host, data->mrq);
1194 } else {
1195 mmci_start_command(host, data->stop, 0);
1196 }
1197 }
1198 }
1199
1200 static void
1201 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202 unsigned int status)
1203 {
1204 void __iomem *base = host->base;
1205 bool sbc, busy_resp;
1206
1207 if (!cmd)
1208 return;
1209
1210 sbc = (cmd == host->mrq->sbc);
1211 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213 /*
1214 * We need to be one of these interrupts to be considered worth
1215 * handling. Note that we tag on any latent IRQs postponed
1216 * due to waiting for busy status.
1217 */
1218 if (!((status|host->busy_status) &
1219 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220 return;
1221
1222 /*
1223 * ST Micro variant: handle busy detection.
1224 */
1225 if (busy_resp && host->variant->busy_detect) {
1226
1227 /* We are busy with a command, return */
1228 if (host->busy_status &&
1229 (status & host->variant->busy_detect_flag))
1230 return;
1231
1232 /*
1233 * We were not busy, but we now got a busy response on
1234 * something that was not an error, and we double-check
1235 * that the special busy status bit is still set before
1236 * proceeding.
1237 */
1238 if (!host->busy_status &&
1239 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242 /* Clear the busy start IRQ */
1243 writel(host->variant->busy_detect_mask,
1244 host->base + MMCICLEAR);
1245
1246 /* Unmask the busy end IRQ */
1247 writel(readl(base + MMCIMASK0) |
1248 host->variant->busy_detect_mask,
1249 base + MMCIMASK0);
1250 /*
1251 * Now cache the last response status code (until
1252 * the busy bit goes low), and return.
1253 */
1254 host->busy_status =
1255 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1256 return;
1257 }
1258
1259 /*
1260 * At this point we are not busy with a command, we have
1261 * not received a new busy request, clear and mask the busy
1262 * end IRQ and fall through to process the IRQ.
1263 */
1264 if (host->busy_status) {
1265
1266 writel(host->variant->busy_detect_mask,
1267 host->base + MMCICLEAR);
1268
1269 writel(readl(base + MMCIMASK0) &
1270 ~host->variant->busy_detect_mask,
1271 base + MMCIMASK0);
1272 host->busy_status = 0;
1273 }
1274 }
1275
1276 host->cmd = NULL;
1277
1278 if (status & MCI_CMDTIMEOUT) {
1279 cmd->error = -ETIMEDOUT;
1280 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1281 cmd->error = -EILSEQ;
1282 } else {
1283 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1284 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1285 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1286 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1287 }
1288
1289 if ((!sbc && !cmd->data) || cmd->error) {
1290 if (host->data) {
1291 /* Terminate the DMA transfer */
1292 mmci_dma_error(host);
1293
1294 mmci_stop_data(host);
1295 if (host->variant->cmdreg_stop && cmd->error) {
1296 mmci_stop_command(host);
1297 return;
1298 }
1299 }
1300 mmci_request_end(host, host->mrq);
1301 } else if (sbc) {
1302 mmci_start_command(host, host->mrq->cmd, 0);
1303 } else if (!host->variant->datactrl_first &&
1304 !(cmd->data->flags & MMC_DATA_READ)) {
1305 mmci_start_data(host, cmd->data);
1306 }
1307 }
1308
1309 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1310 {
1311 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1312 }
1313
1314 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1315 {
1316 /*
1317 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1318 * from the fifo range should be used
1319 */
1320 if (status & MCI_RXFIFOHALFFULL)
1321 return host->variant->fifohalfsize;
1322 else if (status & MCI_RXDATAAVLBL)
1323 return 4;
1324
1325 return 0;
1326 }
1327
1328 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1329 {
1330 void __iomem *base = host->base;
1331 char *ptr = buffer;
1332 u32 status = readl(host->base + MMCISTATUS);
1333 int host_remain = host->size;
1334
1335 do {
1336 int count = host->get_rx_fifocnt(host, status, host_remain);
1337
1338 if (count > remain)
1339 count = remain;
1340
1341 if (count <= 0)
1342 break;
1343
1344 /*
1345 * SDIO especially may want to send something that is
1346 * not divisible by 4 (as opposed to card sectors
1347 * etc). Therefore make sure to always read the last bytes
1348 * while only doing full 32-bit reads towards the FIFO.
1349 */
1350 if (unlikely(count & 0x3)) {
1351 if (count < 4) {
1352 unsigned char buf[4];
1353 ioread32_rep(base + MMCIFIFO, buf, 1);
1354 memcpy(ptr, buf, count);
1355 } else {
1356 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1357 count &= ~0x3;
1358 }
1359 } else {
1360 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1361 }
1362
1363 ptr += count;
1364 remain -= count;
1365 host_remain -= count;
1366
1367 if (remain == 0)
1368 break;
1369
1370 status = readl(base + MMCISTATUS);
1371 } while (status & MCI_RXDATAAVLBL);
1372
1373 return ptr - buffer;
1374 }
1375
1376 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1377 {
1378 struct variant_data *variant = host->variant;
1379 void __iomem *base = host->base;
1380 char *ptr = buffer;
1381
1382 do {
1383 unsigned int count, maxcnt;
1384
1385 maxcnt = status & MCI_TXFIFOEMPTY ?
1386 variant->fifosize : variant->fifohalfsize;
1387 count = min(remain, maxcnt);
1388
1389 /*
1390 * SDIO especially may want to send something that is
1391 * not divisible by 4 (as opposed to card sectors
1392 * etc), and the FIFO only accept full 32-bit writes.
1393 * So compensate by adding +3 on the count, a single
1394 * byte become a 32bit write, 7 bytes will be two
1395 * 32bit writes etc.
1396 */
1397 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1398
1399 ptr += count;
1400 remain -= count;
1401
1402 if (remain == 0)
1403 break;
1404
1405 status = readl(base + MMCISTATUS);
1406 } while (status & MCI_TXFIFOHALFEMPTY);
1407
1408 return ptr - buffer;
1409 }
1410
1411 /*
1412 * PIO data transfer IRQ handler.
1413 */
1414 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1415 {
1416 struct mmci_host *host = dev_id;
1417 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1418 struct variant_data *variant = host->variant;
1419 void __iomem *base = host->base;
1420 u32 status;
1421
1422 status = readl(base + MMCISTATUS);
1423
1424 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1425
1426 do {
1427 unsigned int remain, len;
1428 char *buffer;
1429
1430 /*
1431 * For write, we only need to test the half-empty flag
1432 * here - if the FIFO is completely empty, then by
1433 * definition it is more than half empty.
1434 *
1435 * For read, check for data available.
1436 */
1437 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1438 break;
1439
1440 if (!sg_miter_next(sg_miter))
1441 break;
1442
1443 buffer = sg_miter->addr;
1444 remain = sg_miter->length;
1445
1446 len = 0;
1447 if (status & MCI_RXACTIVE)
1448 len = mmci_pio_read(host, buffer, remain);
1449 if (status & MCI_TXACTIVE)
1450 len = mmci_pio_write(host, buffer, remain, status);
1451
1452 sg_miter->consumed = len;
1453
1454 host->size -= len;
1455 remain -= len;
1456
1457 if (remain)
1458 break;
1459
1460 status = readl(base + MMCISTATUS);
1461 } while (1);
1462
1463 sg_miter_stop(sg_miter);
1464
1465 /*
1466 * If we have less than the fifo 'half-full' threshold to transfer,
1467 * trigger a PIO interrupt as soon as any data is available.
1468 */
1469 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1470 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1471
1472 /*
1473 * If we run out of data, disable the data IRQs; this
1474 * prevents a race where the FIFO becomes empty before
1475 * the chip itself has disabled the data path, and
1476 * stops us racing with our data end IRQ.
1477 */
1478 if (host->size == 0) {
1479 mmci_set_mask1(host, 0);
1480 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1481 }
1482
1483 return IRQ_HANDLED;
1484 }
1485
1486 /*
1487 * Handle completion of command and data transfers.
1488 */
1489 static irqreturn_t mmci_irq(int irq, void *dev_id)
1490 {
1491 struct mmci_host *host = dev_id;
1492 u32 status;
1493 int ret = 0;
1494
1495 spin_lock(&host->lock);
1496
1497 do {
1498 status = readl(host->base + MMCISTATUS);
1499
1500 if (host->singleirq) {
1501 if (status & host->mask1_reg)
1502 mmci_pio_irq(irq, dev_id);
1503
1504 status &= ~host->variant->irq_pio_mask;
1505 }
1506
1507 /*
1508 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1509 * enabled) in mmci_cmd_irq() function where ST Micro busy
1510 * detection variant is handled. Considering the HW seems to be
1511 * triggering the IRQ on both edges while monitoring DAT0 for
1512 * busy completion and that same status bit is used to monitor
1513 * start and end of busy detection, special care must be taken
1514 * to make sure that both start and end interrupts are always
1515 * cleared one after the other.
1516 */
1517 status &= readl(host->base + MMCIMASK0);
1518 if (host->variant->busy_detect)
1519 writel(status & ~host->variant->busy_detect_mask,
1520 host->base + MMCICLEAR);
1521 else
1522 writel(status, host->base + MMCICLEAR);
1523
1524 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1525
1526 if (host->variant->reversed_irq_handling) {
1527 mmci_data_irq(host, host->data, status);
1528 mmci_cmd_irq(host, host->cmd, status);
1529 } else {
1530 mmci_cmd_irq(host, host->cmd, status);
1531 mmci_data_irq(host, host->data, status);
1532 }
1533
1534 /*
1535 * Busy detection has been handled by mmci_cmd_irq() above.
1536 * Clear the status bit to prevent polling in IRQ context.
1537 */
1538 if (host->variant->busy_detect_flag)
1539 status &= ~host->variant->busy_detect_flag;
1540
1541 ret = 1;
1542 } while (status);
1543
1544 spin_unlock(&host->lock);
1545
1546 return IRQ_RETVAL(ret);
1547 }
1548
1549 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1550 {
1551 struct mmci_host *host = mmc_priv(mmc);
1552 unsigned long flags;
1553
1554 WARN_ON(host->mrq != NULL);
1555
1556 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1557 if (mrq->cmd->error) {
1558 mmc_request_done(mmc, mrq);
1559 return;
1560 }
1561
1562 spin_lock_irqsave(&host->lock, flags);
1563
1564 host->mrq = mrq;
1565
1566 if (mrq->data)
1567 mmci_get_next_data(host, mrq->data);
1568
1569 if (mrq->data &&
1570 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1571 mmci_start_data(host, mrq->data);
1572
1573 if (mrq->sbc)
1574 mmci_start_command(host, mrq->sbc, 0);
1575 else
1576 mmci_start_command(host, mrq->cmd, 0);
1577
1578 spin_unlock_irqrestore(&host->lock, flags);
1579 }
1580
1581 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1582 {
1583 struct mmci_host *host = mmc_priv(mmc);
1584 struct variant_data *variant = host->variant;
1585 u32 pwr = 0;
1586 unsigned long flags;
1587 int ret;
1588
1589 if (host->plat->ios_handler &&
1590 host->plat->ios_handler(mmc_dev(mmc), ios))
1591 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1592
1593 switch (ios->power_mode) {
1594 case MMC_POWER_OFF:
1595 if (!IS_ERR(mmc->supply.vmmc))
1596 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1597
1598 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1599 regulator_disable(mmc->supply.vqmmc);
1600 host->vqmmc_enabled = false;
1601 }
1602
1603 break;
1604 case MMC_POWER_UP:
1605 if (!IS_ERR(mmc->supply.vmmc))
1606 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1607
1608 /*
1609 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1610 * and instead uses MCI_PWR_ON so apply whatever value is
1611 * configured in the variant data.
1612 */
1613 pwr |= variant->pwrreg_powerup;
1614
1615 break;
1616 case MMC_POWER_ON:
1617 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1618 ret = regulator_enable(mmc->supply.vqmmc);
1619 if (ret < 0)
1620 dev_err(mmc_dev(mmc),
1621 "failed to enable vqmmc regulator\n");
1622 else
1623 host->vqmmc_enabled = true;
1624 }
1625
1626 pwr |= MCI_PWR_ON;
1627 break;
1628 }
1629
1630 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1631 /*
1632 * The ST Micro variant has some additional bits
1633 * indicating signal direction for the signals in
1634 * the SD/MMC bus and feedback-clock usage.
1635 */
1636 pwr |= host->pwr_reg_add;
1637
1638 if (ios->bus_width == MMC_BUS_WIDTH_4)
1639 pwr &= ~MCI_ST_DATA74DIREN;
1640 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1641 pwr &= (~MCI_ST_DATA74DIREN &
1642 ~MCI_ST_DATA31DIREN &
1643 ~MCI_ST_DATA2DIREN);
1644 }
1645
1646 if (variant->opendrain) {
1647 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1648 pwr |= variant->opendrain;
1649 } else {
1650 /*
1651 * If the variant cannot configure the pads by its own, then we
1652 * expect the pinctrl to be able to do that for us
1653 */
1654 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1655 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1656 else
1657 pinctrl_select_state(host->pinctrl, host->pins_default);
1658 }
1659
1660 /*
1661 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1662 * gating the clock, the MCI_PWR_ON bit is cleared.
1663 */
1664 if (!ios->clock && variant->pwrreg_clkgate)
1665 pwr &= ~MCI_PWR_ON;
1666
1667 if (host->variant->explicit_mclk_control &&
1668 ios->clock != host->clock_cache) {
1669 ret = clk_set_rate(host->clk, ios->clock);
1670 if (ret < 0)
1671 dev_err(mmc_dev(host->mmc),
1672 "Error setting clock rate (%d)\n", ret);
1673 else
1674 host->mclk = clk_get_rate(host->clk);
1675 }
1676 host->clock_cache = ios->clock;
1677
1678 spin_lock_irqsave(&host->lock, flags);
1679
1680 if (host->ops && host->ops->set_clkreg)
1681 host->ops->set_clkreg(host, ios->clock);
1682 else
1683 mmci_set_clkreg(host, ios->clock);
1684
1685 if (host->ops && host->ops->set_pwrreg)
1686 host->ops->set_pwrreg(host, pwr);
1687 else
1688 mmci_write_pwrreg(host, pwr);
1689
1690 mmci_reg_delay(host);
1691
1692 spin_unlock_irqrestore(&host->lock, flags);
1693 }
1694
1695 static int mmci_get_cd(struct mmc_host *mmc)
1696 {
1697 struct mmci_host *host = mmc_priv(mmc);
1698 struct mmci_platform_data *plat = host->plat;
1699 unsigned int status = mmc_gpio_get_cd(mmc);
1700
1701 if (status == -ENOSYS) {
1702 if (!plat->status)
1703 return 1; /* Assume always present */
1704
1705 status = plat->status(mmc_dev(host->mmc));
1706 }
1707 return status;
1708 }
1709
1710 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1711 {
1712 int ret = 0;
1713
1714 if (!IS_ERR(mmc->supply.vqmmc)) {
1715
1716 switch (ios->signal_voltage) {
1717 case MMC_SIGNAL_VOLTAGE_330:
1718 ret = regulator_set_voltage(mmc->supply.vqmmc,
1719 2700000, 3600000);
1720 break;
1721 case MMC_SIGNAL_VOLTAGE_180:
1722 ret = regulator_set_voltage(mmc->supply.vqmmc,
1723 1700000, 1950000);
1724 break;
1725 case MMC_SIGNAL_VOLTAGE_120:
1726 ret = regulator_set_voltage(mmc->supply.vqmmc,
1727 1100000, 1300000);
1728 break;
1729 }
1730
1731 if (ret)
1732 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1733 }
1734
1735 return ret;
1736 }
1737
1738 static struct mmc_host_ops mmci_ops = {
1739 .request = mmci_request,
1740 .pre_req = mmci_pre_request,
1741 .post_req = mmci_post_request,
1742 .set_ios = mmci_set_ios,
1743 .get_ro = mmc_gpio_get_ro,
1744 .get_cd = mmci_get_cd,
1745 .start_signal_voltage_switch = mmci_sig_volt_switch,
1746 };
1747
1748 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1749 {
1750 struct mmci_host *host = mmc_priv(mmc);
1751 int ret = mmc_of_parse(mmc);
1752
1753 if (ret)
1754 return ret;
1755
1756 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1757 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1758 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1759 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1760 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1761 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1762 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1763 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1764 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1765 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1766 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1767 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1768 if (of_get_property(np, "st,sig-dir", NULL))
1769 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1770 if (of_get_property(np, "st,neg-edge", NULL))
1771 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1772 if (of_get_property(np, "st,use-ckin", NULL))
1773 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1774
1775 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1776 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1777 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1778 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1779
1780 return 0;
1781 }
1782
1783 static int mmci_probe(struct amba_device *dev,
1784 const struct amba_id *id)
1785 {
1786 struct mmci_platform_data *plat = dev->dev.platform_data;
1787 struct device_node *np = dev->dev.of_node;
1788 struct variant_data *variant = id->data;
1789 struct mmci_host *host;
1790 struct mmc_host *mmc;
1791 int ret;
1792
1793 /* Must have platform data or Device Tree. */
1794 if (!plat && !np) {
1795 dev_err(&dev->dev, "No plat data or DT found\n");
1796 return -EINVAL;
1797 }
1798
1799 if (!plat) {
1800 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1801 if (!plat)
1802 return -ENOMEM;
1803 }
1804
1805 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1806 if (!mmc)
1807 return -ENOMEM;
1808
1809 ret = mmci_of_parse(np, mmc);
1810 if (ret)
1811 goto host_free;
1812
1813 host = mmc_priv(mmc);
1814 host->mmc = mmc;
1815
1816 /*
1817 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1818 * pins can be set accordingly using pinctrl
1819 */
1820 if (!variant->opendrain) {
1821 host->pinctrl = devm_pinctrl_get(&dev->dev);
1822 if (IS_ERR(host->pinctrl)) {
1823 dev_err(&dev->dev, "failed to get pinctrl");
1824 ret = PTR_ERR(host->pinctrl);
1825 goto host_free;
1826 }
1827
1828 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1829 PINCTRL_STATE_DEFAULT);
1830 if (IS_ERR(host->pins_default)) {
1831 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1832 ret = PTR_ERR(host->pins_default);
1833 goto host_free;
1834 }
1835
1836 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1837 MMCI_PINCTRL_STATE_OPENDRAIN);
1838 if (IS_ERR(host->pins_opendrain)) {
1839 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1840 ret = PTR_ERR(host->pins_opendrain);
1841 goto host_free;
1842 }
1843 }
1844
1845 host->hw_designer = amba_manf(dev);
1846 host->hw_revision = amba_rev(dev);
1847 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1848 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1849
1850 host->clk = devm_clk_get(&dev->dev, NULL);
1851 if (IS_ERR(host->clk)) {
1852 ret = PTR_ERR(host->clk);
1853 goto host_free;
1854 }
1855
1856 ret = clk_prepare_enable(host->clk);
1857 if (ret)
1858 goto host_free;
1859
1860 if (variant->qcom_fifo)
1861 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1862 else
1863 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1864
1865 host->plat = plat;
1866 host->variant = variant;
1867 host->mclk = clk_get_rate(host->clk);
1868 /*
1869 * According to the spec, mclk is max 100 MHz,
1870 * so we try to adjust the clock down to this,
1871 * (if possible).
1872 */
1873 if (host->mclk > variant->f_max) {
1874 ret = clk_set_rate(host->clk, variant->f_max);
1875 if (ret < 0)
1876 goto clk_disable;
1877 host->mclk = clk_get_rate(host->clk);
1878 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1879 host->mclk);
1880 }
1881
1882 host->phybase = dev->res.start;
1883 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1884 if (IS_ERR(host->base)) {
1885 ret = PTR_ERR(host->base);
1886 goto clk_disable;
1887 }
1888
1889 if (variant->init)
1890 variant->init(host);
1891
1892 /*
1893 * The ARM and ST versions of the block have slightly different
1894 * clock divider equations which means that the minimum divider
1895 * differs too.
1896 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1897 */
1898 if (variant->st_clkdiv)
1899 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1900 else if (variant->stm32_clkdiv)
1901 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1902 else if (variant->explicit_mclk_control)
1903 mmc->f_min = clk_round_rate(host->clk, 100000);
1904 else
1905 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1906 /*
1907 * If no maximum operating frequency is supplied, fall back to use
1908 * the module parameter, which has a (low) default value in case it
1909 * is not specified. Either value must not exceed the clock rate into
1910 * the block, of course.
1911 */
1912 if (mmc->f_max)
1913 mmc->f_max = variant->explicit_mclk_control ?
1914 min(variant->f_max, mmc->f_max) :
1915 min(host->mclk, mmc->f_max);
1916 else
1917 mmc->f_max = variant->explicit_mclk_control ?
1918 fmax : min(host->mclk, fmax);
1919
1920
1921 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1922
1923 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1924 if (IS_ERR(host->rst)) {
1925 ret = PTR_ERR(host->rst);
1926 goto clk_disable;
1927 }
1928
1929 /* Get regulators and the supported OCR mask */
1930 ret = mmc_regulator_get_supply(mmc);
1931 if (ret)
1932 goto clk_disable;
1933
1934 if (!mmc->ocr_avail)
1935 mmc->ocr_avail = plat->ocr_mask;
1936 else if (plat->ocr_mask)
1937 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1938
1939 /* We support these capabilities. */
1940 mmc->caps |= MMC_CAP_CMD23;
1941
1942 /*
1943 * Enable busy detection.
1944 */
1945 if (variant->busy_detect) {
1946 mmci_ops.card_busy = mmci_card_busy;
1947 /*
1948 * Not all variants have a flag to enable busy detection
1949 * in the DPSM, but if they do, set it here.
1950 */
1951 if (variant->busy_dpsm_flag)
1952 mmci_write_datactrlreg(host,
1953 host->variant->busy_dpsm_flag);
1954 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1955 mmc->max_busy_timeout = 0;
1956 }
1957
1958 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1959 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1960 host->stop_abort.arg = 0;
1961 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1962
1963 mmc->ops = &mmci_ops;
1964
1965 /* We support these PM capabilities. */
1966 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1967
1968 /*
1969 * We can do SGIO
1970 */
1971 mmc->max_segs = NR_SG;
1972
1973 /*
1974 * Since only a certain number of bits are valid in the data length
1975 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1976 * single request.
1977 */
1978 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1979
1980 /*
1981 * Set the maximum segment size. Since we aren't doing DMA
1982 * (yet) we are only limited by the data length register.
1983 */
1984 mmc->max_seg_size = mmc->max_req_size;
1985
1986 /*
1987 * Block size can be up to 2048 bytes, but must be a power of two.
1988 */
1989 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1990
1991 /*
1992 * Limit the number of blocks transferred so that we don't overflow
1993 * the maximum request size.
1994 */
1995 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
1996
1997 spin_lock_init(&host->lock);
1998
1999 writel(0, host->base + MMCIMASK0);
2000
2001 if (variant->mmcimask1)
2002 writel(0, host->base + MMCIMASK1);
2003
2004 writel(0xfff, host->base + MMCICLEAR);
2005
2006 /*
2007 * If:
2008 * - not using DT but using a descriptor table, or
2009 * - using a table of descriptors ALONGSIDE DT, or
2010 * look up these descriptors named "cd" and "wp" right here, fail
2011 * silently of these do not exist
2012 */
2013 if (!np) {
2014 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2015 if (ret == -EPROBE_DEFER)
2016 goto clk_disable;
2017
2018 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2019 if (ret == -EPROBE_DEFER)
2020 goto clk_disable;
2021 }
2022
2023 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2024 DRIVER_NAME " (cmd)", host);
2025 if (ret)
2026 goto clk_disable;
2027
2028 if (!dev->irq[1])
2029 host->singleirq = true;
2030 else {
2031 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2032 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2033 if (ret)
2034 goto clk_disable;
2035 }
2036
2037 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2038
2039 amba_set_drvdata(dev, mmc);
2040
2041 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2042 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2043 amba_rev(dev), (unsigned long long)dev->res.start,
2044 dev->irq[0], dev->irq[1]);
2045
2046 mmci_dma_setup(host);
2047
2048 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2049 pm_runtime_use_autosuspend(&dev->dev);
2050
2051 mmc_add_host(mmc);
2052
2053 pm_runtime_put(&dev->dev);
2054 return 0;
2055
2056 clk_disable:
2057 clk_disable_unprepare(host->clk);
2058 host_free:
2059 mmc_free_host(mmc);
2060 return ret;
2061 }
2062
2063 static int mmci_remove(struct amba_device *dev)
2064 {
2065 struct mmc_host *mmc = amba_get_drvdata(dev);
2066
2067 if (mmc) {
2068 struct mmci_host *host = mmc_priv(mmc);
2069 struct variant_data *variant = host->variant;
2070
2071 /*
2072 * Undo pm_runtime_put() in probe. We use the _sync
2073 * version here so that we can access the primecell.
2074 */
2075 pm_runtime_get_sync(&dev->dev);
2076
2077 mmc_remove_host(mmc);
2078
2079 writel(0, host->base + MMCIMASK0);
2080
2081 if (variant->mmcimask1)
2082 writel(0, host->base + MMCIMASK1);
2083
2084 writel(0, host->base + MMCICOMMAND);
2085 writel(0, host->base + MMCIDATACTRL);
2086
2087 mmci_dma_release(host);
2088 clk_disable_unprepare(host->clk);
2089 mmc_free_host(mmc);
2090 }
2091
2092 return 0;
2093 }
2094
2095 #ifdef CONFIG_PM
2096 static void mmci_save(struct mmci_host *host)
2097 {
2098 unsigned long flags;
2099
2100 spin_lock_irqsave(&host->lock, flags);
2101
2102 writel(0, host->base + MMCIMASK0);
2103 if (host->variant->pwrreg_nopower) {
2104 writel(0, host->base + MMCIDATACTRL);
2105 writel(0, host->base + MMCIPOWER);
2106 writel(0, host->base + MMCICLOCK);
2107 }
2108 mmci_reg_delay(host);
2109
2110 spin_unlock_irqrestore(&host->lock, flags);
2111 }
2112
2113 static void mmci_restore(struct mmci_host *host)
2114 {
2115 unsigned long flags;
2116
2117 spin_lock_irqsave(&host->lock, flags);
2118
2119 if (host->variant->pwrreg_nopower) {
2120 writel(host->clk_reg, host->base + MMCICLOCK);
2121 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2122 writel(host->pwr_reg, host->base + MMCIPOWER);
2123 }
2124 writel(MCI_IRQENABLE | host->variant->start_err,
2125 host->base + MMCIMASK0);
2126 mmci_reg_delay(host);
2127
2128 spin_unlock_irqrestore(&host->lock, flags);
2129 }
2130
2131 static int mmci_runtime_suspend(struct device *dev)
2132 {
2133 struct amba_device *adev = to_amba_device(dev);
2134 struct mmc_host *mmc = amba_get_drvdata(adev);
2135
2136 if (mmc) {
2137 struct mmci_host *host = mmc_priv(mmc);
2138 pinctrl_pm_select_sleep_state(dev);
2139 mmci_save(host);
2140 clk_disable_unprepare(host->clk);
2141 }
2142
2143 return 0;
2144 }
2145
2146 static int mmci_runtime_resume(struct device *dev)
2147 {
2148 struct amba_device *adev = to_amba_device(dev);
2149 struct mmc_host *mmc = amba_get_drvdata(adev);
2150
2151 if (mmc) {
2152 struct mmci_host *host = mmc_priv(mmc);
2153 clk_prepare_enable(host->clk);
2154 mmci_restore(host);
2155 pinctrl_pm_select_default_state(dev);
2156 }
2157
2158 return 0;
2159 }
2160 #endif
2161
2162 static const struct dev_pm_ops mmci_dev_pm_ops = {
2163 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2164 pm_runtime_force_resume)
2165 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2166 };
2167
2168 static const struct amba_id mmci_ids[] = {
2169 {
2170 .id = 0x00041180,
2171 .mask = 0xff0fffff,
2172 .data = &variant_arm,
2173 },
2174 {
2175 .id = 0x01041180,
2176 .mask = 0xff0fffff,
2177 .data = &variant_arm_extended_fifo,
2178 },
2179 {
2180 .id = 0x02041180,
2181 .mask = 0xff0fffff,
2182 .data = &variant_arm_extended_fifo_hwfc,
2183 },
2184 {
2185 .id = 0x00041181,
2186 .mask = 0x000fffff,
2187 .data = &variant_arm,
2188 },
2189 /* ST Micro variants */
2190 {
2191 .id = 0x00180180,
2192 .mask = 0x00ffffff,
2193 .data = &variant_u300,
2194 },
2195 {
2196 .id = 0x10180180,
2197 .mask = 0xf0ffffff,
2198 .data = &variant_nomadik,
2199 },
2200 {
2201 .id = 0x00280180,
2202 .mask = 0x00ffffff,
2203 .data = &variant_nomadik,
2204 },
2205 {
2206 .id = 0x00480180,
2207 .mask = 0xf0ffffff,
2208 .data = &variant_ux500,
2209 },
2210 {
2211 .id = 0x10480180,
2212 .mask = 0xf0ffffff,
2213 .data = &variant_ux500v2,
2214 },
2215 {
2216 .id = 0x00880180,
2217 .mask = 0x00ffffff,
2218 .data = &variant_stm32,
2219 },
2220 {
2221 .id = 0x10153180,
2222 .mask = 0xf0ffffff,
2223 .data = &variant_stm32_sdmmc,
2224 },
2225 /* Qualcomm variants */
2226 {
2227 .id = 0x00051180,
2228 .mask = 0x000fffff,
2229 .data = &variant_qcom,
2230 },
2231 { 0, 0 },
2232 };
2233
2234 MODULE_DEVICE_TABLE(amba, mmci_ids);
2235
2236 static struct amba_driver mmci_driver = {
2237 .drv = {
2238 .name = DRIVER_NAME,
2239 .pm = &mmci_dev_pm_ops,
2240 },
2241 .probe = mmci_probe,
2242 .remove = mmci_remove,
2243 .id_table = mmci_ids,
2244 };
2245
2246 module_amba_driver(mmci_driver);
2247
2248 module_param(fmax, uint, 0444);
2249
2250 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2251 MODULE_LICENSE("GPL");