]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/host/mmci.c
Merge branch 'stable-4.11' of git://git.infradead.org/users/pcmoore/audit
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 */
86 struct variant_data {
87 unsigned int clkreg;
88 unsigned int clkreg_enable;
89 unsigned int clkreg_8bit_bus_enable;
90 unsigned int clkreg_neg_edge_enable;
91 unsigned int datalength_bits;
92 unsigned int fifosize;
93 unsigned int fifohalfsize;
94 unsigned int data_cmd_enable;
95 unsigned int datactrl_mask_ddrmode;
96 unsigned int datactrl_mask_sdio;
97 bool st_sdio;
98 bool st_clkdiv;
99 bool blksz_datactrl16;
100 bool blksz_datactrl4;
101 u32 pwrreg_powerup;
102 u32 f_max;
103 bool signal_direction;
104 bool pwrreg_clkgate;
105 bool busy_detect;
106 u32 busy_dpsm_flag;
107 u32 busy_detect_flag;
108 u32 busy_detect_mask;
109 bool pwrreg_nopower;
110 bool explicit_mclk_control;
111 bool qcom_fifo;
112 bool qcom_dml;
113 bool reversed_irq_handling;
114 };
115
116 static struct variant_data variant_arm = {
117 .fifosize = 16 * 4,
118 .fifohalfsize = 8 * 4,
119 .datalength_bits = 16,
120 .pwrreg_powerup = MCI_PWR_UP,
121 .f_max = 100000000,
122 .reversed_irq_handling = true,
123 };
124
125 static struct variant_data variant_arm_extended_fifo = {
126 .fifosize = 128 * 4,
127 .fifohalfsize = 64 * 4,
128 .datalength_bits = 16,
129 .pwrreg_powerup = MCI_PWR_UP,
130 .f_max = 100000000,
131 };
132
133 static struct variant_data variant_arm_extended_fifo_hwfc = {
134 .fifosize = 128 * 4,
135 .fifohalfsize = 64 * 4,
136 .clkreg_enable = MCI_ARM_HWFCEN,
137 .datalength_bits = 16,
138 .pwrreg_powerup = MCI_PWR_UP,
139 .f_max = 100000000,
140 };
141
142 static struct variant_data variant_u300 = {
143 .fifosize = 16 * 4,
144 .fifohalfsize = 8 * 4,
145 .clkreg_enable = MCI_ST_U300_HWFCEN,
146 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
147 .datalength_bits = 16,
148 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
149 .st_sdio = true,
150 .pwrreg_powerup = MCI_PWR_ON,
151 .f_max = 100000000,
152 .signal_direction = true,
153 .pwrreg_clkgate = true,
154 .pwrreg_nopower = true,
155 };
156
157 static struct variant_data variant_nomadik = {
158 .fifosize = 16 * 4,
159 .fifohalfsize = 8 * 4,
160 .clkreg = MCI_CLK_ENABLE,
161 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
162 .datalength_bits = 24,
163 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
164 .st_sdio = true,
165 .st_clkdiv = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 };
172
173 static struct variant_data variant_ux500 = {
174 .fifosize = 30 * 4,
175 .fifohalfsize = 8 * 4,
176 .clkreg = MCI_CLK_ENABLE,
177 .clkreg_enable = MCI_ST_UX500_HWFCEN,
178 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
180 .datalength_bits = 24,
181 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
182 .st_sdio = true,
183 .st_clkdiv = true,
184 .pwrreg_powerup = MCI_PWR_ON,
185 .f_max = 100000000,
186 .signal_direction = true,
187 .pwrreg_clkgate = true,
188 .busy_detect = true,
189 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
190 .busy_detect_flag = MCI_ST_CARDBUSY,
191 .busy_detect_mask = MCI_ST_BUSYENDMASK,
192 .pwrreg_nopower = true,
193 };
194
195 static struct variant_data variant_ux500v2 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
203 .datalength_bits = 24,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .blksz_datactrl16 = true,
208 .pwrreg_powerup = MCI_PWR_ON,
209 .f_max = 100000000,
210 .signal_direction = true,
211 .pwrreg_clkgate = true,
212 .busy_detect = true,
213 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
214 .busy_detect_flag = MCI_ST_CARDBUSY,
215 .busy_detect_mask = MCI_ST_BUSYENDMASK,
216 .pwrreg_nopower = true,
217 };
218
219 static struct variant_data variant_qcom = {
220 .fifosize = 16 * 4,
221 .fifohalfsize = 8 * 4,
222 .clkreg = MCI_CLK_ENABLE,
223 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
224 MCI_QCOM_CLK_SELECT_IN_FBCLK,
225 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
226 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
227 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
228 .blksz_datactrl4 = true,
229 .datalength_bits = 24,
230 .pwrreg_powerup = MCI_PWR_UP,
231 .f_max = 208000000,
232 .explicit_mclk_control = true,
233 .qcom_fifo = true,
234 .qcom_dml = true,
235 };
236
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host *mmc)
239 {
240 struct mmci_host *host = mmc_priv(mmc);
241 unsigned long flags;
242 int busy = 0;
243
244 spin_lock_irqsave(&host->lock, flags);
245 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
246 busy = 1;
247 spin_unlock_irqrestore(&host->lock, flags);
248
249 return busy;
250 }
251
252 /*
253 * Validate mmc prerequisites
254 */
255 static int mmci_validate_data(struct mmci_host *host,
256 struct mmc_data *data)
257 {
258 if (!data)
259 return 0;
260
261 if (!is_power_of_2(data->blksz)) {
262 dev_err(mmc_dev(host->mmc),
263 "unsupported block size (%d bytes)\n", data->blksz);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 static void mmci_reg_delay(struct mmci_host *host)
271 {
272 /*
273 * According to the spec, at least three feedback clock cycles
274 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 * Worst delay time during card init is at 100 kHz => 30 us.
277 * Worst delay time when up and running is at 25 MHz => 120 ns.
278 */
279 if (host->cclk < 25000000)
280 udelay(30);
281 else
282 ndelay(120);
283 }
284
285 /*
286 * This must be called with host->lock held
287 */
288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
289 {
290 if (host->clk_reg != clk) {
291 host->clk_reg = clk;
292 writel(clk, host->base + MMCICLOCK);
293 }
294 }
295
296 /*
297 * This must be called with host->lock held
298 */
299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
300 {
301 if (host->pwr_reg != pwr) {
302 host->pwr_reg = pwr;
303 writel(pwr, host->base + MMCIPOWER);
304 }
305 }
306
307 /*
308 * This must be called with host->lock held
309 */
310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
311 {
312 /* Keep busy mode in DPSM if enabled */
313 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
314
315 if (host->datactrl_reg != datactrl) {
316 host->datactrl_reg = datactrl;
317 writel(datactrl, host->base + MMCIDATACTRL);
318 }
319 }
320
321 /*
322 * This must be called with host->lock held
323 */
324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
325 {
326 struct variant_data *variant = host->variant;
327 u32 clk = variant->clkreg;
328
329 /* Make sure cclk reflects the current calculated clock */
330 host->cclk = 0;
331
332 if (desired) {
333 if (variant->explicit_mclk_control) {
334 host->cclk = host->mclk;
335 } else if (desired >= host->mclk) {
336 clk = MCI_CLK_BYPASS;
337 if (variant->st_clkdiv)
338 clk |= MCI_ST_UX500_NEG_EDGE;
339 host->cclk = host->mclk;
340 } else if (variant->st_clkdiv) {
341 /*
342 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 * => clkdiv = (mclk / f) - 2
344 * Round the divider up so we don't exceed the max
345 * frequency
346 */
347 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
348 if (clk >= 256)
349 clk = 255;
350 host->cclk = host->mclk / (clk + 2);
351 } else {
352 /*
353 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 * => clkdiv = mclk / (2 * f) - 1
355 */
356 clk = host->mclk / (2 * desired) - 1;
357 if (clk >= 256)
358 clk = 255;
359 host->cclk = host->mclk / (2 * (clk + 1));
360 }
361
362 clk |= variant->clkreg_enable;
363 clk |= MCI_CLK_ENABLE;
364 /* This hasn't proven to be worthwhile */
365 /* clk |= MCI_CLK_PWRSAVE; */
366 }
367
368 /* Set actual clock for debug */
369 host->mmc->actual_clock = host->cclk;
370
371 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
372 clk |= MCI_4BIT_BUS;
373 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
374 clk |= variant->clkreg_8bit_bus_enable;
375
376 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
377 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
378 clk |= variant->clkreg_neg_edge_enable;
379
380 mmci_write_clkreg(host, clk);
381 }
382
383 static void
384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
385 {
386 writel(0, host->base + MMCICOMMAND);
387
388 BUG_ON(host->data);
389
390 host->mrq = NULL;
391 host->cmd = NULL;
392
393 mmc_request_done(host->mmc, mrq);
394 }
395
396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
397 {
398 void __iomem *base = host->base;
399
400 if (host->singleirq) {
401 unsigned int mask0 = readl(base + MMCIMASK0);
402
403 mask0 &= ~MCI_IRQ1MASK;
404 mask0 |= mask;
405
406 writel(mask0, base + MMCIMASK0);
407 }
408
409 writel(mask, base + MMCIMASK1);
410 }
411
412 static void mmci_stop_data(struct mmci_host *host)
413 {
414 mmci_write_datactrlreg(host, 0);
415 mmci_set_mask1(host, 0);
416 host->data = NULL;
417 }
418
419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
420 {
421 unsigned int flags = SG_MITER_ATOMIC;
422
423 if (data->flags & MMC_DATA_READ)
424 flags |= SG_MITER_TO_SG;
425 else
426 flags |= SG_MITER_FROM_SG;
427
428 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
429 }
430
431 /*
432 * All the DMA operation mode stuff goes inside this ifdef.
433 * This assumes that you have a generic DMA device interface,
434 * no custom DMA interfaces are supported.
435 */
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host *host)
438 {
439 const char *rxname, *txname;
440 struct variant_data *variant = host->variant;
441
442 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
443 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
444
445 /* initialize pre request cookie */
446 host->next_data.cookie = 1;
447
448 /*
449 * If only an RX channel is specified, the driver will
450 * attempt to use it bidirectionally, however if it is
451 * is specified but cannot be located, DMA will be disabled.
452 */
453 if (host->dma_rx_channel && !host->dma_tx_channel)
454 host->dma_tx_channel = host->dma_rx_channel;
455
456 if (host->dma_rx_channel)
457 rxname = dma_chan_name(host->dma_rx_channel);
458 else
459 rxname = "none";
460
461 if (host->dma_tx_channel)
462 txname = dma_chan_name(host->dma_tx_channel);
463 else
464 txname = "none";
465
466 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
467 rxname, txname);
468
469 /*
470 * Limit the maximum segment size in any SG entry according to
471 * the parameters of the DMA engine device.
472 */
473 if (host->dma_tx_channel) {
474 struct device *dev = host->dma_tx_channel->device->dev;
475 unsigned int max_seg_size = dma_get_max_seg_size(dev);
476
477 if (max_seg_size < host->mmc->max_seg_size)
478 host->mmc->max_seg_size = max_seg_size;
479 }
480 if (host->dma_rx_channel) {
481 struct device *dev = host->dma_rx_channel->device->dev;
482 unsigned int max_seg_size = dma_get_max_seg_size(dev);
483
484 if (max_seg_size < host->mmc->max_seg_size)
485 host->mmc->max_seg_size = max_seg_size;
486 }
487
488 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
489 if (dml_hw_init(host, host->mmc->parent->of_node))
490 variant->qcom_dml = false;
491 }
492
493 /*
494 * This is used in or so inline it
495 * so it can be discarded.
496 */
497 static inline void mmci_dma_release(struct mmci_host *host)
498 {
499 if (host->dma_rx_channel)
500 dma_release_channel(host->dma_rx_channel);
501 if (host->dma_tx_channel)
502 dma_release_channel(host->dma_tx_channel);
503 host->dma_rx_channel = host->dma_tx_channel = NULL;
504 }
505
506 static void mmci_dma_data_error(struct mmci_host *host)
507 {
508 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
509 dmaengine_terminate_all(host->dma_current);
510 host->dma_in_progress = false;
511 host->dma_current = NULL;
512 host->dma_desc_current = NULL;
513 host->data->host_cookie = 0;
514 }
515
516 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
517 {
518 struct dma_chan *chan;
519 enum dma_data_direction dir;
520
521 if (data->flags & MMC_DATA_READ) {
522 dir = DMA_FROM_DEVICE;
523 chan = host->dma_rx_channel;
524 } else {
525 dir = DMA_TO_DEVICE;
526 chan = host->dma_tx_channel;
527 }
528
529 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
530 }
531
532 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
533 {
534 u32 status;
535 int i;
536
537 /* Wait up to 1ms for the DMA to complete */
538 for (i = 0; ; i++) {
539 status = readl(host->base + MMCISTATUS);
540 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
541 break;
542 udelay(10);
543 }
544
545 /*
546 * Check to see whether we still have some data left in the FIFO -
547 * this catches DMA controllers which are unable to monitor the
548 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
549 * contiguous buffers. On TX, we'll get a FIFO underrun error.
550 */
551 if (status & MCI_RXDATAAVLBLMASK) {
552 mmci_dma_data_error(host);
553 if (!data->error)
554 data->error = -EIO;
555 }
556
557 if (!data->host_cookie)
558 mmci_dma_unmap(host, data);
559
560 /*
561 * Use of DMA with scatter-gather is impossible.
562 * Give up with DMA and switch back to PIO mode.
563 */
564 if (status & MCI_RXDATAAVLBLMASK) {
565 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
566 mmci_dma_release(host);
567 }
568
569 host->dma_in_progress = false;
570 host->dma_current = NULL;
571 host->dma_desc_current = NULL;
572 }
573
574 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
575 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
576 struct dma_chan **dma_chan,
577 struct dma_async_tx_descriptor **dma_desc)
578 {
579 struct variant_data *variant = host->variant;
580 struct dma_slave_config conf = {
581 .src_addr = host->phybase + MMCIFIFO,
582 .dst_addr = host->phybase + MMCIFIFO,
583 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
584 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
585 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
586 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
587 .device_fc = false,
588 };
589 struct dma_chan *chan;
590 struct dma_device *device;
591 struct dma_async_tx_descriptor *desc;
592 enum dma_data_direction buffer_dirn;
593 int nr_sg;
594 unsigned long flags = DMA_CTRL_ACK;
595
596 if (data->flags & MMC_DATA_READ) {
597 conf.direction = DMA_DEV_TO_MEM;
598 buffer_dirn = DMA_FROM_DEVICE;
599 chan = host->dma_rx_channel;
600 } else {
601 conf.direction = DMA_MEM_TO_DEV;
602 buffer_dirn = DMA_TO_DEVICE;
603 chan = host->dma_tx_channel;
604 }
605
606 /* If there's no DMA channel, fall back to PIO */
607 if (!chan)
608 return -EINVAL;
609
610 /* If less than or equal to the fifo size, don't bother with DMA */
611 if (data->blksz * data->blocks <= variant->fifosize)
612 return -EINVAL;
613
614 device = chan->device;
615 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
616 if (nr_sg == 0)
617 return -EINVAL;
618
619 if (host->variant->qcom_dml)
620 flags |= DMA_PREP_INTERRUPT;
621
622 dmaengine_slave_config(chan, &conf);
623 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
624 conf.direction, flags);
625 if (!desc)
626 goto unmap_exit;
627
628 *dma_chan = chan;
629 *dma_desc = desc;
630
631 return 0;
632
633 unmap_exit:
634 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
635 return -ENOMEM;
636 }
637
638 static inline int mmci_dma_prep_data(struct mmci_host *host,
639 struct mmc_data *data)
640 {
641 /* Check if next job is already prepared. */
642 if (host->dma_current && host->dma_desc_current)
643 return 0;
644
645 /* No job were prepared thus do it now. */
646 return __mmci_dma_prep_data(host, data, &host->dma_current,
647 &host->dma_desc_current);
648 }
649
650 static inline int mmci_dma_prep_next(struct mmci_host *host,
651 struct mmc_data *data)
652 {
653 struct mmci_host_next *nd = &host->next_data;
654 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
655 }
656
657 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
658 {
659 int ret;
660 struct mmc_data *data = host->data;
661
662 ret = mmci_dma_prep_data(host, host->data);
663 if (ret)
664 return ret;
665
666 /* Okay, go for it. */
667 dev_vdbg(mmc_dev(host->mmc),
668 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
669 data->sg_len, data->blksz, data->blocks, data->flags);
670 host->dma_in_progress = true;
671 dmaengine_submit(host->dma_desc_current);
672 dma_async_issue_pending(host->dma_current);
673
674 if (host->variant->qcom_dml)
675 dml_start_xfer(host, data);
676
677 datactrl |= MCI_DPSM_DMAENABLE;
678
679 /* Trigger the DMA transfer */
680 mmci_write_datactrlreg(host, datactrl);
681
682 /*
683 * Let the MMCI say when the data is ended and it's time
684 * to fire next DMA request. When that happens, MMCI will
685 * call mmci_data_end()
686 */
687 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
688 host->base + MMCIMASK0);
689 return 0;
690 }
691
692 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
693 {
694 struct mmci_host_next *next = &host->next_data;
695
696 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
697 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
698
699 host->dma_desc_current = next->dma_desc;
700 host->dma_current = next->dma_chan;
701 next->dma_desc = NULL;
702 next->dma_chan = NULL;
703 }
704
705 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
706 {
707 struct mmci_host *host = mmc_priv(mmc);
708 struct mmc_data *data = mrq->data;
709 struct mmci_host_next *nd = &host->next_data;
710
711 if (!data)
712 return;
713
714 BUG_ON(data->host_cookie);
715
716 if (mmci_validate_data(host, data))
717 return;
718
719 if (!mmci_dma_prep_next(host, data))
720 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
721 }
722
723 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
724 int err)
725 {
726 struct mmci_host *host = mmc_priv(mmc);
727 struct mmc_data *data = mrq->data;
728
729 if (!data || !data->host_cookie)
730 return;
731
732 mmci_dma_unmap(host, data);
733
734 if (err) {
735 struct mmci_host_next *next = &host->next_data;
736 struct dma_chan *chan;
737 if (data->flags & MMC_DATA_READ)
738 chan = host->dma_rx_channel;
739 else
740 chan = host->dma_tx_channel;
741 dmaengine_terminate_all(chan);
742
743 if (host->dma_desc_current == next->dma_desc)
744 host->dma_desc_current = NULL;
745
746 if (host->dma_current == next->dma_chan) {
747 host->dma_in_progress = false;
748 host->dma_current = NULL;
749 }
750
751 next->dma_desc = NULL;
752 next->dma_chan = NULL;
753 data->host_cookie = 0;
754 }
755 }
756
757 #else
758 /* Blank functions if the DMA engine is not available */
759 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
760 {
761 }
762 static inline void mmci_dma_setup(struct mmci_host *host)
763 {
764 }
765
766 static inline void mmci_dma_release(struct mmci_host *host)
767 {
768 }
769
770 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
771 {
772 }
773
774 static inline void mmci_dma_finalize(struct mmci_host *host,
775 struct mmc_data *data)
776 {
777 }
778
779 static inline void mmci_dma_data_error(struct mmci_host *host)
780 {
781 }
782
783 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
784 {
785 return -ENOSYS;
786 }
787
788 #define mmci_pre_request NULL
789 #define mmci_post_request NULL
790
791 #endif
792
793 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
794 {
795 struct variant_data *variant = host->variant;
796 unsigned int datactrl, timeout, irqmask;
797 unsigned long long clks;
798 void __iomem *base;
799 int blksz_bits;
800
801 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
802 data->blksz, data->blocks, data->flags);
803
804 host->data = data;
805 host->size = data->blksz * data->blocks;
806 data->bytes_xfered = 0;
807
808 clks = (unsigned long long)data->timeout_ns * host->cclk;
809 do_div(clks, NSEC_PER_SEC);
810
811 timeout = data->timeout_clks + (unsigned int)clks;
812
813 base = host->base;
814 writel(timeout, base + MMCIDATATIMER);
815 writel(host->size, base + MMCIDATALENGTH);
816
817 blksz_bits = ffs(data->blksz) - 1;
818 BUG_ON(1 << blksz_bits != data->blksz);
819
820 if (variant->blksz_datactrl16)
821 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
822 else if (variant->blksz_datactrl4)
823 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
824 else
825 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
826
827 if (data->flags & MMC_DATA_READ)
828 datactrl |= MCI_DPSM_DIRECTION;
829
830 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
831 u32 clk;
832
833 datactrl |= variant->datactrl_mask_sdio;
834
835 /*
836 * The ST Micro variant for SDIO small write transfers
837 * needs to have clock H/W flow control disabled,
838 * otherwise the transfer will not start. The threshold
839 * depends on the rate of MCLK.
840 */
841 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
842 (host->size < 8 ||
843 (host->size <= 8 && host->mclk > 50000000)))
844 clk = host->clk_reg & ~variant->clkreg_enable;
845 else
846 clk = host->clk_reg | variant->clkreg_enable;
847
848 mmci_write_clkreg(host, clk);
849 }
850
851 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
852 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
853 datactrl |= variant->datactrl_mask_ddrmode;
854
855 /*
856 * Attempt to use DMA operation mode, if this
857 * should fail, fall back to PIO mode
858 */
859 if (!mmci_dma_start_data(host, datactrl))
860 return;
861
862 /* IRQ mode, map the SG list for CPU reading/writing */
863 mmci_init_sg(host, data);
864
865 if (data->flags & MMC_DATA_READ) {
866 irqmask = MCI_RXFIFOHALFFULLMASK;
867
868 /*
869 * If we have less than the fifo 'half-full' threshold to
870 * transfer, trigger a PIO interrupt as soon as any data
871 * is available.
872 */
873 if (host->size < variant->fifohalfsize)
874 irqmask |= MCI_RXDATAAVLBLMASK;
875 } else {
876 /*
877 * We don't actually need to include "FIFO empty" here
878 * since its implicit in "FIFO half empty".
879 */
880 irqmask = MCI_TXFIFOHALFEMPTYMASK;
881 }
882
883 mmci_write_datactrlreg(host, datactrl);
884 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
885 mmci_set_mask1(host, irqmask);
886 }
887
888 static void
889 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
890 {
891 void __iomem *base = host->base;
892
893 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
894 cmd->opcode, cmd->arg, cmd->flags);
895
896 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
897 writel(0, base + MMCICOMMAND);
898 mmci_reg_delay(host);
899 }
900
901 c |= cmd->opcode | MCI_CPSM_ENABLE;
902 if (cmd->flags & MMC_RSP_PRESENT) {
903 if (cmd->flags & MMC_RSP_136)
904 c |= MCI_CPSM_LONGRSP;
905 c |= MCI_CPSM_RESPONSE;
906 }
907 if (/*interrupt*/0)
908 c |= MCI_CPSM_INTERRUPT;
909
910 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
911 c |= host->variant->data_cmd_enable;
912
913 host->cmd = cmd;
914
915 writel(cmd->arg, base + MMCIARGUMENT);
916 writel(c, base + MMCICOMMAND);
917 }
918
919 static void
920 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
921 unsigned int status)
922 {
923 /* Make sure we have data to handle */
924 if (!data)
925 return;
926
927 /* First check for errors */
928 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
929 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
930 u32 remain, success;
931
932 /* Terminate the DMA transfer */
933 if (dma_inprogress(host)) {
934 mmci_dma_data_error(host);
935 mmci_dma_unmap(host, data);
936 }
937
938 /*
939 * Calculate how far we are into the transfer. Note that
940 * the data counter gives the number of bytes transferred
941 * on the MMC bus, not on the host side. On reads, this
942 * can be as much as a FIFO-worth of data ahead. This
943 * matters for FIFO overruns only.
944 */
945 remain = readl(host->base + MMCIDATACNT);
946 success = data->blksz * data->blocks - remain;
947
948 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
949 status, success);
950 if (status & MCI_DATACRCFAIL) {
951 /* Last block was not successful */
952 success -= 1;
953 data->error = -EILSEQ;
954 } else if (status & MCI_DATATIMEOUT) {
955 data->error = -ETIMEDOUT;
956 } else if (status & MCI_STARTBITERR) {
957 data->error = -ECOMM;
958 } else if (status & MCI_TXUNDERRUN) {
959 data->error = -EIO;
960 } else if (status & MCI_RXOVERRUN) {
961 if (success > host->variant->fifosize)
962 success -= host->variant->fifosize;
963 else
964 success = 0;
965 data->error = -EIO;
966 }
967 data->bytes_xfered = round_down(success, data->blksz);
968 }
969
970 if (status & MCI_DATABLOCKEND)
971 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
972
973 if (status & MCI_DATAEND || data->error) {
974 if (dma_inprogress(host))
975 mmci_dma_finalize(host, data);
976 mmci_stop_data(host);
977
978 if (!data->error)
979 /* The error clause is handled above, success! */
980 data->bytes_xfered = data->blksz * data->blocks;
981
982 if (!data->stop || host->mrq->sbc) {
983 mmci_request_end(host, data->mrq);
984 } else {
985 mmci_start_command(host, data->stop, 0);
986 }
987 }
988 }
989
990 static void
991 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
992 unsigned int status)
993 {
994 void __iomem *base = host->base;
995 bool sbc;
996
997 if (!cmd)
998 return;
999
1000 sbc = (cmd == host->mrq->sbc);
1001
1002 /*
1003 * We need to be one of these interrupts to be considered worth
1004 * handling. Note that we tag on any latent IRQs postponed
1005 * due to waiting for busy status.
1006 */
1007 if (!((status|host->busy_status) &
1008 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1009 return;
1010
1011 /*
1012 * ST Micro variant: handle busy detection.
1013 */
1014 if (host->variant->busy_detect) {
1015 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1016
1017 /* We are busy with a command, return */
1018 if (host->busy_status &&
1019 (status & host->variant->busy_detect_flag))
1020 return;
1021
1022 /*
1023 * We were not busy, but we now got a busy response on
1024 * something that was not an error, and we double-check
1025 * that the special busy status bit is still set before
1026 * proceeding.
1027 */
1028 if (!host->busy_status && busy_resp &&
1029 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1030 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1031
1032 /* Clear the busy start IRQ */
1033 writel(host->variant->busy_detect_mask,
1034 host->base + MMCICLEAR);
1035
1036 /* Unmask the busy end IRQ */
1037 writel(readl(base + MMCIMASK0) |
1038 host->variant->busy_detect_mask,
1039 base + MMCIMASK0);
1040 /*
1041 * Now cache the last response status code (until
1042 * the busy bit goes low), and return.
1043 */
1044 host->busy_status =
1045 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1046 return;
1047 }
1048
1049 /*
1050 * At this point we are not busy with a command, we have
1051 * not received a new busy request, clear and mask the busy
1052 * end IRQ and fall through to process the IRQ.
1053 */
1054 if (host->busy_status) {
1055
1056 writel(host->variant->busy_detect_mask,
1057 host->base + MMCICLEAR);
1058
1059 writel(readl(base + MMCIMASK0) &
1060 ~host->variant->busy_detect_mask,
1061 base + MMCIMASK0);
1062 host->busy_status = 0;
1063 }
1064 }
1065
1066 host->cmd = NULL;
1067
1068 if (status & MCI_CMDTIMEOUT) {
1069 cmd->error = -ETIMEDOUT;
1070 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1071 cmd->error = -EILSEQ;
1072 } else {
1073 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1074 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1075 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1076 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1077 }
1078
1079 if ((!sbc && !cmd->data) || cmd->error) {
1080 if (host->data) {
1081 /* Terminate the DMA transfer */
1082 if (dma_inprogress(host)) {
1083 mmci_dma_data_error(host);
1084 mmci_dma_unmap(host, host->data);
1085 }
1086 mmci_stop_data(host);
1087 }
1088 mmci_request_end(host, host->mrq);
1089 } else if (sbc) {
1090 mmci_start_command(host, host->mrq->cmd, 0);
1091 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1092 mmci_start_data(host, cmd->data);
1093 }
1094 }
1095
1096 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1097 {
1098 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1099 }
1100
1101 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1102 {
1103 /*
1104 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1105 * from the fifo range should be used
1106 */
1107 if (status & MCI_RXFIFOHALFFULL)
1108 return host->variant->fifohalfsize;
1109 else if (status & MCI_RXDATAAVLBL)
1110 return 4;
1111
1112 return 0;
1113 }
1114
1115 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1116 {
1117 void __iomem *base = host->base;
1118 char *ptr = buffer;
1119 u32 status = readl(host->base + MMCISTATUS);
1120 int host_remain = host->size;
1121
1122 do {
1123 int count = host->get_rx_fifocnt(host, status, host_remain);
1124
1125 if (count > remain)
1126 count = remain;
1127
1128 if (count <= 0)
1129 break;
1130
1131 /*
1132 * SDIO especially may want to send something that is
1133 * not divisible by 4 (as opposed to card sectors
1134 * etc). Therefore make sure to always read the last bytes
1135 * while only doing full 32-bit reads towards the FIFO.
1136 */
1137 if (unlikely(count & 0x3)) {
1138 if (count < 4) {
1139 unsigned char buf[4];
1140 ioread32_rep(base + MMCIFIFO, buf, 1);
1141 memcpy(ptr, buf, count);
1142 } else {
1143 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1144 count &= ~0x3;
1145 }
1146 } else {
1147 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1148 }
1149
1150 ptr += count;
1151 remain -= count;
1152 host_remain -= count;
1153
1154 if (remain == 0)
1155 break;
1156
1157 status = readl(base + MMCISTATUS);
1158 } while (status & MCI_RXDATAAVLBL);
1159
1160 return ptr - buffer;
1161 }
1162
1163 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1164 {
1165 struct variant_data *variant = host->variant;
1166 void __iomem *base = host->base;
1167 char *ptr = buffer;
1168
1169 do {
1170 unsigned int count, maxcnt;
1171
1172 maxcnt = status & MCI_TXFIFOEMPTY ?
1173 variant->fifosize : variant->fifohalfsize;
1174 count = min(remain, maxcnt);
1175
1176 /*
1177 * SDIO especially may want to send something that is
1178 * not divisible by 4 (as opposed to card sectors
1179 * etc), and the FIFO only accept full 32-bit writes.
1180 * So compensate by adding +3 on the count, a single
1181 * byte become a 32bit write, 7 bytes will be two
1182 * 32bit writes etc.
1183 */
1184 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1185
1186 ptr += count;
1187 remain -= count;
1188
1189 if (remain == 0)
1190 break;
1191
1192 status = readl(base + MMCISTATUS);
1193 } while (status & MCI_TXFIFOHALFEMPTY);
1194
1195 return ptr - buffer;
1196 }
1197
1198 /*
1199 * PIO data transfer IRQ handler.
1200 */
1201 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1202 {
1203 struct mmci_host *host = dev_id;
1204 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1205 struct variant_data *variant = host->variant;
1206 void __iomem *base = host->base;
1207 unsigned long flags;
1208 u32 status;
1209
1210 status = readl(base + MMCISTATUS);
1211
1212 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1213
1214 local_irq_save(flags);
1215
1216 do {
1217 unsigned int remain, len;
1218 char *buffer;
1219
1220 /*
1221 * For write, we only need to test the half-empty flag
1222 * here - if the FIFO is completely empty, then by
1223 * definition it is more than half empty.
1224 *
1225 * For read, check for data available.
1226 */
1227 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1228 break;
1229
1230 if (!sg_miter_next(sg_miter))
1231 break;
1232
1233 buffer = sg_miter->addr;
1234 remain = sg_miter->length;
1235
1236 len = 0;
1237 if (status & MCI_RXACTIVE)
1238 len = mmci_pio_read(host, buffer, remain);
1239 if (status & MCI_TXACTIVE)
1240 len = mmci_pio_write(host, buffer, remain, status);
1241
1242 sg_miter->consumed = len;
1243
1244 host->size -= len;
1245 remain -= len;
1246
1247 if (remain)
1248 break;
1249
1250 status = readl(base + MMCISTATUS);
1251 } while (1);
1252
1253 sg_miter_stop(sg_miter);
1254
1255 local_irq_restore(flags);
1256
1257 /*
1258 * If we have less than the fifo 'half-full' threshold to transfer,
1259 * trigger a PIO interrupt as soon as any data is available.
1260 */
1261 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1262 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1263
1264 /*
1265 * If we run out of data, disable the data IRQs; this
1266 * prevents a race where the FIFO becomes empty before
1267 * the chip itself has disabled the data path, and
1268 * stops us racing with our data end IRQ.
1269 */
1270 if (host->size == 0) {
1271 mmci_set_mask1(host, 0);
1272 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1273 }
1274
1275 return IRQ_HANDLED;
1276 }
1277
1278 /*
1279 * Handle completion of command and data transfers.
1280 */
1281 static irqreturn_t mmci_irq(int irq, void *dev_id)
1282 {
1283 struct mmci_host *host = dev_id;
1284 u32 status;
1285 int ret = 0;
1286
1287 spin_lock(&host->lock);
1288
1289 do {
1290 status = readl(host->base + MMCISTATUS);
1291
1292 if (host->singleirq) {
1293 if (status & readl(host->base + MMCIMASK1))
1294 mmci_pio_irq(irq, dev_id);
1295
1296 status &= ~MCI_IRQ1MASK;
1297 }
1298
1299 /*
1300 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1301 * enabled) in mmci_cmd_irq() function where ST Micro busy
1302 * detection variant is handled. Considering the HW seems to be
1303 * triggering the IRQ on both edges while monitoring DAT0 for
1304 * busy completion and that same status bit is used to monitor
1305 * start and end of busy detection, special care must be taken
1306 * to make sure that both start and end interrupts are always
1307 * cleared one after the other.
1308 */
1309 status &= readl(host->base + MMCIMASK0);
1310 if (host->variant->busy_detect)
1311 writel(status & ~host->variant->busy_detect_mask,
1312 host->base + MMCICLEAR);
1313 else
1314 writel(status, host->base + MMCICLEAR);
1315
1316 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1317
1318 if (host->variant->reversed_irq_handling) {
1319 mmci_data_irq(host, host->data, status);
1320 mmci_cmd_irq(host, host->cmd, status);
1321 } else {
1322 mmci_cmd_irq(host, host->cmd, status);
1323 mmci_data_irq(host, host->data, status);
1324 }
1325
1326 /*
1327 * Don't poll for busy completion in irq context.
1328 */
1329 if (host->variant->busy_detect && host->busy_status)
1330 status &= ~host->variant->busy_detect_flag;
1331
1332 ret = 1;
1333 } while (status);
1334
1335 spin_unlock(&host->lock);
1336
1337 return IRQ_RETVAL(ret);
1338 }
1339
1340 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1341 {
1342 struct mmci_host *host = mmc_priv(mmc);
1343 unsigned long flags;
1344
1345 WARN_ON(host->mrq != NULL);
1346
1347 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1348 if (mrq->cmd->error) {
1349 mmc_request_done(mmc, mrq);
1350 return;
1351 }
1352
1353 spin_lock_irqsave(&host->lock, flags);
1354
1355 host->mrq = mrq;
1356
1357 if (mrq->data)
1358 mmci_get_next_data(host, mrq->data);
1359
1360 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1361 mmci_start_data(host, mrq->data);
1362
1363 if (mrq->sbc)
1364 mmci_start_command(host, mrq->sbc, 0);
1365 else
1366 mmci_start_command(host, mrq->cmd, 0);
1367
1368 spin_unlock_irqrestore(&host->lock, flags);
1369 }
1370
1371 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1372 {
1373 struct mmci_host *host = mmc_priv(mmc);
1374 struct variant_data *variant = host->variant;
1375 u32 pwr = 0;
1376 unsigned long flags;
1377 int ret;
1378
1379 if (host->plat->ios_handler &&
1380 host->plat->ios_handler(mmc_dev(mmc), ios))
1381 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1382
1383 switch (ios->power_mode) {
1384 case MMC_POWER_OFF:
1385 if (!IS_ERR(mmc->supply.vmmc))
1386 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1387
1388 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1389 regulator_disable(mmc->supply.vqmmc);
1390 host->vqmmc_enabled = false;
1391 }
1392
1393 break;
1394 case MMC_POWER_UP:
1395 if (!IS_ERR(mmc->supply.vmmc))
1396 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1397
1398 /*
1399 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1400 * and instead uses MCI_PWR_ON so apply whatever value is
1401 * configured in the variant data.
1402 */
1403 pwr |= variant->pwrreg_powerup;
1404
1405 break;
1406 case MMC_POWER_ON:
1407 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1408 ret = regulator_enable(mmc->supply.vqmmc);
1409 if (ret < 0)
1410 dev_err(mmc_dev(mmc),
1411 "failed to enable vqmmc regulator\n");
1412 else
1413 host->vqmmc_enabled = true;
1414 }
1415
1416 pwr |= MCI_PWR_ON;
1417 break;
1418 }
1419
1420 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1421 /*
1422 * The ST Micro variant has some additional bits
1423 * indicating signal direction for the signals in
1424 * the SD/MMC bus and feedback-clock usage.
1425 */
1426 pwr |= host->pwr_reg_add;
1427
1428 if (ios->bus_width == MMC_BUS_WIDTH_4)
1429 pwr &= ~MCI_ST_DATA74DIREN;
1430 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1431 pwr &= (~MCI_ST_DATA74DIREN &
1432 ~MCI_ST_DATA31DIREN &
1433 ~MCI_ST_DATA2DIREN);
1434 }
1435
1436 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1437 if (host->hw_designer != AMBA_VENDOR_ST)
1438 pwr |= MCI_ROD;
1439 else {
1440 /*
1441 * The ST Micro variant use the ROD bit for something
1442 * else and only has OD (Open Drain).
1443 */
1444 pwr |= MCI_OD;
1445 }
1446 }
1447
1448 /*
1449 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1450 * gating the clock, the MCI_PWR_ON bit is cleared.
1451 */
1452 if (!ios->clock && variant->pwrreg_clkgate)
1453 pwr &= ~MCI_PWR_ON;
1454
1455 if (host->variant->explicit_mclk_control &&
1456 ios->clock != host->clock_cache) {
1457 ret = clk_set_rate(host->clk, ios->clock);
1458 if (ret < 0)
1459 dev_err(mmc_dev(host->mmc),
1460 "Error setting clock rate (%d)\n", ret);
1461 else
1462 host->mclk = clk_get_rate(host->clk);
1463 }
1464 host->clock_cache = ios->clock;
1465
1466 spin_lock_irqsave(&host->lock, flags);
1467
1468 mmci_set_clkreg(host, ios->clock);
1469 mmci_write_pwrreg(host, pwr);
1470 mmci_reg_delay(host);
1471
1472 spin_unlock_irqrestore(&host->lock, flags);
1473 }
1474
1475 static int mmci_get_cd(struct mmc_host *mmc)
1476 {
1477 struct mmci_host *host = mmc_priv(mmc);
1478 struct mmci_platform_data *plat = host->plat;
1479 unsigned int status = mmc_gpio_get_cd(mmc);
1480
1481 if (status == -ENOSYS) {
1482 if (!plat->status)
1483 return 1; /* Assume always present */
1484
1485 status = plat->status(mmc_dev(host->mmc));
1486 }
1487 return status;
1488 }
1489
1490 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1491 {
1492 int ret = 0;
1493
1494 if (!IS_ERR(mmc->supply.vqmmc)) {
1495
1496 switch (ios->signal_voltage) {
1497 case MMC_SIGNAL_VOLTAGE_330:
1498 ret = regulator_set_voltage(mmc->supply.vqmmc,
1499 2700000, 3600000);
1500 break;
1501 case MMC_SIGNAL_VOLTAGE_180:
1502 ret = regulator_set_voltage(mmc->supply.vqmmc,
1503 1700000, 1950000);
1504 break;
1505 case MMC_SIGNAL_VOLTAGE_120:
1506 ret = regulator_set_voltage(mmc->supply.vqmmc,
1507 1100000, 1300000);
1508 break;
1509 }
1510
1511 if (ret)
1512 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1513 }
1514
1515 return ret;
1516 }
1517
1518 static struct mmc_host_ops mmci_ops = {
1519 .request = mmci_request,
1520 .pre_req = mmci_pre_request,
1521 .post_req = mmci_post_request,
1522 .set_ios = mmci_set_ios,
1523 .get_ro = mmc_gpio_get_ro,
1524 .get_cd = mmci_get_cd,
1525 .start_signal_voltage_switch = mmci_sig_volt_switch,
1526 };
1527
1528 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1529 {
1530 struct mmci_host *host = mmc_priv(mmc);
1531 int ret = mmc_of_parse(mmc);
1532
1533 if (ret)
1534 return ret;
1535
1536 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1537 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1538 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1539 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1540 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1541 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1542 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1543 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1544 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1545 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1546 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1547 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1548
1549 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1550 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1551 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1552 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1553
1554 return 0;
1555 }
1556
1557 static int mmci_probe(struct amba_device *dev,
1558 const struct amba_id *id)
1559 {
1560 struct mmci_platform_data *plat = dev->dev.platform_data;
1561 struct device_node *np = dev->dev.of_node;
1562 struct variant_data *variant = id->data;
1563 struct mmci_host *host;
1564 struct mmc_host *mmc;
1565 int ret;
1566
1567 /* Must have platform data or Device Tree. */
1568 if (!plat && !np) {
1569 dev_err(&dev->dev, "No plat data or DT found\n");
1570 return -EINVAL;
1571 }
1572
1573 if (!plat) {
1574 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1575 if (!plat)
1576 return -ENOMEM;
1577 }
1578
1579 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1580 if (!mmc)
1581 return -ENOMEM;
1582
1583 ret = mmci_of_parse(np, mmc);
1584 if (ret)
1585 goto host_free;
1586
1587 host = mmc_priv(mmc);
1588 host->mmc = mmc;
1589
1590 host->hw_designer = amba_manf(dev);
1591 host->hw_revision = amba_rev(dev);
1592 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1593 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1594
1595 host->clk = devm_clk_get(&dev->dev, NULL);
1596 if (IS_ERR(host->clk)) {
1597 ret = PTR_ERR(host->clk);
1598 goto host_free;
1599 }
1600
1601 ret = clk_prepare_enable(host->clk);
1602 if (ret)
1603 goto host_free;
1604
1605 if (variant->qcom_fifo)
1606 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1607 else
1608 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1609
1610 host->plat = plat;
1611 host->variant = variant;
1612 host->mclk = clk_get_rate(host->clk);
1613 /*
1614 * According to the spec, mclk is max 100 MHz,
1615 * so we try to adjust the clock down to this,
1616 * (if possible).
1617 */
1618 if (host->mclk > variant->f_max) {
1619 ret = clk_set_rate(host->clk, variant->f_max);
1620 if (ret < 0)
1621 goto clk_disable;
1622 host->mclk = clk_get_rate(host->clk);
1623 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1624 host->mclk);
1625 }
1626
1627 host->phybase = dev->res.start;
1628 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1629 if (IS_ERR(host->base)) {
1630 ret = PTR_ERR(host->base);
1631 goto clk_disable;
1632 }
1633
1634 /*
1635 * The ARM and ST versions of the block have slightly different
1636 * clock divider equations which means that the minimum divider
1637 * differs too.
1638 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1639 */
1640 if (variant->st_clkdiv)
1641 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1642 else if (variant->explicit_mclk_control)
1643 mmc->f_min = clk_round_rate(host->clk, 100000);
1644 else
1645 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1646 /*
1647 * If no maximum operating frequency is supplied, fall back to use
1648 * the module parameter, which has a (low) default value in case it
1649 * is not specified. Either value must not exceed the clock rate into
1650 * the block, of course.
1651 */
1652 if (mmc->f_max)
1653 mmc->f_max = variant->explicit_mclk_control ?
1654 min(variant->f_max, mmc->f_max) :
1655 min(host->mclk, mmc->f_max);
1656 else
1657 mmc->f_max = variant->explicit_mclk_control ?
1658 fmax : min(host->mclk, fmax);
1659
1660
1661 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1662
1663 /* Get regulators and the supported OCR mask */
1664 ret = mmc_regulator_get_supply(mmc);
1665 if (ret == -EPROBE_DEFER)
1666 goto clk_disable;
1667
1668 if (!mmc->ocr_avail)
1669 mmc->ocr_avail = plat->ocr_mask;
1670 else if (plat->ocr_mask)
1671 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1672
1673 /* DT takes precedence over platform data. */
1674 if (!np) {
1675 if (!plat->cd_invert)
1676 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1677 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1678 }
1679
1680 /* We support these capabilities. */
1681 mmc->caps |= MMC_CAP_CMD23;
1682
1683 /*
1684 * Enable busy detection.
1685 */
1686 if (variant->busy_detect) {
1687 mmci_ops.card_busy = mmci_card_busy;
1688 /*
1689 * Not all variants have a flag to enable busy detection
1690 * in the DPSM, but if they do, set it here.
1691 */
1692 if (variant->busy_dpsm_flag)
1693 mmci_write_datactrlreg(host,
1694 host->variant->busy_dpsm_flag);
1695 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1696 mmc->max_busy_timeout = 0;
1697 }
1698
1699 mmc->ops = &mmci_ops;
1700
1701 /* We support these PM capabilities. */
1702 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1703
1704 /*
1705 * We can do SGIO
1706 */
1707 mmc->max_segs = NR_SG;
1708
1709 /*
1710 * Since only a certain number of bits are valid in the data length
1711 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1712 * single request.
1713 */
1714 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1715
1716 /*
1717 * Set the maximum segment size. Since we aren't doing DMA
1718 * (yet) we are only limited by the data length register.
1719 */
1720 mmc->max_seg_size = mmc->max_req_size;
1721
1722 /*
1723 * Block size can be up to 2048 bytes, but must be a power of two.
1724 */
1725 mmc->max_blk_size = 1 << 11;
1726
1727 /*
1728 * Limit the number of blocks transferred so that we don't overflow
1729 * the maximum request size.
1730 */
1731 mmc->max_blk_count = mmc->max_req_size >> 11;
1732
1733 spin_lock_init(&host->lock);
1734
1735 writel(0, host->base + MMCIMASK0);
1736 writel(0, host->base + MMCIMASK1);
1737 writel(0xfff, host->base + MMCICLEAR);
1738
1739 /*
1740 * If:
1741 * - not using DT but using a descriptor table, or
1742 * - using a table of descriptors ALONGSIDE DT, or
1743 * look up these descriptors named "cd" and "wp" right here, fail
1744 * silently of these do not exist and proceed to try platform data
1745 */
1746 if (!np) {
1747 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1748 if (ret < 0) {
1749 if (ret == -EPROBE_DEFER)
1750 goto clk_disable;
1751 else if (gpio_is_valid(plat->gpio_cd)) {
1752 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1753 if (ret)
1754 goto clk_disable;
1755 }
1756 }
1757
1758 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1759 if (ret < 0) {
1760 if (ret == -EPROBE_DEFER)
1761 goto clk_disable;
1762 else if (gpio_is_valid(plat->gpio_wp)) {
1763 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1764 if (ret)
1765 goto clk_disable;
1766 }
1767 }
1768 }
1769
1770 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1771 DRIVER_NAME " (cmd)", host);
1772 if (ret)
1773 goto clk_disable;
1774
1775 if (!dev->irq[1])
1776 host->singleirq = true;
1777 else {
1778 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1779 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1780 if (ret)
1781 goto clk_disable;
1782 }
1783
1784 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785
1786 amba_set_drvdata(dev, mmc);
1787
1788 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1789 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1790 amba_rev(dev), (unsigned long long)dev->res.start,
1791 dev->irq[0], dev->irq[1]);
1792
1793 mmci_dma_setup(host);
1794
1795 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1796 pm_runtime_use_autosuspend(&dev->dev);
1797
1798 mmc_add_host(mmc);
1799
1800 pm_runtime_put(&dev->dev);
1801 return 0;
1802
1803 clk_disable:
1804 clk_disable_unprepare(host->clk);
1805 host_free:
1806 mmc_free_host(mmc);
1807 return ret;
1808 }
1809
1810 static int mmci_remove(struct amba_device *dev)
1811 {
1812 struct mmc_host *mmc = amba_get_drvdata(dev);
1813
1814 if (mmc) {
1815 struct mmci_host *host = mmc_priv(mmc);
1816
1817 /*
1818 * Undo pm_runtime_put() in probe. We use the _sync
1819 * version here so that we can access the primecell.
1820 */
1821 pm_runtime_get_sync(&dev->dev);
1822
1823 mmc_remove_host(mmc);
1824
1825 writel(0, host->base + MMCIMASK0);
1826 writel(0, host->base + MMCIMASK1);
1827
1828 writel(0, host->base + MMCICOMMAND);
1829 writel(0, host->base + MMCIDATACTRL);
1830
1831 mmci_dma_release(host);
1832 clk_disable_unprepare(host->clk);
1833 mmc_free_host(mmc);
1834 }
1835
1836 return 0;
1837 }
1838
1839 #ifdef CONFIG_PM
1840 static void mmci_save(struct mmci_host *host)
1841 {
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&host->lock, flags);
1845
1846 writel(0, host->base + MMCIMASK0);
1847 if (host->variant->pwrreg_nopower) {
1848 writel(0, host->base + MMCIDATACTRL);
1849 writel(0, host->base + MMCIPOWER);
1850 writel(0, host->base + MMCICLOCK);
1851 }
1852 mmci_reg_delay(host);
1853
1854 spin_unlock_irqrestore(&host->lock, flags);
1855 }
1856
1857 static void mmci_restore(struct mmci_host *host)
1858 {
1859 unsigned long flags;
1860
1861 spin_lock_irqsave(&host->lock, flags);
1862
1863 if (host->variant->pwrreg_nopower) {
1864 writel(host->clk_reg, host->base + MMCICLOCK);
1865 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1866 writel(host->pwr_reg, host->base + MMCIPOWER);
1867 }
1868 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1869 mmci_reg_delay(host);
1870
1871 spin_unlock_irqrestore(&host->lock, flags);
1872 }
1873
1874 static int mmci_runtime_suspend(struct device *dev)
1875 {
1876 struct amba_device *adev = to_amba_device(dev);
1877 struct mmc_host *mmc = amba_get_drvdata(adev);
1878
1879 if (mmc) {
1880 struct mmci_host *host = mmc_priv(mmc);
1881 pinctrl_pm_select_sleep_state(dev);
1882 mmci_save(host);
1883 clk_disable_unprepare(host->clk);
1884 }
1885
1886 return 0;
1887 }
1888
1889 static int mmci_runtime_resume(struct device *dev)
1890 {
1891 struct amba_device *adev = to_amba_device(dev);
1892 struct mmc_host *mmc = amba_get_drvdata(adev);
1893
1894 if (mmc) {
1895 struct mmci_host *host = mmc_priv(mmc);
1896 clk_prepare_enable(host->clk);
1897 mmci_restore(host);
1898 pinctrl_pm_select_default_state(dev);
1899 }
1900
1901 return 0;
1902 }
1903 #endif
1904
1905 static const struct dev_pm_ops mmci_dev_pm_ops = {
1906 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1907 pm_runtime_force_resume)
1908 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1909 };
1910
1911 static struct amba_id mmci_ids[] = {
1912 {
1913 .id = 0x00041180,
1914 .mask = 0xff0fffff,
1915 .data = &variant_arm,
1916 },
1917 {
1918 .id = 0x01041180,
1919 .mask = 0xff0fffff,
1920 .data = &variant_arm_extended_fifo,
1921 },
1922 {
1923 .id = 0x02041180,
1924 .mask = 0xff0fffff,
1925 .data = &variant_arm_extended_fifo_hwfc,
1926 },
1927 {
1928 .id = 0x00041181,
1929 .mask = 0x000fffff,
1930 .data = &variant_arm,
1931 },
1932 /* ST Micro variants */
1933 {
1934 .id = 0x00180180,
1935 .mask = 0x00ffffff,
1936 .data = &variant_u300,
1937 },
1938 {
1939 .id = 0x10180180,
1940 .mask = 0xf0ffffff,
1941 .data = &variant_nomadik,
1942 },
1943 {
1944 .id = 0x00280180,
1945 .mask = 0x00ffffff,
1946 .data = &variant_nomadik,
1947 },
1948 {
1949 .id = 0x00480180,
1950 .mask = 0xf0ffffff,
1951 .data = &variant_ux500,
1952 },
1953 {
1954 .id = 0x10480180,
1955 .mask = 0xf0ffffff,
1956 .data = &variant_ux500v2,
1957 },
1958 /* Qualcomm variants */
1959 {
1960 .id = 0x00051180,
1961 .mask = 0x000fffff,
1962 .data = &variant_qcom,
1963 },
1964 { 0, 0 },
1965 };
1966
1967 MODULE_DEVICE_TABLE(amba, mmci_ids);
1968
1969 static struct amba_driver mmci_driver = {
1970 .drv = {
1971 .name = DRIVER_NAME,
1972 .pm = &mmci_dev_pm_ops,
1973 },
1974 .probe = mmci_probe,
1975 .remove = mmci_remove,
1976 .id_table = mmci_ids,
1977 };
1978
1979 module_amba_driver(mmci_driver);
1980
1981 module_param(fmax, uint, 0444);
1982
1983 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1984 MODULE_LICENSE("GPL");