]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/host/mmci.c
Merge branch 'linus' into x86/mm
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 */
86 struct variant_data {
87 unsigned int clkreg;
88 unsigned int clkreg_enable;
89 unsigned int clkreg_8bit_bus_enable;
90 unsigned int clkreg_neg_edge_enable;
91 unsigned int datalength_bits;
92 unsigned int fifosize;
93 unsigned int fifohalfsize;
94 unsigned int data_cmd_enable;
95 unsigned int datactrl_mask_ddrmode;
96 unsigned int datactrl_mask_sdio;
97 bool st_sdio;
98 bool st_clkdiv;
99 bool blksz_datactrl16;
100 bool blksz_datactrl4;
101 u32 pwrreg_powerup;
102 u32 f_max;
103 bool signal_direction;
104 bool pwrreg_clkgate;
105 bool busy_detect;
106 u32 busy_dpsm_flag;
107 u32 busy_detect_flag;
108 u32 busy_detect_mask;
109 bool pwrreg_nopower;
110 bool explicit_mclk_control;
111 bool qcom_fifo;
112 bool qcom_dml;
113 bool reversed_irq_handling;
114 };
115
116 static struct variant_data variant_arm = {
117 .fifosize = 16 * 4,
118 .fifohalfsize = 8 * 4,
119 .datalength_bits = 16,
120 .pwrreg_powerup = MCI_PWR_UP,
121 .f_max = 100000000,
122 .reversed_irq_handling = true,
123 };
124
125 static struct variant_data variant_arm_extended_fifo = {
126 .fifosize = 128 * 4,
127 .fifohalfsize = 64 * 4,
128 .datalength_bits = 16,
129 .pwrreg_powerup = MCI_PWR_UP,
130 .f_max = 100000000,
131 };
132
133 static struct variant_data variant_arm_extended_fifo_hwfc = {
134 .fifosize = 128 * 4,
135 .fifohalfsize = 64 * 4,
136 .clkreg_enable = MCI_ARM_HWFCEN,
137 .datalength_bits = 16,
138 .pwrreg_powerup = MCI_PWR_UP,
139 .f_max = 100000000,
140 };
141
142 static struct variant_data variant_u300 = {
143 .fifosize = 16 * 4,
144 .fifohalfsize = 8 * 4,
145 .clkreg_enable = MCI_ST_U300_HWFCEN,
146 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
147 .datalength_bits = 16,
148 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
149 .st_sdio = true,
150 .pwrreg_powerup = MCI_PWR_ON,
151 .f_max = 100000000,
152 .signal_direction = true,
153 .pwrreg_clkgate = true,
154 .pwrreg_nopower = true,
155 };
156
157 static struct variant_data variant_nomadik = {
158 .fifosize = 16 * 4,
159 .fifohalfsize = 8 * 4,
160 .clkreg = MCI_CLK_ENABLE,
161 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
162 .datalength_bits = 24,
163 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
164 .st_sdio = true,
165 .st_clkdiv = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 };
172
173 static struct variant_data variant_ux500 = {
174 .fifosize = 30 * 4,
175 .fifohalfsize = 8 * 4,
176 .clkreg = MCI_CLK_ENABLE,
177 .clkreg_enable = MCI_ST_UX500_HWFCEN,
178 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
180 .datalength_bits = 24,
181 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
182 .st_sdio = true,
183 .st_clkdiv = true,
184 .pwrreg_powerup = MCI_PWR_ON,
185 .f_max = 100000000,
186 .signal_direction = true,
187 .pwrreg_clkgate = true,
188 .busy_detect = true,
189 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
190 .busy_detect_flag = MCI_ST_CARDBUSY,
191 .busy_detect_mask = MCI_ST_BUSYENDMASK,
192 .pwrreg_nopower = true,
193 };
194
195 static struct variant_data variant_ux500v2 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
203 .datalength_bits = 24,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .blksz_datactrl16 = true,
208 .pwrreg_powerup = MCI_PWR_ON,
209 .f_max = 100000000,
210 .signal_direction = true,
211 .pwrreg_clkgate = true,
212 .busy_detect = true,
213 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
214 .busy_detect_flag = MCI_ST_CARDBUSY,
215 .busy_detect_mask = MCI_ST_BUSYENDMASK,
216 .pwrreg_nopower = true,
217 };
218
219 static struct variant_data variant_qcom = {
220 .fifosize = 16 * 4,
221 .fifohalfsize = 8 * 4,
222 .clkreg = MCI_CLK_ENABLE,
223 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
224 MCI_QCOM_CLK_SELECT_IN_FBCLK,
225 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
226 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
227 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
228 .blksz_datactrl4 = true,
229 .datalength_bits = 24,
230 .pwrreg_powerup = MCI_PWR_UP,
231 .f_max = 208000000,
232 .explicit_mclk_control = true,
233 .qcom_fifo = true,
234 .qcom_dml = true,
235 };
236
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host *mmc)
239 {
240 struct mmci_host *host = mmc_priv(mmc);
241 unsigned long flags;
242 int busy = 0;
243
244 spin_lock_irqsave(&host->lock, flags);
245 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
246 busy = 1;
247 spin_unlock_irqrestore(&host->lock, flags);
248
249 return busy;
250 }
251
252 /*
253 * Validate mmc prerequisites
254 */
255 static int mmci_validate_data(struct mmci_host *host,
256 struct mmc_data *data)
257 {
258 if (!data)
259 return 0;
260
261 if (!is_power_of_2(data->blksz)) {
262 dev_err(mmc_dev(host->mmc),
263 "unsupported block size (%d bytes)\n", data->blksz);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 static void mmci_reg_delay(struct mmci_host *host)
271 {
272 /*
273 * According to the spec, at least three feedback clock cycles
274 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 * Worst delay time during card init is at 100 kHz => 30 us.
277 * Worst delay time when up and running is at 25 MHz => 120 ns.
278 */
279 if (host->cclk < 25000000)
280 udelay(30);
281 else
282 ndelay(120);
283 }
284
285 /*
286 * This must be called with host->lock held
287 */
288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
289 {
290 if (host->clk_reg != clk) {
291 host->clk_reg = clk;
292 writel(clk, host->base + MMCICLOCK);
293 }
294 }
295
296 /*
297 * This must be called with host->lock held
298 */
299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
300 {
301 if (host->pwr_reg != pwr) {
302 host->pwr_reg = pwr;
303 writel(pwr, host->base + MMCIPOWER);
304 }
305 }
306
307 /*
308 * This must be called with host->lock held
309 */
310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
311 {
312 /* Keep busy mode in DPSM if enabled */
313 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
314
315 if (host->datactrl_reg != datactrl) {
316 host->datactrl_reg = datactrl;
317 writel(datactrl, host->base + MMCIDATACTRL);
318 }
319 }
320
321 /*
322 * This must be called with host->lock held
323 */
324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
325 {
326 struct variant_data *variant = host->variant;
327 u32 clk = variant->clkreg;
328
329 /* Make sure cclk reflects the current calculated clock */
330 host->cclk = 0;
331
332 if (desired) {
333 if (variant->explicit_mclk_control) {
334 host->cclk = host->mclk;
335 } else if (desired >= host->mclk) {
336 clk = MCI_CLK_BYPASS;
337 if (variant->st_clkdiv)
338 clk |= MCI_ST_UX500_NEG_EDGE;
339 host->cclk = host->mclk;
340 } else if (variant->st_clkdiv) {
341 /*
342 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 * => clkdiv = (mclk / f) - 2
344 * Round the divider up so we don't exceed the max
345 * frequency
346 */
347 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
348 if (clk >= 256)
349 clk = 255;
350 host->cclk = host->mclk / (clk + 2);
351 } else {
352 /*
353 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 * => clkdiv = mclk / (2 * f) - 1
355 */
356 clk = host->mclk / (2 * desired) - 1;
357 if (clk >= 256)
358 clk = 255;
359 host->cclk = host->mclk / (2 * (clk + 1));
360 }
361
362 clk |= variant->clkreg_enable;
363 clk |= MCI_CLK_ENABLE;
364 /* This hasn't proven to be worthwhile */
365 /* clk |= MCI_CLK_PWRSAVE; */
366 }
367
368 /* Set actual clock for debug */
369 host->mmc->actual_clock = host->cclk;
370
371 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
372 clk |= MCI_4BIT_BUS;
373 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
374 clk |= variant->clkreg_8bit_bus_enable;
375
376 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
377 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
378 clk |= variant->clkreg_neg_edge_enable;
379
380 mmci_write_clkreg(host, clk);
381 }
382
383 static void
384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
385 {
386 writel(0, host->base + MMCICOMMAND);
387
388 BUG_ON(host->data);
389
390 host->mrq = NULL;
391 host->cmd = NULL;
392
393 mmc_request_done(host->mmc, mrq);
394 }
395
396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
397 {
398 void __iomem *base = host->base;
399
400 if (host->singleirq) {
401 unsigned int mask0 = readl(base + MMCIMASK0);
402
403 mask0 &= ~MCI_IRQ1MASK;
404 mask0 |= mask;
405
406 writel(mask0, base + MMCIMASK0);
407 }
408
409 writel(mask, base + MMCIMASK1);
410 }
411
412 static void mmci_stop_data(struct mmci_host *host)
413 {
414 mmci_write_datactrlreg(host, 0);
415 mmci_set_mask1(host, 0);
416 host->data = NULL;
417 }
418
419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
420 {
421 unsigned int flags = SG_MITER_ATOMIC;
422
423 if (data->flags & MMC_DATA_READ)
424 flags |= SG_MITER_TO_SG;
425 else
426 flags |= SG_MITER_FROM_SG;
427
428 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
429 }
430
431 /*
432 * All the DMA operation mode stuff goes inside this ifdef.
433 * This assumes that you have a generic DMA device interface,
434 * no custom DMA interfaces are supported.
435 */
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host *host)
438 {
439 const char *rxname, *txname;
440 struct variant_data *variant = host->variant;
441
442 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
443 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
444
445 /* initialize pre request cookie */
446 host->next_data.cookie = 1;
447
448 /*
449 * If only an RX channel is specified, the driver will
450 * attempt to use it bidirectionally, however if it is
451 * is specified but cannot be located, DMA will be disabled.
452 */
453 if (host->dma_rx_channel && !host->dma_tx_channel)
454 host->dma_tx_channel = host->dma_rx_channel;
455
456 if (host->dma_rx_channel)
457 rxname = dma_chan_name(host->dma_rx_channel);
458 else
459 rxname = "none";
460
461 if (host->dma_tx_channel)
462 txname = dma_chan_name(host->dma_tx_channel);
463 else
464 txname = "none";
465
466 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
467 rxname, txname);
468
469 /*
470 * Limit the maximum segment size in any SG entry according to
471 * the parameters of the DMA engine device.
472 */
473 if (host->dma_tx_channel) {
474 struct device *dev = host->dma_tx_channel->device->dev;
475 unsigned int max_seg_size = dma_get_max_seg_size(dev);
476
477 if (max_seg_size < host->mmc->max_seg_size)
478 host->mmc->max_seg_size = max_seg_size;
479 }
480 if (host->dma_rx_channel) {
481 struct device *dev = host->dma_rx_channel->device->dev;
482 unsigned int max_seg_size = dma_get_max_seg_size(dev);
483
484 if (max_seg_size < host->mmc->max_seg_size)
485 host->mmc->max_seg_size = max_seg_size;
486 }
487
488 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
489 if (dml_hw_init(host, host->mmc->parent->of_node))
490 variant->qcom_dml = false;
491 }
492
493 /*
494 * This is used in or so inline it
495 * so it can be discarded.
496 */
497 static inline void mmci_dma_release(struct mmci_host *host)
498 {
499 if (host->dma_rx_channel)
500 dma_release_channel(host->dma_rx_channel);
501 if (host->dma_tx_channel)
502 dma_release_channel(host->dma_tx_channel);
503 host->dma_rx_channel = host->dma_tx_channel = NULL;
504 }
505
506 static void mmci_dma_data_error(struct mmci_host *host)
507 {
508 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
509 dmaengine_terminate_all(host->dma_current);
510 host->dma_current = NULL;
511 host->dma_desc_current = NULL;
512 host->data->host_cookie = 0;
513 }
514
515 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
516 {
517 struct dma_chan *chan;
518 enum dma_data_direction dir;
519
520 if (data->flags & MMC_DATA_READ) {
521 dir = DMA_FROM_DEVICE;
522 chan = host->dma_rx_channel;
523 } else {
524 dir = DMA_TO_DEVICE;
525 chan = host->dma_tx_channel;
526 }
527
528 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
529 }
530
531 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
532 {
533 u32 status;
534 int i;
535
536 /* Wait up to 1ms for the DMA to complete */
537 for (i = 0; ; i++) {
538 status = readl(host->base + MMCISTATUS);
539 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
540 break;
541 udelay(10);
542 }
543
544 /*
545 * Check to see whether we still have some data left in the FIFO -
546 * this catches DMA controllers which are unable to monitor the
547 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
548 * contiguous buffers. On TX, we'll get a FIFO underrun error.
549 */
550 if (status & MCI_RXDATAAVLBLMASK) {
551 mmci_dma_data_error(host);
552 if (!data->error)
553 data->error = -EIO;
554 }
555
556 if (!data->host_cookie)
557 mmci_dma_unmap(host, data);
558
559 /*
560 * Use of DMA with scatter-gather is impossible.
561 * Give up with DMA and switch back to PIO mode.
562 */
563 if (status & MCI_RXDATAAVLBLMASK) {
564 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
565 mmci_dma_release(host);
566 }
567
568 host->dma_current = NULL;
569 host->dma_desc_current = NULL;
570 }
571
572 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
573 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
574 struct dma_chan **dma_chan,
575 struct dma_async_tx_descriptor **dma_desc)
576 {
577 struct variant_data *variant = host->variant;
578 struct dma_slave_config conf = {
579 .src_addr = host->phybase + MMCIFIFO,
580 .dst_addr = host->phybase + MMCIFIFO,
581 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
582 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
583 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
584 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
585 .device_fc = false,
586 };
587 struct dma_chan *chan;
588 struct dma_device *device;
589 struct dma_async_tx_descriptor *desc;
590 enum dma_data_direction buffer_dirn;
591 int nr_sg;
592 unsigned long flags = DMA_CTRL_ACK;
593
594 if (data->flags & MMC_DATA_READ) {
595 conf.direction = DMA_DEV_TO_MEM;
596 buffer_dirn = DMA_FROM_DEVICE;
597 chan = host->dma_rx_channel;
598 } else {
599 conf.direction = DMA_MEM_TO_DEV;
600 buffer_dirn = DMA_TO_DEVICE;
601 chan = host->dma_tx_channel;
602 }
603
604 /* If there's no DMA channel, fall back to PIO */
605 if (!chan)
606 return -EINVAL;
607
608 /* If less than or equal to the fifo size, don't bother with DMA */
609 if (data->blksz * data->blocks <= variant->fifosize)
610 return -EINVAL;
611
612 device = chan->device;
613 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
614 if (nr_sg == 0)
615 return -EINVAL;
616
617 if (host->variant->qcom_dml)
618 flags |= DMA_PREP_INTERRUPT;
619
620 dmaengine_slave_config(chan, &conf);
621 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
622 conf.direction, flags);
623 if (!desc)
624 goto unmap_exit;
625
626 *dma_chan = chan;
627 *dma_desc = desc;
628
629 return 0;
630
631 unmap_exit:
632 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
633 return -ENOMEM;
634 }
635
636 static inline int mmci_dma_prep_data(struct mmci_host *host,
637 struct mmc_data *data)
638 {
639 /* Check if next job is already prepared. */
640 if (host->dma_current && host->dma_desc_current)
641 return 0;
642
643 /* No job were prepared thus do it now. */
644 return __mmci_dma_prep_data(host, data, &host->dma_current,
645 &host->dma_desc_current);
646 }
647
648 static inline int mmci_dma_prep_next(struct mmci_host *host,
649 struct mmc_data *data)
650 {
651 struct mmci_host_next *nd = &host->next_data;
652 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
653 }
654
655 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
656 {
657 int ret;
658 struct mmc_data *data = host->data;
659
660 ret = mmci_dma_prep_data(host, host->data);
661 if (ret)
662 return ret;
663
664 /* Okay, go for it. */
665 dev_vdbg(mmc_dev(host->mmc),
666 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
667 data->sg_len, data->blksz, data->blocks, data->flags);
668 dmaengine_submit(host->dma_desc_current);
669 dma_async_issue_pending(host->dma_current);
670
671 if (host->variant->qcom_dml)
672 dml_start_xfer(host, data);
673
674 datactrl |= MCI_DPSM_DMAENABLE;
675
676 /* Trigger the DMA transfer */
677 mmci_write_datactrlreg(host, datactrl);
678
679 /*
680 * Let the MMCI say when the data is ended and it's time
681 * to fire next DMA request. When that happens, MMCI will
682 * call mmci_data_end()
683 */
684 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
685 host->base + MMCIMASK0);
686 return 0;
687 }
688
689 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
690 {
691 struct mmci_host_next *next = &host->next_data;
692
693 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
694 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
695
696 host->dma_desc_current = next->dma_desc;
697 host->dma_current = next->dma_chan;
698 next->dma_desc = NULL;
699 next->dma_chan = NULL;
700 }
701
702 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
703 {
704 struct mmci_host *host = mmc_priv(mmc);
705 struct mmc_data *data = mrq->data;
706 struct mmci_host_next *nd = &host->next_data;
707
708 if (!data)
709 return;
710
711 BUG_ON(data->host_cookie);
712
713 if (mmci_validate_data(host, data))
714 return;
715
716 if (!mmci_dma_prep_next(host, data))
717 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
718 }
719
720 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
721 int err)
722 {
723 struct mmci_host *host = mmc_priv(mmc);
724 struct mmc_data *data = mrq->data;
725
726 if (!data || !data->host_cookie)
727 return;
728
729 mmci_dma_unmap(host, data);
730
731 if (err) {
732 struct mmci_host_next *next = &host->next_data;
733 struct dma_chan *chan;
734 if (data->flags & MMC_DATA_READ)
735 chan = host->dma_rx_channel;
736 else
737 chan = host->dma_tx_channel;
738 dmaengine_terminate_all(chan);
739
740 if (host->dma_desc_current == next->dma_desc)
741 host->dma_desc_current = NULL;
742
743 if (host->dma_current == next->dma_chan)
744 host->dma_current = NULL;
745
746 next->dma_desc = NULL;
747 next->dma_chan = NULL;
748 data->host_cookie = 0;
749 }
750 }
751
752 #else
753 /* Blank functions if the DMA engine is not available */
754 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
755 {
756 }
757 static inline void mmci_dma_setup(struct mmci_host *host)
758 {
759 }
760
761 static inline void mmci_dma_release(struct mmci_host *host)
762 {
763 }
764
765 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
766 {
767 }
768
769 static inline void mmci_dma_finalize(struct mmci_host *host,
770 struct mmc_data *data)
771 {
772 }
773
774 static inline void mmci_dma_data_error(struct mmci_host *host)
775 {
776 }
777
778 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
779 {
780 return -ENOSYS;
781 }
782
783 #define mmci_pre_request NULL
784 #define mmci_post_request NULL
785
786 #endif
787
788 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
789 {
790 struct variant_data *variant = host->variant;
791 unsigned int datactrl, timeout, irqmask;
792 unsigned long long clks;
793 void __iomem *base;
794 int blksz_bits;
795
796 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
797 data->blksz, data->blocks, data->flags);
798
799 host->data = data;
800 host->size = data->blksz * data->blocks;
801 data->bytes_xfered = 0;
802
803 clks = (unsigned long long)data->timeout_ns * host->cclk;
804 do_div(clks, NSEC_PER_SEC);
805
806 timeout = data->timeout_clks + (unsigned int)clks;
807
808 base = host->base;
809 writel(timeout, base + MMCIDATATIMER);
810 writel(host->size, base + MMCIDATALENGTH);
811
812 blksz_bits = ffs(data->blksz) - 1;
813 BUG_ON(1 << blksz_bits != data->blksz);
814
815 if (variant->blksz_datactrl16)
816 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
817 else if (variant->blksz_datactrl4)
818 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
819 else
820 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
821
822 if (data->flags & MMC_DATA_READ)
823 datactrl |= MCI_DPSM_DIRECTION;
824
825 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
826 u32 clk;
827
828 datactrl |= variant->datactrl_mask_sdio;
829
830 /*
831 * The ST Micro variant for SDIO small write transfers
832 * needs to have clock H/W flow control disabled,
833 * otherwise the transfer will not start. The threshold
834 * depends on the rate of MCLK.
835 */
836 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
837 (host->size < 8 ||
838 (host->size <= 8 && host->mclk > 50000000)))
839 clk = host->clk_reg & ~variant->clkreg_enable;
840 else
841 clk = host->clk_reg | variant->clkreg_enable;
842
843 mmci_write_clkreg(host, clk);
844 }
845
846 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
847 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
848 datactrl |= variant->datactrl_mask_ddrmode;
849
850 /*
851 * Attempt to use DMA operation mode, if this
852 * should fail, fall back to PIO mode
853 */
854 if (!mmci_dma_start_data(host, datactrl))
855 return;
856
857 /* IRQ mode, map the SG list for CPU reading/writing */
858 mmci_init_sg(host, data);
859
860 if (data->flags & MMC_DATA_READ) {
861 irqmask = MCI_RXFIFOHALFFULLMASK;
862
863 /*
864 * If we have less than the fifo 'half-full' threshold to
865 * transfer, trigger a PIO interrupt as soon as any data
866 * is available.
867 */
868 if (host->size < variant->fifohalfsize)
869 irqmask |= MCI_RXDATAAVLBLMASK;
870 } else {
871 /*
872 * We don't actually need to include "FIFO empty" here
873 * since its implicit in "FIFO half empty".
874 */
875 irqmask = MCI_TXFIFOHALFEMPTYMASK;
876 }
877
878 mmci_write_datactrlreg(host, datactrl);
879 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
880 mmci_set_mask1(host, irqmask);
881 }
882
883 static void
884 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
885 {
886 void __iomem *base = host->base;
887
888 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
889 cmd->opcode, cmd->arg, cmd->flags);
890
891 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
892 writel(0, base + MMCICOMMAND);
893 mmci_reg_delay(host);
894 }
895
896 c |= cmd->opcode | MCI_CPSM_ENABLE;
897 if (cmd->flags & MMC_RSP_PRESENT) {
898 if (cmd->flags & MMC_RSP_136)
899 c |= MCI_CPSM_LONGRSP;
900 c |= MCI_CPSM_RESPONSE;
901 }
902 if (/*interrupt*/0)
903 c |= MCI_CPSM_INTERRUPT;
904
905 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
906 c |= host->variant->data_cmd_enable;
907
908 host->cmd = cmd;
909
910 writel(cmd->arg, base + MMCIARGUMENT);
911 writel(c, base + MMCICOMMAND);
912 }
913
914 static void
915 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
916 unsigned int status)
917 {
918 /* Make sure we have data to handle */
919 if (!data)
920 return;
921
922 /* First check for errors */
923 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
924 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
925 u32 remain, success;
926
927 /* Terminate the DMA transfer */
928 if (dma_inprogress(host)) {
929 mmci_dma_data_error(host);
930 mmci_dma_unmap(host, data);
931 }
932
933 /*
934 * Calculate how far we are into the transfer. Note that
935 * the data counter gives the number of bytes transferred
936 * on the MMC bus, not on the host side. On reads, this
937 * can be as much as a FIFO-worth of data ahead. This
938 * matters for FIFO overruns only.
939 */
940 remain = readl(host->base + MMCIDATACNT);
941 success = data->blksz * data->blocks - remain;
942
943 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
944 status, success);
945 if (status & MCI_DATACRCFAIL) {
946 /* Last block was not successful */
947 success -= 1;
948 data->error = -EILSEQ;
949 } else if (status & MCI_DATATIMEOUT) {
950 data->error = -ETIMEDOUT;
951 } else if (status & MCI_STARTBITERR) {
952 data->error = -ECOMM;
953 } else if (status & MCI_TXUNDERRUN) {
954 data->error = -EIO;
955 } else if (status & MCI_RXOVERRUN) {
956 if (success > host->variant->fifosize)
957 success -= host->variant->fifosize;
958 else
959 success = 0;
960 data->error = -EIO;
961 }
962 data->bytes_xfered = round_down(success, data->blksz);
963 }
964
965 if (status & MCI_DATABLOCKEND)
966 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
967
968 if (status & MCI_DATAEND || data->error) {
969 if (dma_inprogress(host))
970 mmci_dma_finalize(host, data);
971 mmci_stop_data(host);
972
973 if (!data->error)
974 /* The error clause is handled above, success! */
975 data->bytes_xfered = data->blksz * data->blocks;
976
977 if (!data->stop || host->mrq->sbc) {
978 mmci_request_end(host, data->mrq);
979 } else {
980 mmci_start_command(host, data->stop, 0);
981 }
982 }
983 }
984
985 static void
986 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
987 unsigned int status)
988 {
989 void __iomem *base = host->base;
990 bool sbc;
991
992 if (!cmd)
993 return;
994
995 sbc = (cmd == host->mrq->sbc);
996
997 /*
998 * We need to be one of these interrupts to be considered worth
999 * handling. Note that we tag on any latent IRQs postponed
1000 * due to waiting for busy status.
1001 */
1002 if (!((status|host->busy_status) &
1003 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1004 return;
1005
1006 /*
1007 * ST Micro variant: handle busy detection.
1008 */
1009 if (host->variant->busy_detect) {
1010 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1011
1012 /* We are busy with a command, return */
1013 if (host->busy_status &&
1014 (status & host->variant->busy_detect_flag))
1015 return;
1016
1017 /*
1018 * We were not busy, but we now got a busy response on
1019 * something that was not an error, and we double-check
1020 * that the special busy status bit is still set before
1021 * proceeding.
1022 */
1023 if (!host->busy_status && busy_resp &&
1024 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1025 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1026
1027 /* Clear the busy start IRQ */
1028 writel(host->variant->busy_detect_mask,
1029 host->base + MMCICLEAR);
1030
1031 /* Unmask the busy end IRQ */
1032 writel(readl(base + MMCIMASK0) |
1033 host->variant->busy_detect_mask,
1034 base + MMCIMASK0);
1035 /*
1036 * Now cache the last response status code (until
1037 * the busy bit goes low), and return.
1038 */
1039 host->busy_status =
1040 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1041 return;
1042 }
1043
1044 /*
1045 * At this point we are not busy with a command, we have
1046 * not received a new busy request, clear and mask the busy
1047 * end IRQ and fall through to process the IRQ.
1048 */
1049 if (host->busy_status) {
1050
1051 writel(host->variant->busy_detect_mask,
1052 host->base + MMCICLEAR);
1053
1054 writel(readl(base + MMCIMASK0) &
1055 ~host->variant->busy_detect_mask,
1056 base + MMCIMASK0);
1057 host->busy_status = 0;
1058 }
1059 }
1060
1061 host->cmd = NULL;
1062
1063 if (status & MCI_CMDTIMEOUT) {
1064 cmd->error = -ETIMEDOUT;
1065 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1066 cmd->error = -EILSEQ;
1067 } else {
1068 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1069 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1070 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1071 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1072 }
1073
1074 if ((!sbc && !cmd->data) || cmd->error) {
1075 if (host->data) {
1076 /* Terminate the DMA transfer */
1077 if (dma_inprogress(host)) {
1078 mmci_dma_data_error(host);
1079 mmci_dma_unmap(host, host->data);
1080 }
1081 mmci_stop_data(host);
1082 }
1083 mmci_request_end(host, host->mrq);
1084 } else if (sbc) {
1085 mmci_start_command(host, host->mrq->cmd, 0);
1086 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1087 mmci_start_data(host, cmd->data);
1088 }
1089 }
1090
1091 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1092 {
1093 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1094 }
1095
1096 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1097 {
1098 /*
1099 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1100 * from the fifo range should be used
1101 */
1102 if (status & MCI_RXFIFOHALFFULL)
1103 return host->variant->fifohalfsize;
1104 else if (status & MCI_RXDATAAVLBL)
1105 return 4;
1106
1107 return 0;
1108 }
1109
1110 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1111 {
1112 void __iomem *base = host->base;
1113 char *ptr = buffer;
1114 u32 status = readl(host->base + MMCISTATUS);
1115 int host_remain = host->size;
1116
1117 do {
1118 int count = host->get_rx_fifocnt(host, status, host_remain);
1119
1120 if (count > remain)
1121 count = remain;
1122
1123 if (count <= 0)
1124 break;
1125
1126 /*
1127 * SDIO especially may want to send something that is
1128 * not divisible by 4 (as opposed to card sectors
1129 * etc). Therefore make sure to always read the last bytes
1130 * while only doing full 32-bit reads towards the FIFO.
1131 */
1132 if (unlikely(count & 0x3)) {
1133 if (count < 4) {
1134 unsigned char buf[4];
1135 ioread32_rep(base + MMCIFIFO, buf, 1);
1136 memcpy(ptr, buf, count);
1137 } else {
1138 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1139 count &= ~0x3;
1140 }
1141 } else {
1142 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1143 }
1144
1145 ptr += count;
1146 remain -= count;
1147 host_remain -= count;
1148
1149 if (remain == 0)
1150 break;
1151
1152 status = readl(base + MMCISTATUS);
1153 } while (status & MCI_RXDATAAVLBL);
1154
1155 return ptr - buffer;
1156 }
1157
1158 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1159 {
1160 struct variant_data *variant = host->variant;
1161 void __iomem *base = host->base;
1162 char *ptr = buffer;
1163
1164 do {
1165 unsigned int count, maxcnt;
1166
1167 maxcnt = status & MCI_TXFIFOEMPTY ?
1168 variant->fifosize : variant->fifohalfsize;
1169 count = min(remain, maxcnt);
1170
1171 /*
1172 * SDIO especially may want to send something that is
1173 * not divisible by 4 (as opposed to card sectors
1174 * etc), and the FIFO only accept full 32-bit writes.
1175 * So compensate by adding +3 on the count, a single
1176 * byte become a 32bit write, 7 bytes will be two
1177 * 32bit writes etc.
1178 */
1179 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1180
1181 ptr += count;
1182 remain -= count;
1183
1184 if (remain == 0)
1185 break;
1186
1187 status = readl(base + MMCISTATUS);
1188 } while (status & MCI_TXFIFOHALFEMPTY);
1189
1190 return ptr - buffer;
1191 }
1192
1193 /*
1194 * PIO data transfer IRQ handler.
1195 */
1196 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1197 {
1198 struct mmci_host *host = dev_id;
1199 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1200 struct variant_data *variant = host->variant;
1201 void __iomem *base = host->base;
1202 unsigned long flags;
1203 u32 status;
1204
1205 status = readl(base + MMCISTATUS);
1206
1207 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1208
1209 local_irq_save(flags);
1210
1211 do {
1212 unsigned int remain, len;
1213 char *buffer;
1214
1215 /*
1216 * For write, we only need to test the half-empty flag
1217 * here - if the FIFO is completely empty, then by
1218 * definition it is more than half empty.
1219 *
1220 * For read, check for data available.
1221 */
1222 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1223 break;
1224
1225 if (!sg_miter_next(sg_miter))
1226 break;
1227
1228 buffer = sg_miter->addr;
1229 remain = sg_miter->length;
1230
1231 len = 0;
1232 if (status & MCI_RXACTIVE)
1233 len = mmci_pio_read(host, buffer, remain);
1234 if (status & MCI_TXACTIVE)
1235 len = mmci_pio_write(host, buffer, remain, status);
1236
1237 sg_miter->consumed = len;
1238
1239 host->size -= len;
1240 remain -= len;
1241
1242 if (remain)
1243 break;
1244
1245 status = readl(base + MMCISTATUS);
1246 } while (1);
1247
1248 sg_miter_stop(sg_miter);
1249
1250 local_irq_restore(flags);
1251
1252 /*
1253 * If we have less than the fifo 'half-full' threshold to transfer,
1254 * trigger a PIO interrupt as soon as any data is available.
1255 */
1256 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1257 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1258
1259 /*
1260 * If we run out of data, disable the data IRQs; this
1261 * prevents a race where the FIFO becomes empty before
1262 * the chip itself has disabled the data path, and
1263 * stops us racing with our data end IRQ.
1264 */
1265 if (host->size == 0) {
1266 mmci_set_mask1(host, 0);
1267 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1268 }
1269
1270 return IRQ_HANDLED;
1271 }
1272
1273 /*
1274 * Handle completion of command and data transfers.
1275 */
1276 static irqreturn_t mmci_irq(int irq, void *dev_id)
1277 {
1278 struct mmci_host *host = dev_id;
1279 u32 status;
1280 int ret = 0;
1281
1282 spin_lock(&host->lock);
1283
1284 do {
1285 status = readl(host->base + MMCISTATUS);
1286
1287 if (host->singleirq) {
1288 if (status & readl(host->base + MMCIMASK1))
1289 mmci_pio_irq(irq, dev_id);
1290
1291 status &= ~MCI_IRQ1MASK;
1292 }
1293
1294 /*
1295 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1296 * enabled) in mmci_cmd_irq() function where ST Micro busy
1297 * detection variant is handled. Considering the HW seems to be
1298 * triggering the IRQ on both edges while monitoring DAT0 for
1299 * busy completion and that same status bit is used to monitor
1300 * start and end of busy detection, special care must be taken
1301 * to make sure that both start and end interrupts are always
1302 * cleared one after the other.
1303 */
1304 status &= readl(host->base + MMCIMASK0);
1305 if (host->variant->busy_detect)
1306 writel(status & ~host->variant->busy_detect_mask,
1307 host->base + MMCICLEAR);
1308 else
1309 writel(status, host->base + MMCICLEAR);
1310
1311 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1312
1313 if (host->variant->reversed_irq_handling) {
1314 mmci_data_irq(host, host->data, status);
1315 mmci_cmd_irq(host, host->cmd, status);
1316 } else {
1317 mmci_cmd_irq(host, host->cmd, status);
1318 mmci_data_irq(host, host->data, status);
1319 }
1320
1321 /*
1322 * Don't poll for busy completion in irq context.
1323 */
1324 if (host->variant->busy_detect && host->busy_status)
1325 status &= ~host->variant->busy_detect_flag;
1326
1327 ret = 1;
1328 } while (status);
1329
1330 spin_unlock(&host->lock);
1331
1332 return IRQ_RETVAL(ret);
1333 }
1334
1335 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1336 {
1337 struct mmci_host *host = mmc_priv(mmc);
1338 unsigned long flags;
1339
1340 WARN_ON(host->mrq != NULL);
1341
1342 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1343 if (mrq->cmd->error) {
1344 mmc_request_done(mmc, mrq);
1345 return;
1346 }
1347
1348 spin_lock_irqsave(&host->lock, flags);
1349
1350 host->mrq = mrq;
1351
1352 if (mrq->data)
1353 mmci_get_next_data(host, mrq->data);
1354
1355 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1356 mmci_start_data(host, mrq->data);
1357
1358 if (mrq->sbc)
1359 mmci_start_command(host, mrq->sbc, 0);
1360 else
1361 mmci_start_command(host, mrq->cmd, 0);
1362
1363 spin_unlock_irqrestore(&host->lock, flags);
1364 }
1365
1366 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1367 {
1368 struct mmci_host *host = mmc_priv(mmc);
1369 struct variant_data *variant = host->variant;
1370 u32 pwr = 0;
1371 unsigned long flags;
1372 int ret;
1373
1374 if (host->plat->ios_handler &&
1375 host->plat->ios_handler(mmc_dev(mmc), ios))
1376 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1377
1378 switch (ios->power_mode) {
1379 case MMC_POWER_OFF:
1380 if (!IS_ERR(mmc->supply.vmmc))
1381 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1382
1383 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1384 regulator_disable(mmc->supply.vqmmc);
1385 host->vqmmc_enabled = false;
1386 }
1387
1388 break;
1389 case MMC_POWER_UP:
1390 if (!IS_ERR(mmc->supply.vmmc))
1391 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1392
1393 /*
1394 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1395 * and instead uses MCI_PWR_ON so apply whatever value is
1396 * configured in the variant data.
1397 */
1398 pwr |= variant->pwrreg_powerup;
1399
1400 break;
1401 case MMC_POWER_ON:
1402 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1403 ret = regulator_enable(mmc->supply.vqmmc);
1404 if (ret < 0)
1405 dev_err(mmc_dev(mmc),
1406 "failed to enable vqmmc regulator\n");
1407 else
1408 host->vqmmc_enabled = true;
1409 }
1410
1411 pwr |= MCI_PWR_ON;
1412 break;
1413 }
1414
1415 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1416 /*
1417 * The ST Micro variant has some additional bits
1418 * indicating signal direction for the signals in
1419 * the SD/MMC bus and feedback-clock usage.
1420 */
1421 pwr |= host->pwr_reg_add;
1422
1423 if (ios->bus_width == MMC_BUS_WIDTH_4)
1424 pwr &= ~MCI_ST_DATA74DIREN;
1425 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1426 pwr &= (~MCI_ST_DATA74DIREN &
1427 ~MCI_ST_DATA31DIREN &
1428 ~MCI_ST_DATA2DIREN);
1429 }
1430
1431 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1432 if (host->hw_designer != AMBA_VENDOR_ST)
1433 pwr |= MCI_ROD;
1434 else {
1435 /*
1436 * The ST Micro variant use the ROD bit for something
1437 * else and only has OD (Open Drain).
1438 */
1439 pwr |= MCI_OD;
1440 }
1441 }
1442
1443 /*
1444 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1445 * gating the clock, the MCI_PWR_ON bit is cleared.
1446 */
1447 if (!ios->clock && variant->pwrreg_clkgate)
1448 pwr &= ~MCI_PWR_ON;
1449
1450 if (host->variant->explicit_mclk_control &&
1451 ios->clock != host->clock_cache) {
1452 ret = clk_set_rate(host->clk, ios->clock);
1453 if (ret < 0)
1454 dev_err(mmc_dev(host->mmc),
1455 "Error setting clock rate (%d)\n", ret);
1456 else
1457 host->mclk = clk_get_rate(host->clk);
1458 }
1459 host->clock_cache = ios->clock;
1460
1461 spin_lock_irqsave(&host->lock, flags);
1462
1463 mmci_set_clkreg(host, ios->clock);
1464 mmci_write_pwrreg(host, pwr);
1465 mmci_reg_delay(host);
1466
1467 spin_unlock_irqrestore(&host->lock, flags);
1468 }
1469
1470 static int mmci_get_cd(struct mmc_host *mmc)
1471 {
1472 struct mmci_host *host = mmc_priv(mmc);
1473 struct mmci_platform_data *plat = host->plat;
1474 unsigned int status = mmc_gpio_get_cd(mmc);
1475
1476 if (status == -ENOSYS) {
1477 if (!plat->status)
1478 return 1; /* Assume always present */
1479
1480 status = plat->status(mmc_dev(host->mmc));
1481 }
1482 return status;
1483 }
1484
1485 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1486 {
1487 int ret = 0;
1488
1489 if (!IS_ERR(mmc->supply.vqmmc)) {
1490
1491 switch (ios->signal_voltage) {
1492 case MMC_SIGNAL_VOLTAGE_330:
1493 ret = regulator_set_voltage(mmc->supply.vqmmc,
1494 2700000, 3600000);
1495 break;
1496 case MMC_SIGNAL_VOLTAGE_180:
1497 ret = regulator_set_voltage(mmc->supply.vqmmc,
1498 1700000, 1950000);
1499 break;
1500 case MMC_SIGNAL_VOLTAGE_120:
1501 ret = regulator_set_voltage(mmc->supply.vqmmc,
1502 1100000, 1300000);
1503 break;
1504 }
1505
1506 if (ret)
1507 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1508 }
1509
1510 return ret;
1511 }
1512
1513 static struct mmc_host_ops mmci_ops = {
1514 .request = mmci_request,
1515 .pre_req = mmci_pre_request,
1516 .post_req = mmci_post_request,
1517 .set_ios = mmci_set_ios,
1518 .get_ro = mmc_gpio_get_ro,
1519 .get_cd = mmci_get_cd,
1520 .start_signal_voltage_switch = mmci_sig_volt_switch,
1521 };
1522
1523 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1524 {
1525 struct mmci_host *host = mmc_priv(mmc);
1526 int ret = mmc_of_parse(mmc);
1527
1528 if (ret)
1529 return ret;
1530
1531 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1532 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1533 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1534 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1535 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1536 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1537 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1538 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1539 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1540 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1541 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1542 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1543
1544 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1545 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1546 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1547 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1548
1549 return 0;
1550 }
1551
1552 static int mmci_probe(struct amba_device *dev,
1553 const struct amba_id *id)
1554 {
1555 struct mmci_platform_data *plat = dev->dev.platform_data;
1556 struct device_node *np = dev->dev.of_node;
1557 struct variant_data *variant = id->data;
1558 struct mmci_host *host;
1559 struct mmc_host *mmc;
1560 int ret;
1561
1562 /* Must have platform data or Device Tree. */
1563 if (!plat && !np) {
1564 dev_err(&dev->dev, "No plat data or DT found\n");
1565 return -EINVAL;
1566 }
1567
1568 if (!plat) {
1569 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1570 if (!plat)
1571 return -ENOMEM;
1572 }
1573
1574 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1575 if (!mmc)
1576 return -ENOMEM;
1577
1578 ret = mmci_of_parse(np, mmc);
1579 if (ret)
1580 goto host_free;
1581
1582 host = mmc_priv(mmc);
1583 host->mmc = mmc;
1584
1585 host->hw_designer = amba_manf(dev);
1586 host->hw_revision = amba_rev(dev);
1587 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1588 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1589
1590 host->clk = devm_clk_get(&dev->dev, NULL);
1591 if (IS_ERR(host->clk)) {
1592 ret = PTR_ERR(host->clk);
1593 goto host_free;
1594 }
1595
1596 ret = clk_prepare_enable(host->clk);
1597 if (ret)
1598 goto host_free;
1599
1600 if (variant->qcom_fifo)
1601 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1602 else
1603 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1604
1605 host->plat = plat;
1606 host->variant = variant;
1607 host->mclk = clk_get_rate(host->clk);
1608 /*
1609 * According to the spec, mclk is max 100 MHz,
1610 * so we try to adjust the clock down to this,
1611 * (if possible).
1612 */
1613 if (host->mclk > variant->f_max) {
1614 ret = clk_set_rate(host->clk, variant->f_max);
1615 if (ret < 0)
1616 goto clk_disable;
1617 host->mclk = clk_get_rate(host->clk);
1618 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1619 host->mclk);
1620 }
1621
1622 host->phybase = dev->res.start;
1623 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1624 if (IS_ERR(host->base)) {
1625 ret = PTR_ERR(host->base);
1626 goto clk_disable;
1627 }
1628
1629 /*
1630 * The ARM and ST versions of the block have slightly different
1631 * clock divider equations which means that the minimum divider
1632 * differs too.
1633 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1634 */
1635 if (variant->st_clkdiv)
1636 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1637 else if (variant->explicit_mclk_control)
1638 mmc->f_min = clk_round_rate(host->clk, 100000);
1639 else
1640 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1641 /*
1642 * If no maximum operating frequency is supplied, fall back to use
1643 * the module parameter, which has a (low) default value in case it
1644 * is not specified. Either value must not exceed the clock rate into
1645 * the block, of course.
1646 */
1647 if (mmc->f_max)
1648 mmc->f_max = variant->explicit_mclk_control ?
1649 min(variant->f_max, mmc->f_max) :
1650 min(host->mclk, mmc->f_max);
1651 else
1652 mmc->f_max = variant->explicit_mclk_control ?
1653 fmax : min(host->mclk, fmax);
1654
1655
1656 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1657
1658 /* Get regulators and the supported OCR mask */
1659 ret = mmc_regulator_get_supply(mmc);
1660 if (ret == -EPROBE_DEFER)
1661 goto clk_disable;
1662
1663 if (!mmc->ocr_avail)
1664 mmc->ocr_avail = plat->ocr_mask;
1665 else if (plat->ocr_mask)
1666 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1667
1668 /* DT takes precedence over platform data. */
1669 if (!np) {
1670 if (!plat->cd_invert)
1671 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1672 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1673 }
1674
1675 /* We support these capabilities. */
1676 mmc->caps |= MMC_CAP_CMD23;
1677
1678 /*
1679 * Enable busy detection.
1680 */
1681 if (variant->busy_detect) {
1682 mmci_ops.card_busy = mmci_card_busy;
1683 /*
1684 * Not all variants have a flag to enable busy detection
1685 * in the DPSM, but if they do, set it here.
1686 */
1687 if (variant->busy_dpsm_flag)
1688 mmci_write_datactrlreg(host,
1689 host->variant->busy_dpsm_flag);
1690 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1691 mmc->max_busy_timeout = 0;
1692 }
1693
1694 mmc->ops = &mmci_ops;
1695
1696 /* We support these PM capabilities. */
1697 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1698
1699 /*
1700 * We can do SGIO
1701 */
1702 mmc->max_segs = NR_SG;
1703
1704 /*
1705 * Since only a certain number of bits are valid in the data length
1706 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1707 * single request.
1708 */
1709 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1710
1711 /*
1712 * Set the maximum segment size. Since we aren't doing DMA
1713 * (yet) we are only limited by the data length register.
1714 */
1715 mmc->max_seg_size = mmc->max_req_size;
1716
1717 /*
1718 * Block size can be up to 2048 bytes, but must be a power of two.
1719 */
1720 mmc->max_blk_size = 1 << 11;
1721
1722 /*
1723 * Limit the number of blocks transferred so that we don't overflow
1724 * the maximum request size.
1725 */
1726 mmc->max_blk_count = mmc->max_req_size >> 11;
1727
1728 spin_lock_init(&host->lock);
1729
1730 writel(0, host->base + MMCIMASK0);
1731 writel(0, host->base + MMCIMASK1);
1732 writel(0xfff, host->base + MMCICLEAR);
1733
1734 /*
1735 * If:
1736 * - not using DT but using a descriptor table, or
1737 * - using a table of descriptors ALONGSIDE DT, or
1738 * look up these descriptors named "cd" and "wp" right here, fail
1739 * silently of these do not exist and proceed to try platform data
1740 */
1741 if (!np) {
1742 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1743 if (ret < 0) {
1744 if (ret == -EPROBE_DEFER)
1745 goto clk_disable;
1746 else if (gpio_is_valid(plat->gpio_cd)) {
1747 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1748 if (ret)
1749 goto clk_disable;
1750 }
1751 }
1752
1753 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1754 if (ret < 0) {
1755 if (ret == -EPROBE_DEFER)
1756 goto clk_disable;
1757 else if (gpio_is_valid(plat->gpio_wp)) {
1758 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1759 if (ret)
1760 goto clk_disable;
1761 }
1762 }
1763 }
1764
1765 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1766 DRIVER_NAME " (cmd)", host);
1767 if (ret)
1768 goto clk_disable;
1769
1770 if (!dev->irq[1])
1771 host->singleirq = true;
1772 else {
1773 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1774 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1775 if (ret)
1776 goto clk_disable;
1777 }
1778
1779 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1780
1781 amba_set_drvdata(dev, mmc);
1782
1783 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1784 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1785 amba_rev(dev), (unsigned long long)dev->res.start,
1786 dev->irq[0], dev->irq[1]);
1787
1788 mmci_dma_setup(host);
1789
1790 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1791 pm_runtime_use_autosuspend(&dev->dev);
1792
1793 mmc_add_host(mmc);
1794
1795 pm_runtime_put(&dev->dev);
1796 return 0;
1797
1798 clk_disable:
1799 clk_disable_unprepare(host->clk);
1800 host_free:
1801 mmc_free_host(mmc);
1802 return ret;
1803 }
1804
1805 static int mmci_remove(struct amba_device *dev)
1806 {
1807 struct mmc_host *mmc = amba_get_drvdata(dev);
1808
1809 if (mmc) {
1810 struct mmci_host *host = mmc_priv(mmc);
1811
1812 /*
1813 * Undo pm_runtime_put() in probe. We use the _sync
1814 * version here so that we can access the primecell.
1815 */
1816 pm_runtime_get_sync(&dev->dev);
1817
1818 mmc_remove_host(mmc);
1819
1820 writel(0, host->base + MMCIMASK0);
1821 writel(0, host->base + MMCIMASK1);
1822
1823 writel(0, host->base + MMCICOMMAND);
1824 writel(0, host->base + MMCIDATACTRL);
1825
1826 mmci_dma_release(host);
1827 clk_disable_unprepare(host->clk);
1828 mmc_free_host(mmc);
1829 }
1830
1831 return 0;
1832 }
1833
1834 #ifdef CONFIG_PM
1835 static void mmci_save(struct mmci_host *host)
1836 {
1837 unsigned long flags;
1838
1839 spin_lock_irqsave(&host->lock, flags);
1840
1841 writel(0, host->base + MMCIMASK0);
1842 if (host->variant->pwrreg_nopower) {
1843 writel(0, host->base + MMCIDATACTRL);
1844 writel(0, host->base + MMCIPOWER);
1845 writel(0, host->base + MMCICLOCK);
1846 }
1847 mmci_reg_delay(host);
1848
1849 spin_unlock_irqrestore(&host->lock, flags);
1850 }
1851
1852 static void mmci_restore(struct mmci_host *host)
1853 {
1854 unsigned long flags;
1855
1856 spin_lock_irqsave(&host->lock, flags);
1857
1858 if (host->variant->pwrreg_nopower) {
1859 writel(host->clk_reg, host->base + MMCICLOCK);
1860 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1861 writel(host->pwr_reg, host->base + MMCIPOWER);
1862 }
1863 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1864 mmci_reg_delay(host);
1865
1866 spin_unlock_irqrestore(&host->lock, flags);
1867 }
1868
1869 static int mmci_runtime_suspend(struct device *dev)
1870 {
1871 struct amba_device *adev = to_amba_device(dev);
1872 struct mmc_host *mmc = amba_get_drvdata(adev);
1873
1874 if (mmc) {
1875 struct mmci_host *host = mmc_priv(mmc);
1876 pinctrl_pm_select_sleep_state(dev);
1877 mmci_save(host);
1878 clk_disable_unprepare(host->clk);
1879 }
1880
1881 return 0;
1882 }
1883
1884 static int mmci_runtime_resume(struct device *dev)
1885 {
1886 struct amba_device *adev = to_amba_device(dev);
1887 struct mmc_host *mmc = amba_get_drvdata(adev);
1888
1889 if (mmc) {
1890 struct mmci_host *host = mmc_priv(mmc);
1891 clk_prepare_enable(host->clk);
1892 mmci_restore(host);
1893 pinctrl_pm_select_default_state(dev);
1894 }
1895
1896 return 0;
1897 }
1898 #endif
1899
1900 static const struct dev_pm_ops mmci_dev_pm_ops = {
1901 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1902 pm_runtime_force_resume)
1903 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1904 };
1905
1906 static struct amba_id mmci_ids[] = {
1907 {
1908 .id = 0x00041180,
1909 .mask = 0xff0fffff,
1910 .data = &variant_arm,
1911 },
1912 {
1913 .id = 0x01041180,
1914 .mask = 0xff0fffff,
1915 .data = &variant_arm_extended_fifo,
1916 },
1917 {
1918 .id = 0x02041180,
1919 .mask = 0xff0fffff,
1920 .data = &variant_arm_extended_fifo_hwfc,
1921 },
1922 {
1923 .id = 0x00041181,
1924 .mask = 0x000fffff,
1925 .data = &variant_arm,
1926 },
1927 /* ST Micro variants */
1928 {
1929 .id = 0x00180180,
1930 .mask = 0x00ffffff,
1931 .data = &variant_u300,
1932 },
1933 {
1934 .id = 0x10180180,
1935 .mask = 0xf0ffffff,
1936 .data = &variant_nomadik,
1937 },
1938 {
1939 .id = 0x00280180,
1940 .mask = 0x00ffffff,
1941 .data = &variant_nomadik,
1942 },
1943 {
1944 .id = 0x00480180,
1945 .mask = 0xf0ffffff,
1946 .data = &variant_ux500,
1947 },
1948 {
1949 .id = 0x10480180,
1950 .mask = 0xf0ffffff,
1951 .data = &variant_ux500v2,
1952 },
1953 /* Qualcomm variants */
1954 {
1955 .id = 0x00051180,
1956 .mask = 0x000fffff,
1957 .data = &variant_qcom,
1958 },
1959 { 0, 0 },
1960 };
1961
1962 MODULE_DEVICE_TABLE(amba, mmci_ids);
1963
1964 static struct amba_driver mmci_driver = {
1965 .drv = {
1966 .name = DRIVER_NAME,
1967 .pm = &mmci_dev_pm_ops,
1968 },
1969 .probe = mmci_probe,
1970 .remove = mmci_remove,
1971 .id_table = mmci_ids,
1972 };
1973
1974 module_amba_driver(mmci_driver);
1975
1976 module_param(fmax, uint, 0444);
1977
1978 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1979 MODULE_LICENSE("GPL");