]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mmc/host/omap_hsmmc.c
mmc: host: omap_hsmmc: remove CONFIG_REGULATOR check
[mirror_ubuntu-zesty-kernel.git] / drivers / mmc / host / omap_hsmmc.c
1 /*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/omap-dmaengine.h>
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/core.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/mmc/slot-gpio.h>
40 #include <linux/io.h>
41 #include <linux/irq.h>
42 #include <linux/gpio.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/pinctrl/consumer.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/pm_wakeirq.h>
47 #include <linux/platform_data/hsmmc-omap.h>
48
49 /* OMAP HSMMC Host Controller Registers */
50 #define OMAP_HSMMC_SYSSTATUS 0x0014
51 #define OMAP_HSMMC_CON 0x002C
52 #define OMAP_HSMMC_SDMASA 0x0100
53 #define OMAP_HSMMC_BLK 0x0104
54 #define OMAP_HSMMC_ARG 0x0108
55 #define OMAP_HSMMC_CMD 0x010C
56 #define OMAP_HSMMC_RSP10 0x0110
57 #define OMAP_HSMMC_RSP32 0x0114
58 #define OMAP_HSMMC_RSP54 0x0118
59 #define OMAP_HSMMC_RSP76 0x011C
60 #define OMAP_HSMMC_DATA 0x0120
61 #define OMAP_HSMMC_PSTATE 0x0124
62 #define OMAP_HSMMC_HCTL 0x0128
63 #define OMAP_HSMMC_SYSCTL 0x012C
64 #define OMAP_HSMMC_STAT 0x0130
65 #define OMAP_HSMMC_IE 0x0134
66 #define OMAP_HSMMC_ISE 0x0138
67 #define OMAP_HSMMC_AC12 0x013C
68 #define OMAP_HSMMC_CAPA 0x0140
69
70 #define VS18 (1 << 26)
71 #define VS30 (1 << 25)
72 #define HSS (1 << 21)
73 #define SDVS18 (0x5 << 9)
74 #define SDVS30 (0x6 << 9)
75 #define SDVS33 (0x7 << 9)
76 #define SDVS_MASK 0x00000E00
77 #define SDVSCLR 0xFFFFF1FF
78 #define SDVSDET 0x00000400
79 #define AUTOIDLE 0x1
80 #define SDBP (1 << 8)
81 #define DTO 0xe
82 #define ICE 0x1
83 #define ICS 0x2
84 #define CEN (1 << 2)
85 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
86 #define CLKD_MASK 0x0000FFC0
87 #define CLKD_SHIFT 6
88 #define DTO_MASK 0x000F0000
89 #define DTO_SHIFT 16
90 #define INIT_STREAM (1 << 1)
91 #define ACEN_ACMD23 (2 << 2)
92 #define DP_SELECT (1 << 21)
93 #define DDIR (1 << 4)
94 #define DMAE 0x1
95 #define MSBS (1 << 5)
96 #define BCE (1 << 1)
97 #define FOUR_BIT (1 << 1)
98 #define HSPE (1 << 2)
99 #define IWE (1 << 24)
100 #define DDR (1 << 19)
101 #define CLKEXTFREE (1 << 16)
102 #define CTPL (1 << 11)
103 #define DW8 (1 << 5)
104 #define OD 0x1
105 #define STAT_CLEAR 0xFFFFFFFF
106 #define INIT_STREAM_CMD 0x00000000
107 #define DUAL_VOLT_OCR_BIT 7
108 #define SRC (1 << 25)
109 #define SRD (1 << 26)
110 #define SOFTRESET (1 << 1)
111
112 /* PSTATE */
113 #define DLEV_DAT(x) (1 << (20 + (x)))
114
115 /* Interrupt masks for IE and ISE register */
116 #define CC_EN (1 << 0)
117 #define TC_EN (1 << 1)
118 #define BWR_EN (1 << 4)
119 #define BRR_EN (1 << 5)
120 #define CIRQ_EN (1 << 8)
121 #define ERR_EN (1 << 15)
122 #define CTO_EN (1 << 16)
123 #define CCRC_EN (1 << 17)
124 #define CEB_EN (1 << 18)
125 #define CIE_EN (1 << 19)
126 #define DTO_EN (1 << 20)
127 #define DCRC_EN (1 << 21)
128 #define DEB_EN (1 << 22)
129 #define ACE_EN (1 << 24)
130 #define CERR_EN (1 << 28)
131 #define BADA_EN (1 << 29)
132
133 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
134 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
135 BRR_EN | BWR_EN | TC_EN | CC_EN)
136
137 #define CNI (1 << 7)
138 #define ACIE (1 << 4)
139 #define ACEB (1 << 3)
140 #define ACCE (1 << 2)
141 #define ACTO (1 << 1)
142 #define ACNE (1 << 0)
143
144 #define MMC_AUTOSUSPEND_DELAY 100
145 #define MMC_TIMEOUT_MS 20 /* 20 mSec */
146 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
147 #define OMAP_MMC_MIN_CLOCK 400000
148 #define OMAP_MMC_MAX_CLOCK 52000000
149 #define DRIVER_NAME "omap_hsmmc"
150
151 #define VDD_1V8 1800000 /* 180000 uV */
152 #define VDD_3V0 3000000 /* 300000 uV */
153 #define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
154
155 /*
156 * One controller can have multiple slots, like on some omap boards using
157 * omap.c controller driver. Luckily this is not currently done on any known
158 * omap_hsmmc.c device.
159 */
160 #define mmc_pdata(host) host->pdata
161
162 /*
163 * MMC Host controller read/write API's
164 */
165 #define OMAP_HSMMC_READ(base, reg) \
166 __raw_readl((base) + OMAP_HSMMC_##reg)
167
168 #define OMAP_HSMMC_WRITE(base, reg, val) \
169 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
170
171 struct omap_hsmmc_next {
172 unsigned int dma_len;
173 s32 cookie;
174 };
175
176 struct omap_hsmmc_host {
177 struct device *dev;
178 struct mmc_host *mmc;
179 struct mmc_request *mrq;
180 struct mmc_command *cmd;
181 struct mmc_data *data;
182 struct clk *fclk;
183 struct clk *dbclk;
184 struct regulator *pbias;
185 void __iomem *base;
186 int vqmmc_enabled;
187 resource_size_t mapbase;
188 spinlock_t irq_lock; /* Prevent races with irq handler */
189 unsigned int dma_len;
190 unsigned int dma_sg_idx;
191 unsigned char bus_mode;
192 unsigned char power_mode;
193 int suspended;
194 u32 con;
195 u32 hctl;
196 u32 sysctl;
197 u32 capa;
198 int irq;
199 int wake_irq;
200 int use_dma, dma_ch;
201 struct dma_chan *tx_chan;
202 struct dma_chan *rx_chan;
203 int response_busy;
204 int context_loss;
205 int protect_card;
206 int reqs_blocked;
207 int req_in_progress;
208 unsigned long clk_rate;
209 unsigned int flags;
210 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
211 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
212 struct omap_hsmmc_next next_data;
213 struct omap_hsmmc_platform_data *pdata;
214
215 /* return MMC cover switch state, can be NULL if not supported.
216 *
217 * possible return values:
218 * 0 - closed
219 * 1 - open
220 */
221 int (*get_cover_state)(struct device *dev);
222
223 int (*card_detect)(struct device *dev);
224 };
225
226 struct omap_mmc_of_data {
227 u32 reg_offset;
228 u8 controller_flags;
229 };
230
231 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232
233 static int omap_hsmmc_card_detect(struct device *dev)
234 {
235 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236
237 return mmc_gpio_get_cd(host->mmc);
238 }
239
240 static int omap_hsmmc_get_cover_state(struct device *dev)
241 {
242 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
243
244 return mmc_gpio_get_cd(host->mmc);
245 }
246
247 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
248 {
249 int ret;
250 struct omap_hsmmc_host *host = mmc_priv(mmc);
251 struct mmc_ios *ios = &mmc->ios;
252
253 if (mmc->supply.vmmc) {
254 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
255 if (ret)
256 return ret;
257 }
258
259 /* Enable interface voltage rail, if needed */
260 if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
261 ret = regulator_enable(mmc->supply.vqmmc);
262 if (ret) {
263 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
264 goto err_vqmmc;
265 }
266 host->vqmmc_enabled = 1;
267 }
268
269 return 0;
270
271 err_vqmmc:
272 if (mmc->supply.vmmc)
273 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
274
275 return ret;
276 }
277
278 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
279 {
280 int ret;
281 int status;
282 struct omap_hsmmc_host *host = mmc_priv(mmc);
283
284 if (mmc->supply.vqmmc && host->vqmmc_enabled) {
285 ret = regulator_disable(mmc->supply.vqmmc);
286 if (ret) {
287 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
288 return ret;
289 }
290 host->vqmmc_enabled = 0;
291 }
292
293 if (mmc->supply.vmmc) {
294 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
295 if (ret)
296 goto err_set_ocr;
297 }
298
299 return 0;
300
301 err_set_ocr:
302 if (mmc->supply.vqmmc) {
303 status = regulator_enable(mmc->supply.vqmmc);
304 if (status)
305 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
306 }
307
308 return ret;
309 }
310
311 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
312 int vdd)
313 {
314 int ret;
315
316 if (!host->pbias)
317 return 0;
318
319 if (power_on) {
320 if (vdd <= VDD_165_195)
321 ret = regulator_set_voltage(host->pbias, VDD_1V8,
322 VDD_1V8);
323 else
324 ret = regulator_set_voltage(host->pbias, VDD_3V0,
325 VDD_3V0);
326 if (ret < 0) {
327 dev_err(host->dev, "pbias set voltage fail\n");
328 return ret;
329 }
330
331 if (!regulator_is_enabled(host->pbias)) {
332 ret = regulator_enable(host->pbias);
333 if (ret) {
334 dev_err(host->dev, "pbias reg enable fail\n");
335 return ret;
336 }
337 }
338 } else {
339 if (regulator_is_enabled(host->pbias)) {
340 ret = regulator_disable(host->pbias);
341 if (ret) {
342 dev_err(host->dev, "pbias reg disable fail\n");
343 return ret;
344 }
345 }
346 }
347
348 return 0;
349 }
350
351 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd)
352 {
353 struct omap_hsmmc_host *host =
354 platform_get_drvdata(to_platform_device(dev));
355 struct mmc_host *mmc = host->mmc;
356 int ret = 0;
357
358 if (mmc_pdata(host)->set_power)
359 return mmc_pdata(host)->set_power(dev, power_on, vdd);
360
361 /*
362 * If we don't see a Vcc regulator, assume it's a fixed
363 * voltage always-on regulator.
364 */
365 if (!mmc->supply.vmmc)
366 return 0;
367
368 if (mmc_pdata(host)->before_set_reg)
369 mmc_pdata(host)->before_set_reg(dev, power_on, vdd);
370
371 ret = omap_hsmmc_set_pbias(host, false, 0);
372 if (ret)
373 return ret;
374
375 /*
376 * Assume Vcc regulator is used only to power the card ... OMAP
377 * VDDS is used to power the pins, optionally with a transceiver to
378 * support cards using voltages other than VDDS (1.8V nominal). When a
379 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
380 *
381 * In some cases this regulator won't support enable/disable;
382 * e.g. it's a fixed rail for a WLAN chip.
383 *
384 * In other cases vcc_aux switches interface power. Example, for
385 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
386 * chips/cards need an interface voltage rail too.
387 */
388 if (power_on) {
389 ret = omap_hsmmc_enable_supply(mmc);
390 if (ret)
391 return ret;
392
393 ret = omap_hsmmc_set_pbias(host, true, vdd);
394 if (ret)
395 goto err_set_voltage;
396 } else {
397 ret = omap_hsmmc_disable_supply(mmc);
398 if (ret)
399 return ret;
400 }
401
402 if (mmc_pdata(host)->after_set_reg)
403 mmc_pdata(host)->after_set_reg(dev, power_on, vdd);
404
405 return 0;
406
407 err_set_voltage:
408 omap_hsmmc_disable_supply(mmc);
409
410 return ret;
411 }
412
413 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
414 {
415 int ret;
416
417 if (!reg)
418 return 0;
419
420 if (regulator_is_enabled(reg)) {
421 ret = regulator_enable(reg);
422 if (ret)
423 return ret;
424
425 ret = regulator_disable(reg);
426 if (ret)
427 return ret;
428 }
429
430 return 0;
431 }
432
433 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
434 {
435 struct mmc_host *mmc = host->mmc;
436 int ret;
437
438 /*
439 * disable regulators enabled during boot and get the usecount
440 * right so that regulators can be enabled/disabled by checking
441 * the return value of regulator_is_enabled
442 */
443 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
444 if (ret) {
445 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
446 return ret;
447 }
448
449 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
450 if (ret) {
451 dev_err(host->dev,
452 "fail to disable boot enabled vmmc_aux reg\n");
453 return ret;
454 }
455
456 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
457 if (ret) {
458 dev_err(host->dev,
459 "failed to disable boot enabled pbias reg\n");
460 return ret;
461 }
462
463 return 0;
464 }
465
466 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
467 {
468 int ocr_value = 0;
469 int ret;
470 struct mmc_host *mmc = host->mmc;
471
472 if (mmc_pdata(host)->set_power)
473 return 0;
474
475 mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
476 if (IS_ERR(mmc->supply.vmmc)) {
477 ret = PTR_ERR(mmc->supply.vmmc);
478 if (ret != -ENODEV)
479 return ret;
480 dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
481 PTR_ERR(mmc->supply.vmmc));
482 mmc->supply.vmmc = NULL;
483 } else {
484 ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
485 if (ocr_value > 0)
486 mmc_pdata(host)->ocr_mask = ocr_value;
487 }
488
489 /* Allow an aux regulator */
490 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
491 if (IS_ERR(mmc->supply.vqmmc)) {
492 ret = PTR_ERR(mmc->supply.vqmmc);
493 if (ret != -ENODEV)
494 return ret;
495 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
496 PTR_ERR(mmc->supply.vqmmc));
497 mmc->supply.vqmmc = NULL;
498 }
499
500 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
501 if (IS_ERR(host->pbias)) {
502 ret = PTR_ERR(host->pbias);
503 if (ret != -ENODEV)
504 return ret;
505 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
506 PTR_ERR(host->pbias));
507 host->pbias = NULL;
508 }
509
510 /* For eMMC do not power off when not in sleep state */
511 if (mmc_pdata(host)->no_regulator_off_init)
512 return 0;
513
514 ret = omap_hsmmc_disable_boot_regulators(host);
515 if (ret)
516 return ret;
517
518 return 0;
519 }
520
521 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
522
523 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
524 struct omap_hsmmc_host *host,
525 struct omap_hsmmc_platform_data *pdata)
526 {
527 int ret;
528
529 if (gpio_is_valid(pdata->gpio_cod)) {
530 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
531 if (ret)
532 return ret;
533
534 host->get_cover_state = omap_hsmmc_get_cover_state;
535 mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
536 } else if (gpio_is_valid(pdata->gpio_cd)) {
537 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
538 if (ret)
539 return ret;
540
541 host->card_detect = omap_hsmmc_card_detect;
542 }
543
544 if (gpio_is_valid(pdata->gpio_wp)) {
545 ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
546 if (ret)
547 return ret;
548 }
549
550 return 0;
551 }
552
553 /*
554 * Start clock to the card
555 */
556 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
557 {
558 OMAP_HSMMC_WRITE(host->base, SYSCTL,
559 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
560 }
561
562 /*
563 * Stop clock to the card
564 */
565 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
566 {
567 OMAP_HSMMC_WRITE(host->base, SYSCTL,
568 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
569 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
570 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
571 }
572
573 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
574 struct mmc_command *cmd)
575 {
576 u32 irq_mask = INT_EN_MASK;
577 unsigned long flags;
578
579 if (host->use_dma)
580 irq_mask &= ~(BRR_EN | BWR_EN);
581
582 /* Disable timeout for erases */
583 if (cmd->opcode == MMC_ERASE)
584 irq_mask &= ~DTO_EN;
585
586 spin_lock_irqsave(&host->irq_lock, flags);
587 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
588 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
589
590 /* latch pending CIRQ, but don't signal MMC core */
591 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
592 irq_mask |= CIRQ_EN;
593 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
594 spin_unlock_irqrestore(&host->irq_lock, flags);
595 }
596
597 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
598 {
599 u32 irq_mask = 0;
600 unsigned long flags;
601
602 spin_lock_irqsave(&host->irq_lock, flags);
603 /* no transfer running but need to keep cirq if enabled */
604 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
605 irq_mask |= CIRQ_EN;
606 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
607 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
608 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
609 spin_unlock_irqrestore(&host->irq_lock, flags);
610 }
611
612 /* Calculate divisor for the given clock frequency */
613 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
614 {
615 u16 dsor = 0;
616
617 if (ios->clock) {
618 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
619 if (dsor > CLKD_MAX)
620 dsor = CLKD_MAX;
621 }
622
623 return dsor;
624 }
625
626 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
627 {
628 struct mmc_ios *ios = &host->mmc->ios;
629 unsigned long regval;
630 unsigned long timeout;
631 unsigned long clkdiv;
632
633 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
634
635 omap_hsmmc_stop_clock(host);
636
637 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
638 regval = regval & ~(CLKD_MASK | DTO_MASK);
639 clkdiv = calc_divisor(host, ios);
640 regval = regval | (clkdiv << 6) | (DTO << 16);
641 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
642 OMAP_HSMMC_WRITE(host->base, SYSCTL,
643 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
644
645 /* Wait till the ICS bit is set */
646 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
647 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
648 && time_before(jiffies, timeout))
649 cpu_relax();
650
651 /*
652 * Enable High-Speed Support
653 * Pre-Requisites
654 * - Controller should support High-Speed-Enable Bit
655 * - Controller should not be using DDR Mode
656 * - Controller should advertise that it supports High Speed
657 * in capabilities register
658 * - MMC/SD clock coming out of controller > 25MHz
659 */
660 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
661 (ios->timing != MMC_TIMING_MMC_DDR52) &&
662 (ios->timing != MMC_TIMING_UHS_DDR50) &&
663 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
664 regval = OMAP_HSMMC_READ(host->base, HCTL);
665 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
666 regval |= HSPE;
667 else
668 regval &= ~HSPE;
669
670 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
671 }
672
673 omap_hsmmc_start_clock(host);
674 }
675
676 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
677 {
678 struct mmc_ios *ios = &host->mmc->ios;
679 u32 con;
680
681 con = OMAP_HSMMC_READ(host->base, CON);
682 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
683 ios->timing == MMC_TIMING_UHS_DDR50)
684 con |= DDR; /* configure in DDR mode */
685 else
686 con &= ~DDR;
687 switch (ios->bus_width) {
688 case MMC_BUS_WIDTH_8:
689 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
690 break;
691 case MMC_BUS_WIDTH_4:
692 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
693 OMAP_HSMMC_WRITE(host->base, HCTL,
694 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
695 break;
696 case MMC_BUS_WIDTH_1:
697 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
698 OMAP_HSMMC_WRITE(host->base, HCTL,
699 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
700 break;
701 }
702 }
703
704 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
705 {
706 struct mmc_ios *ios = &host->mmc->ios;
707 u32 con;
708
709 con = OMAP_HSMMC_READ(host->base, CON);
710 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
711 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
712 else
713 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
714 }
715
716 #ifdef CONFIG_PM
717
718 /*
719 * Restore the MMC host context, if it was lost as result of a
720 * power state change.
721 */
722 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
723 {
724 struct mmc_ios *ios = &host->mmc->ios;
725 u32 hctl, capa;
726 unsigned long timeout;
727
728 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
729 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
730 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
731 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
732 return 0;
733
734 host->context_loss++;
735
736 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
737 if (host->power_mode != MMC_POWER_OFF &&
738 (1 << ios->vdd) <= MMC_VDD_23_24)
739 hctl = SDVS18;
740 else
741 hctl = SDVS30;
742 capa = VS30 | VS18;
743 } else {
744 hctl = SDVS18;
745 capa = VS18;
746 }
747
748 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
749 hctl |= IWE;
750
751 OMAP_HSMMC_WRITE(host->base, HCTL,
752 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
753
754 OMAP_HSMMC_WRITE(host->base, CAPA,
755 OMAP_HSMMC_READ(host->base, CAPA) | capa);
756
757 OMAP_HSMMC_WRITE(host->base, HCTL,
758 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
759
760 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
761 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
762 && time_before(jiffies, timeout))
763 ;
764
765 OMAP_HSMMC_WRITE(host->base, ISE, 0);
766 OMAP_HSMMC_WRITE(host->base, IE, 0);
767 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
768
769 /* Do not initialize card-specific things if the power is off */
770 if (host->power_mode == MMC_POWER_OFF)
771 goto out;
772
773 omap_hsmmc_set_bus_width(host);
774
775 omap_hsmmc_set_clock(host);
776
777 omap_hsmmc_set_bus_mode(host);
778
779 out:
780 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
781 host->context_loss);
782 return 0;
783 }
784
785 /*
786 * Save the MMC host context (store the number of power state changes so far).
787 */
788 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
789 {
790 host->con = OMAP_HSMMC_READ(host->base, CON);
791 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
792 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
793 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
794 }
795
796 #else
797
798 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
799 {
800 return 0;
801 }
802
803 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
804 {
805 }
806
807 #endif
808
809 /*
810 * Send init stream sequence to card
811 * before sending IDLE command
812 */
813 static void send_init_stream(struct omap_hsmmc_host *host)
814 {
815 int reg = 0;
816 unsigned long timeout;
817
818 if (host->protect_card)
819 return;
820
821 disable_irq(host->irq);
822
823 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
824 OMAP_HSMMC_WRITE(host->base, CON,
825 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
826 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
827
828 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
829 while ((reg != CC_EN) && time_before(jiffies, timeout))
830 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
831
832 OMAP_HSMMC_WRITE(host->base, CON,
833 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
834
835 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
836 OMAP_HSMMC_READ(host->base, STAT);
837
838 enable_irq(host->irq);
839 }
840
841 static inline
842 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
843 {
844 int r = 1;
845
846 if (host->get_cover_state)
847 r = host->get_cover_state(host->dev);
848 return r;
849 }
850
851 static ssize_t
852 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
853 char *buf)
854 {
855 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
856 struct omap_hsmmc_host *host = mmc_priv(mmc);
857
858 return sprintf(buf, "%s\n",
859 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
860 }
861
862 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
863
864 static ssize_t
865 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
866 char *buf)
867 {
868 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
869 struct omap_hsmmc_host *host = mmc_priv(mmc);
870
871 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
872 }
873
874 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
875
876 /*
877 * Configure the response type and send the cmd.
878 */
879 static void
880 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
881 struct mmc_data *data)
882 {
883 int cmdreg = 0, resptype = 0, cmdtype = 0;
884
885 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
886 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
887 host->cmd = cmd;
888
889 omap_hsmmc_enable_irq(host, cmd);
890
891 host->response_busy = 0;
892 if (cmd->flags & MMC_RSP_PRESENT) {
893 if (cmd->flags & MMC_RSP_136)
894 resptype = 1;
895 else if (cmd->flags & MMC_RSP_BUSY) {
896 resptype = 3;
897 host->response_busy = 1;
898 } else
899 resptype = 2;
900 }
901
902 /*
903 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
904 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
905 * a val of 0x3, rest 0x0.
906 */
907 if (cmd == host->mrq->stop)
908 cmdtype = 0x3;
909
910 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
911
912 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
913 host->mrq->sbc) {
914 cmdreg |= ACEN_ACMD23;
915 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
916 }
917 if (data) {
918 cmdreg |= DP_SELECT | MSBS | BCE;
919 if (data->flags & MMC_DATA_READ)
920 cmdreg |= DDIR;
921 else
922 cmdreg &= ~(DDIR);
923 }
924
925 if (host->use_dma)
926 cmdreg |= DMAE;
927
928 host->req_in_progress = 1;
929
930 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
931 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
932 }
933
934 static int
935 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
936 {
937 if (data->flags & MMC_DATA_WRITE)
938 return DMA_TO_DEVICE;
939 else
940 return DMA_FROM_DEVICE;
941 }
942
943 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
944 struct mmc_data *data)
945 {
946 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
947 }
948
949 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
950 {
951 int dma_ch;
952 unsigned long flags;
953
954 spin_lock_irqsave(&host->irq_lock, flags);
955 host->req_in_progress = 0;
956 dma_ch = host->dma_ch;
957 spin_unlock_irqrestore(&host->irq_lock, flags);
958
959 omap_hsmmc_disable_irq(host);
960 /* Do not complete the request if DMA is still in progress */
961 if (mrq->data && host->use_dma && dma_ch != -1)
962 return;
963 host->mrq = NULL;
964 mmc_request_done(host->mmc, mrq);
965 pm_runtime_mark_last_busy(host->dev);
966 pm_runtime_put_autosuspend(host->dev);
967 }
968
969 /*
970 * Notify the transfer complete to MMC core
971 */
972 static void
973 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
974 {
975 if (!data) {
976 struct mmc_request *mrq = host->mrq;
977
978 /* TC before CC from CMD6 - don't know why, but it happens */
979 if (host->cmd && host->cmd->opcode == 6 &&
980 host->response_busy) {
981 host->response_busy = 0;
982 return;
983 }
984
985 omap_hsmmc_request_done(host, mrq);
986 return;
987 }
988
989 host->data = NULL;
990
991 if (!data->error)
992 data->bytes_xfered += data->blocks * (data->blksz);
993 else
994 data->bytes_xfered = 0;
995
996 if (data->stop && (data->error || !host->mrq->sbc))
997 omap_hsmmc_start_command(host, data->stop, NULL);
998 else
999 omap_hsmmc_request_done(host, data->mrq);
1000 }
1001
1002 /*
1003 * Notify the core about command completion
1004 */
1005 static void
1006 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
1007 {
1008 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
1009 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
1010 host->cmd = NULL;
1011 omap_hsmmc_start_dma_transfer(host);
1012 omap_hsmmc_start_command(host, host->mrq->cmd,
1013 host->mrq->data);
1014 return;
1015 }
1016
1017 host->cmd = NULL;
1018
1019 if (cmd->flags & MMC_RSP_PRESENT) {
1020 if (cmd->flags & MMC_RSP_136) {
1021 /* response type 2 */
1022 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1023 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1024 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1025 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1026 } else {
1027 /* response types 1, 1b, 3, 4, 5, 6 */
1028 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1029 }
1030 }
1031 if ((host->data == NULL && !host->response_busy) || cmd->error)
1032 omap_hsmmc_request_done(host, host->mrq);
1033 }
1034
1035 /*
1036 * DMA clean up for command errors
1037 */
1038 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1039 {
1040 int dma_ch;
1041 unsigned long flags;
1042
1043 host->data->error = errno;
1044
1045 spin_lock_irqsave(&host->irq_lock, flags);
1046 dma_ch = host->dma_ch;
1047 host->dma_ch = -1;
1048 spin_unlock_irqrestore(&host->irq_lock, flags);
1049
1050 if (host->use_dma && dma_ch != -1) {
1051 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1052
1053 dmaengine_terminate_all(chan);
1054 dma_unmap_sg(chan->device->dev,
1055 host->data->sg, host->data->sg_len,
1056 omap_hsmmc_get_dma_dir(host, host->data));
1057
1058 host->data->host_cookie = 0;
1059 }
1060 host->data = NULL;
1061 }
1062
1063 /*
1064 * Readable error output
1065 */
1066 #ifdef CONFIG_MMC_DEBUG
1067 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1068 {
1069 /* --- means reserved bit without definition at documentation */
1070 static const char *omap_hsmmc_status_bits[] = {
1071 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1072 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1073 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1074 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1075 };
1076 char res[256];
1077 char *buf = res;
1078 int len, i;
1079
1080 len = sprintf(buf, "MMC IRQ 0x%x :", status);
1081 buf += len;
1082
1083 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1084 if (status & (1 << i)) {
1085 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1086 buf += len;
1087 }
1088
1089 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1090 }
1091 #else
1092 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1093 u32 status)
1094 {
1095 }
1096 #endif /* CONFIG_MMC_DEBUG */
1097
1098 /*
1099 * MMC controller internal state machines reset
1100 *
1101 * Used to reset command or data internal state machines, using respectively
1102 * SRC or SRD bit of SYSCTL register
1103 * Can be called from interrupt context
1104 */
1105 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1106 unsigned long bit)
1107 {
1108 unsigned long i = 0;
1109 unsigned long limit = MMC_TIMEOUT_US;
1110
1111 OMAP_HSMMC_WRITE(host->base, SYSCTL,
1112 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1113
1114 /*
1115 * OMAP4 ES2 and greater has an updated reset logic.
1116 * Monitor a 0->1 transition first
1117 */
1118 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1119 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1120 && (i++ < limit))
1121 udelay(1);
1122 }
1123 i = 0;
1124
1125 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1126 (i++ < limit))
1127 udelay(1);
1128
1129 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1130 dev_err(mmc_dev(host->mmc),
1131 "Timeout waiting on controller reset in %s\n",
1132 __func__);
1133 }
1134
1135 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1136 int err, int end_cmd)
1137 {
1138 if (end_cmd) {
1139 omap_hsmmc_reset_controller_fsm(host, SRC);
1140 if (host->cmd)
1141 host->cmd->error = err;
1142 }
1143
1144 if (host->data) {
1145 omap_hsmmc_reset_controller_fsm(host, SRD);
1146 omap_hsmmc_dma_cleanup(host, err);
1147 } else if (host->mrq && host->mrq->cmd)
1148 host->mrq->cmd->error = err;
1149 }
1150
1151 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1152 {
1153 struct mmc_data *data;
1154 int end_cmd = 0, end_trans = 0;
1155 int error = 0;
1156
1157 data = host->data;
1158 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1159
1160 if (status & ERR_EN) {
1161 omap_hsmmc_dbg_report_irq(host, status);
1162
1163 if (status & (CTO_EN | CCRC_EN))
1164 end_cmd = 1;
1165 if (host->data || host->response_busy) {
1166 end_trans = !end_cmd;
1167 host->response_busy = 0;
1168 }
1169 if (status & (CTO_EN | DTO_EN))
1170 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1171 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1172 BADA_EN))
1173 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1174
1175 if (status & ACE_EN) {
1176 u32 ac12;
1177 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1178 if (!(ac12 & ACNE) && host->mrq->sbc) {
1179 end_cmd = 1;
1180 if (ac12 & ACTO)
1181 error = -ETIMEDOUT;
1182 else if (ac12 & (ACCE | ACEB | ACIE))
1183 error = -EILSEQ;
1184 host->mrq->sbc->error = error;
1185 hsmmc_command_incomplete(host, error, end_cmd);
1186 }
1187 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1188 }
1189 }
1190
1191 OMAP_HSMMC_WRITE(host->base, STAT, status);
1192 if (end_cmd || ((status & CC_EN) && host->cmd))
1193 omap_hsmmc_cmd_done(host, host->cmd);
1194 if ((end_trans || (status & TC_EN)) && host->mrq)
1195 omap_hsmmc_xfer_done(host, data);
1196 }
1197
1198 /*
1199 * MMC controller IRQ handler
1200 */
1201 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1202 {
1203 struct omap_hsmmc_host *host = dev_id;
1204 int status;
1205
1206 status = OMAP_HSMMC_READ(host->base, STAT);
1207 while (status & (INT_EN_MASK | CIRQ_EN)) {
1208 if (host->req_in_progress)
1209 omap_hsmmc_do_irq(host, status);
1210
1211 if (status & CIRQ_EN)
1212 mmc_signal_sdio_irq(host->mmc);
1213
1214 /* Flush posted write */
1215 status = OMAP_HSMMC_READ(host->base, STAT);
1216 }
1217
1218 return IRQ_HANDLED;
1219 }
1220
1221 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1222 {
1223 unsigned long i;
1224
1225 OMAP_HSMMC_WRITE(host->base, HCTL,
1226 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1227 for (i = 0; i < loops_per_jiffy; i++) {
1228 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1229 break;
1230 cpu_relax();
1231 }
1232 }
1233
1234 /*
1235 * Switch MMC interface voltage ... only relevant for MMC1.
1236 *
1237 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1238 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1239 * Some chips, like eMMC ones, use internal transceivers.
1240 */
1241 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1242 {
1243 u32 reg_val = 0;
1244 int ret;
1245
1246 /* Disable the clocks */
1247 pm_runtime_put_sync(host->dev);
1248 if (host->dbclk)
1249 clk_disable_unprepare(host->dbclk);
1250
1251 /* Turn the power off */
1252 ret = omap_hsmmc_set_power(host->dev, 0, 0);
1253
1254 /* Turn the power ON with given VDD 1.8 or 3.0v */
1255 if (!ret)
1256 ret = omap_hsmmc_set_power(host->dev, 1, vdd);
1257 pm_runtime_get_sync(host->dev);
1258 if (host->dbclk)
1259 clk_prepare_enable(host->dbclk);
1260
1261 if (ret != 0)
1262 goto err;
1263
1264 OMAP_HSMMC_WRITE(host->base, HCTL,
1265 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1266 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1267
1268 /*
1269 * If a MMC dual voltage card is detected, the set_ios fn calls
1270 * this fn with VDD bit set for 1.8V. Upon card removal from the
1271 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1272 *
1273 * Cope with a bit of slop in the range ... per data sheets:
1274 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1275 * but recommended values are 1.71V to 1.89V
1276 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1277 * but recommended values are 2.7V to 3.3V
1278 *
1279 * Board setup code shouldn't permit anything very out-of-range.
1280 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1281 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1282 */
1283 if ((1 << vdd) <= MMC_VDD_23_24)
1284 reg_val |= SDVS18;
1285 else
1286 reg_val |= SDVS30;
1287
1288 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1289 set_sd_bus_power(host);
1290
1291 return 0;
1292 err:
1293 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1294 return ret;
1295 }
1296
1297 /* Protect the card while the cover is open */
1298 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1299 {
1300 if (!host->get_cover_state)
1301 return;
1302
1303 host->reqs_blocked = 0;
1304 if (host->get_cover_state(host->dev)) {
1305 if (host->protect_card) {
1306 dev_info(host->dev, "%s: cover is closed, "
1307 "card is now accessible\n",
1308 mmc_hostname(host->mmc));
1309 host->protect_card = 0;
1310 }
1311 } else {
1312 if (!host->protect_card) {
1313 dev_info(host->dev, "%s: cover is open, "
1314 "card is now inaccessible\n",
1315 mmc_hostname(host->mmc));
1316 host->protect_card = 1;
1317 }
1318 }
1319 }
1320
1321 /*
1322 * irq handler when (cell-phone) cover is mounted/removed
1323 */
1324 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1325 {
1326 struct omap_hsmmc_host *host = dev_id;
1327
1328 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1329
1330 omap_hsmmc_protect_card(host);
1331 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1332 return IRQ_HANDLED;
1333 }
1334
1335 static void omap_hsmmc_dma_callback(void *param)
1336 {
1337 struct omap_hsmmc_host *host = param;
1338 struct dma_chan *chan;
1339 struct mmc_data *data;
1340 int req_in_progress;
1341
1342 spin_lock_irq(&host->irq_lock);
1343 if (host->dma_ch < 0) {
1344 spin_unlock_irq(&host->irq_lock);
1345 return;
1346 }
1347
1348 data = host->mrq->data;
1349 chan = omap_hsmmc_get_dma_chan(host, data);
1350 if (!data->host_cookie)
1351 dma_unmap_sg(chan->device->dev,
1352 data->sg, data->sg_len,
1353 omap_hsmmc_get_dma_dir(host, data));
1354
1355 req_in_progress = host->req_in_progress;
1356 host->dma_ch = -1;
1357 spin_unlock_irq(&host->irq_lock);
1358
1359 /* If DMA has finished after TC, complete the request */
1360 if (!req_in_progress) {
1361 struct mmc_request *mrq = host->mrq;
1362
1363 host->mrq = NULL;
1364 mmc_request_done(host->mmc, mrq);
1365 pm_runtime_mark_last_busy(host->dev);
1366 pm_runtime_put_autosuspend(host->dev);
1367 }
1368 }
1369
1370 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1371 struct mmc_data *data,
1372 struct omap_hsmmc_next *next,
1373 struct dma_chan *chan)
1374 {
1375 int dma_len;
1376
1377 if (!next && data->host_cookie &&
1378 data->host_cookie != host->next_data.cookie) {
1379 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1380 " host->next_data.cookie %d\n",
1381 __func__, data->host_cookie, host->next_data.cookie);
1382 data->host_cookie = 0;
1383 }
1384
1385 /* Check if next job is already prepared */
1386 if (next || data->host_cookie != host->next_data.cookie) {
1387 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1388 omap_hsmmc_get_dma_dir(host, data));
1389
1390 } else {
1391 dma_len = host->next_data.dma_len;
1392 host->next_data.dma_len = 0;
1393 }
1394
1395
1396 if (dma_len == 0)
1397 return -EINVAL;
1398
1399 if (next) {
1400 next->dma_len = dma_len;
1401 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1402 } else
1403 host->dma_len = dma_len;
1404
1405 return 0;
1406 }
1407
1408 /*
1409 * Routine to configure and start DMA for the MMC card
1410 */
1411 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1412 struct mmc_request *req)
1413 {
1414 struct dma_slave_config cfg;
1415 struct dma_async_tx_descriptor *tx;
1416 int ret = 0, i;
1417 struct mmc_data *data = req->data;
1418 struct dma_chan *chan;
1419
1420 /* Sanity check: all the SG entries must be aligned by block size. */
1421 for (i = 0; i < data->sg_len; i++) {
1422 struct scatterlist *sgl;
1423
1424 sgl = data->sg + i;
1425 if (sgl->length % data->blksz)
1426 return -EINVAL;
1427 }
1428 if ((data->blksz % 4) != 0)
1429 /* REVISIT: The MMC buffer increments only when MSB is written.
1430 * Return error for blksz which is non multiple of four.
1431 */
1432 return -EINVAL;
1433
1434 BUG_ON(host->dma_ch != -1);
1435
1436 chan = omap_hsmmc_get_dma_chan(host, data);
1437
1438 cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1439 cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1440 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1441 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1442 cfg.src_maxburst = data->blksz / 4;
1443 cfg.dst_maxburst = data->blksz / 4;
1444
1445 ret = dmaengine_slave_config(chan, &cfg);
1446 if (ret)
1447 return ret;
1448
1449 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1450 if (ret)
1451 return ret;
1452
1453 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1454 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1455 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1456 if (!tx) {
1457 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1458 /* FIXME: cleanup */
1459 return -1;
1460 }
1461
1462 tx->callback = omap_hsmmc_dma_callback;
1463 tx->callback_param = host;
1464
1465 /* Does not fail */
1466 dmaengine_submit(tx);
1467
1468 host->dma_ch = 1;
1469
1470 return 0;
1471 }
1472
1473 static void set_data_timeout(struct omap_hsmmc_host *host,
1474 unsigned int timeout_ns,
1475 unsigned int timeout_clks)
1476 {
1477 unsigned int timeout, cycle_ns;
1478 uint32_t reg, clkd, dto = 0;
1479
1480 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1481 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1482 if (clkd == 0)
1483 clkd = 1;
1484
1485 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1486 timeout = timeout_ns / cycle_ns;
1487 timeout += timeout_clks;
1488 if (timeout) {
1489 while ((timeout & 0x80000000) == 0) {
1490 dto += 1;
1491 timeout <<= 1;
1492 }
1493 dto = 31 - dto;
1494 timeout <<= 1;
1495 if (timeout && dto)
1496 dto += 1;
1497 if (dto >= 13)
1498 dto -= 13;
1499 else
1500 dto = 0;
1501 if (dto > 14)
1502 dto = 14;
1503 }
1504
1505 reg &= ~DTO_MASK;
1506 reg |= dto << DTO_SHIFT;
1507 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1508 }
1509
1510 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1511 {
1512 struct mmc_request *req = host->mrq;
1513 struct dma_chan *chan;
1514
1515 if (!req->data)
1516 return;
1517 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1518 | (req->data->blocks << 16));
1519 set_data_timeout(host, req->data->timeout_ns,
1520 req->data->timeout_clks);
1521 chan = omap_hsmmc_get_dma_chan(host, req->data);
1522 dma_async_issue_pending(chan);
1523 }
1524
1525 /*
1526 * Configure block length for MMC/SD cards and initiate the transfer.
1527 */
1528 static int
1529 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1530 {
1531 int ret;
1532 host->data = req->data;
1533
1534 if (req->data == NULL) {
1535 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1536 /*
1537 * Set an arbitrary 100ms data timeout for commands with
1538 * busy signal.
1539 */
1540 if (req->cmd->flags & MMC_RSP_BUSY)
1541 set_data_timeout(host, 100000000U, 0);
1542 return 0;
1543 }
1544
1545 if (host->use_dma) {
1546 ret = omap_hsmmc_setup_dma_transfer(host, req);
1547 if (ret != 0) {
1548 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1549 return ret;
1550 }
1551 }
1552 return 0;
1553 }
1554
1555 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1556 int err)
1557 {
1558 struct omap_hsmmc_host *host = mmc_priv(mmc);
1559 struct mmc_data *data = mrq->data;
1560
1561 if (host->use_dma && data->host_cookie) {
1562 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1563
1564 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1565 omap_hsmmc_get_dma_dir(host, data));
1566 data->host_cookie = 0;
1567 }
1568 }
1569
1570 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1571 bool is_first_req)
1572 {
1573 struct omap_hsmmc_host *host = mmc_priv(mmc);
1574
1575 if (mrq->data->host_cookie) {
1576 mrq->data->host_cookie = 0;
1577 return ;
1578 }
1579
1580 if (host->use_dma) {
1581 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1582
1583 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1584 &host->next_data, c))
1585 mrq->data->host_cookie = 0;
1586 }
1587 }
1588
1589 /*
1590 * Request function. for read/write operation
1591 */
1592 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1593 {
1594 struct omap_hsmmc_host *host = mmc_priv(mmc);
1595 int err;
1596
1597 BUG_ON(host->req_in_progress);
1598 BUG_ON(host->dma_ch != -1);
1599 pm_runtime_get_sync(host->dev);
1600 if (host->protect_card) {
1601 if (host->reqs_blocked < 3) {
1602 /*
1603 * Ensure the controller is left in a consistent
1604 * state by resetting the command and data state
1605 * machines.
1606 */
1607 omap_hsmmc_reset_controller_fsm(host, SRD);
1608 omap_hsmmc_reset_controller_fsm(host, SRC);
1609 host->reqs_blocked += 1;
1610 }
1611 req->cmd->error = -EBADF;
1612 if (req->data)
1613 req->data->error = -EBADF;
1614 req->cmd->retries = 0;
1615 mmc_request_done(mmc, req);
1616 pm_runtime_mark_last_busy(host->dev);
1617 pm_runtime_put_autosuspend(host->dev);
1618 return;
1619 } else if (host->reqs_blocked)
1620 host->reqs_blocked = 0;
1621 WARN_ON(host->mrq != NULL);
1622 host->mrq = req;
1623 host->clk_rate = clk_get_rate(host->fclk);
1624 err = omap_hsmmc_prepare_data(host, req);
1625 if (err) {
1626 req->cmd->error = err;
1627 if (req->data)
1628 req->data->error = err;
1629 host->mrq = NULL;
1630 mmc_request_done(mmc, req);
1631 pm_runtime_mark_last_busy(host->dev);
1632 pm_runtime_put_autosuspend(host->dev);
1633 return;
1634 }
1635 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1636 omap_hsmmc_start_command(host, req->sbc, NULL);
1637 return;
1638 }
1639
1640 omap_hsmmc_start_dma_transfer(host);
1641 omap_hsmmc_start_command(host, req->cmd, req->data);
1642 }
1643
1644 /* Routine to configure clock values. Exposed API to core */
1645 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1646 {
1647 struct omap_hsmmc_host *host = mmc_priv(mmc);
1648 int do_send_init_stream = 0;
1649
1650 pm_runtime_get_sync(host->dev);
1651
1652 if (ios->power_mode != host->power_mode) {
1653 switch (ios->power_mode) {
1654 case MMC_POWER_OFF:
1655 omap_hsmmc_set_power(host->dev, 0, 0);
1656 break;
1657 case MMC_POWER_UP:
1658 omap_hsmmc_set_power(host->dev, 1, ios->vdd);
1659 break;
1660 case MMC_POWER_ON:
1661 do_send_init_stream = 1;
1662 break;
1663 }
1664 host->power_mode = ios->power_mode;
1665 }
1666
1667 /* FIXME: set registers based only on changes to ios */
1668
1669 omap_hsmmc_set_bus_width(host);
1670
1671 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1672 /* Only MMC1 can interface at 3V without some flavor
1673 * of external transceiver; but they all handle 1.8V.
1674 */
1675 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1676 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1677 /*
1678 * The mmc_select_voltage fn of the core does
1679 * not seem to set the power_mode to
1680 * MMC_POWER_UP upon recalculating the voltage.
1681 * vdd 1.8v.
1682 */
1683 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1684 dev_dbg(mmc_dev(host->mmc),
1685 "Switch operation failed\n");
1686 }
1687 }
1688
1689 omap_hsmmc_set_clock(host);
1690
1691 if (do_send_init_stream)
1692 send_init_stream(host);
1693
1694 omap_hsmmc_set_bus_mode(host);
1695
1696 pm_runtime_put_autosuspend(host->dev);
1697 }
1698
1699 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1700 {
1701 struct omap_hsmmc_host *host = mmc_priv(mmc);
1702
1703 if (!host->card_detect)
1704 return -ENOSYS;
1705 return host->card_detect(host->dev);
1706 }
1707
1708 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1709 {
1710 struct omap_hsmmc_host *host = mmc_priv(mmc);
1711
1712 if (mmc_pdata(host)->init_card)
1713 mmc_pdata(host)->init_card(card);
1714 }
1715
1716 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1717 {
1718 struct omap_hsmmc_host *host = mmc_priv(mmc);
1719 u32 irq_mask, con;
1720 unsigned long flags;
1721
1722 spin_lock_irqsave(&host->irq_lock, flags);
1723
1724 con = OMAP_HSMMC_READ(host->base, CON);
1725 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1726 if (enable) {
1727 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1728 irq_mask |= CIRQ_EN;
1729 con |= CTPL | CLKEXTFREE;
1730 } else {
1731 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1732 irq_mask &= ~CIRQ_EN;
1733 con &= ~(CTPL | CLKEXTFREE);
1734 }
1735 OMAP_HSMMC_WRITE(host->base, CON, con);
1736 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1737
1738 /*
1739 * if enable, piggy back detection on current request
1740 * but always disable immediately
1741 */
1742 if (!host->req_in_progress || !enable)
1743 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1744
1745 /* flush posted write */
1746 OMAP_HSMMC_READ(host->base, IE);
1747
1748 spin_unlock_irqrestore(&host->irq_lock, flags);
1749 }
1750
1751 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1752 {
1753 int ret;
1754
1755 /*
1756 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1757 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1758 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1759 * with functional clock disabled.
1760 */
1761 if (!host->dev->of_node || !host->wake_irq)
1762 return -ENODEV;
1763
1764 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1765 if (ret) {
1766 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1767 goto err;
1768 }
1769
1770 /*
1771 * Some omaps don't have wake-up path from deeper idle states
1772 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1773 */
1774 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1775 struct pinctrl *p = devm_pinctrl_get(host->dev);
1776 if (!p) {
1777 ret = -ENODEV;
1778 goto err_free_irq;
1779 }
1780 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1781 dev_info(host->dev, "missing default pinctrl state\n");
1782 devm_pinctrl_put(p);
1783 ret = -EINVAL;
1784 goto err_free_irq;
1785 }
1786
1787 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1788 dev_info(host->dev, "missing idle pinctrl state\n");
1789 devm_pinctrl_put(p);
1790 ret = -EINVAL;
1791 goto err_free_irq;
1792 }
1793 devm_pinctrl_put(p);
1794 }
1795
1796 OMAP_HSMMC_WRITE(host->base, HCTL,
1797 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1798 return 0;
1799
1800 err_free_irq:
1801 dev_pm_clear_wake_irq(host->dev);
1802 err:
1803 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1804 host->wake_irq = 0;
1805 return ret;
1806 }
1807
1808 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1809 {
1810 u32 hctl, capa, value;
1811
1812 /* Only MMC1 supports 3.0V */
1813 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1814 hctl = SDVS30;
1815 capa = VS30 | VS18;
1816 } else {
1817 hctl = SDVS18;
1818 capa = VS18;
1819 }
1820
1821 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1822 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1823
1824 value = OMAP_HSMMC_READ(host->base, CAPA);
1825 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1826
1827 /* Set SD bus power bit */
1828 set_sd_bus_power(host);
1829 }
1830
1831 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1832 unsigned int direction, int blk_size)
1833 {
1834 /* This controller can't do multiblock reads due to hw bugs */
1835 if (direction == MMC_DATA_READ)
1836 return 1;
1837
1838 return blk_size;
1839 }
1840
1841 static struct mmc_host_ops omap_hsmmc_ops = {
1842 .post_req = omap_hsmmc_post_req,
1843 .pre_req = omap_hsmmc_pre_req,
1844 .request = omap_hsmmc_request,
1845 .set_ios = omap_hsmmc_set_ios,
1846 .get_cd = omap_hsmmc_get_cd,
1847 .get_ro = mmc_gpio_get_ro,
1848 .init_card = omap_hsmmc_init_card,
1849 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1850 };
1851
1852 #ifdef CONFIG_DEBUG_FS
1853
1854 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1855 {
1856 struct mmc_host *mmc = s->private;
1857 struct omap_hsmmc_host *host = mmc_priv(mmc);
1858
1859 seq_printf(s, "mmc%d:\n", mmc->index);
1860 seq_printf(s, "sdio irq mode\t%s\n",
1861 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1862
1863 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1864 seq_printf(s, "sdio irq \t%s\n",
1865 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1866 : "disabled");
1867 }
1868 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1869
1870 pm_runtime_get_sync(host->dev);
1871 seq_puts(s, "\nregs:\n");
1872 seq_printf(s, "CON:\t\t0x%08x\n",
1873 OMAP_HSMMC_READ(host->base, CON));
1874 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1875 OMAP_HSMMC_READ(host->base, PSTATE));
1876 seq_printf(s, "HCTL:\t\t0x%08x\n",
1877 OMAP_HSMMC_READ(host->base, HCTL));
1878 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1879 OMAP_HSMMC_READ(host->base, SYSCTL));
1880 seq_printf(s, "IE:\t\t0x%08x\n",
1881 OMAP_HSMMC_READ(host->base, IE));
1882 seq_printf(s, "ISE:\t\t0x%08x\n",
1883 OMAP_HSMMC_READ(host->base, ISE));
1884 seq_printf(s, "CAPA:\t\t0x%08x\n",
1885 OMAP_HSMMC_READ(host->base, CAPA));
1886
1887 pm_runtime_mark_last_busy(host->dev);
1888 pm_runtime_put_autosuspend(host->dev);
1889
1890 return 0;
1891 }
1892
1893 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1894 {
1895 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1896 }
1897
1898 static const struct file_operations mmc_regs_fops = {
1899 .open = omap_hsmmc_regs_open,
1900 .read = seq_read,
1901 .llseek = seq_lseek,
1902 .release = single_release,
1903 };
1904
1905 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1906 {
1907 if (mmc->debugfs_root)
1908 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1909 mmc, &mmc_regs_fops);
1910 }
1911
1912 #else
1913
1914 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1915 {
1916 }
1917
1918 #endif
1919
1920 #ifdef CONFIG_OF
1921 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1922 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1923 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1924 };
1925
1926 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1927 .reg_offset = 0x100,
1928 };
1929 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1930 .reg_offset = 0x100,
1931 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1932 };
1933
1934 static const struct of_device_id omap_mmc_of_match[] = {
1935 {
1936 .compatible = "ti,omap2-hsmmc",
1937 },
1938 {
1939 .compatible = "ti,omap3-pre-es3-hsmmc",
1940 .data = &omap3_pre_es3_mmc_of_data,
1941 },
1942 {
1943 .compatible = "ti,omap3-hsmmc",
1944 },
1945 {
1946 .compatible = "ti,omap4-hsmmc",
1947 .data = &omap4_mmc_of_data,
1948 },
1949 {
1950 .compatible = "ti,am33xx-hsmmc",
1951 .data = &am33xx_mmc_of_data,
1952 },
1953 {},
1954 };
1955 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1956
1957 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1958 {
1959 struct omap_hsmmc_platform_data *pdata;
1960 struct device_node *np = dev->of_node;
1961
1962 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1963 if (!pdata)
1964 return ERR_PTR(-ENOMEM); /* out of memory */
1965
1966 if (of_find_property(np, "ti,dual-volt", NULL))
1967 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1968
1969 pdata->gpio_cd = -EINVAL;
1970 pdata->gpio_cod = -EINVAL;
1971 pdata->gpio_wp = -EINVAL;
1972
1973 if (of_find_property(np, "ti,non-removable", NULL)) {
1974 pdata->nonremovable = true;
1975 pdata->no_regulator_off_init = true;
1976 }
1977
1978 if (of_find_property(np, "ti,needs-special-reset", NULL))
1979 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1980
1981 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1982 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1983
1984 return pdata;
1985 }
1986 #else
1987 static inline struct omap_hsmmc_platform_data
1988 *of_get_hsmmc_pdata(struct device *dev)
1989 {
1990 return ERR_PTR(-EINVAL);
1991 }
1992 #endif
1993
1994 static int omap_hsmmc_probe(struct platform_device *pdev)
1995 {
1996 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1997 struct mmc_host *mmc;
1998 struct omap_hsmmc_host *host = NULL;
1999 struct resource *res;
2000 int ret, irq;
2001 const struct of_device_id *match;
2002 dma_cap_mask_t mask;
2003 unsigned tx_req, rx_req;
2004 const struct omap_mmc_of_data *data;
2005 void __iomem *base;
2006
2007 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2008 if (match) {
2009 pdata = of_get_hsmmc_pdata(&pdev->dev);
2010
2011 if (IS_ERR(pdata))
2012 return PTR_ERR(pdata);
2013
2014 if (match->data) {
2015 data = match->data;
2016 pdata->reg_offset = data->reg_offset;
2017 pdata->controller_flags |= data->controller_flags;
2018 }
2019 }
2020
2021 if (pdata == NULL) {
2022 dev_err(&pdev->dev, "Platform Data is missing\n");
2023 return -ENXIO;
2024 }
2025
2026 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 irq = platform_get_irq(pdev, 0);
2028 if (res == NULL || irq < 0)
2029 return -ENXIO;
2030
2031 base = devm_ioremap_resource(&pdev->dev, res);
2032 if (IS_ERR(base))
2033 return PTR_ERR(base);
2034
2035 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2036 if (!mmc) {
2037 ret = -ENOMEM;
2038 goto err;
2039 }
2040
2041 ret = mmc_of_parse(mmc);
2042 if (ret)
2043 goto err1;
2044
2045 host = mmc_priv(mmc);
2046 host->mmc = mmc;
2047 host->pdata = pdata;
2048 host->dev = &pdev->dev;
2049 host->use_dma = 1;
2050 host->dma_ch = -1;
2051 host->irq = irq;
2052 host->mapbase = res->start + pdata->reg_offset;
2053 host->base = base + pdata->reg_offset;
2054 host->power_mode = MMC_POWER_OFF;
2055 host->next_data.cookie = 1;
2056 host->vqmmc_enabled = 0;
2057
2058 ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2059 if (ret)
2060 goto err_gpio;
2061
2062 platform_set_drvdata(pdev, host);
2063
2064 if (pdev->dev.of_node)
2065 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2066
2067 mmc->ops = &omap_hsmmc_ops;
2068
2069 mmc->f_min = OMAP_MMC_MIN_CLOCK;
2070
2071 if (pdata->max_freq > 0)
2072 mmc->f_max = pdata->max_freq;
2073 else if (mmc->f_max == 0)
2074 mmc->f_max = OMAP_MMC_MAX_CLOCK;
2075
2076 spin_lock_init(&host->irq_lock);
2077
2078 host->fclk = devm_clk_get(&pdev->dev, "fck");
2079 if (IS_ERR(host->fclk)) {
2080 ret = PTR_ERR(host->fclk);
2081 host->fclk = NULL;
2082 goto err1;
2083 }
2084
2085 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2086 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2087 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2088 }
2089
2090 device_init_wakeup(&pdev->dev, true);
2091 pm_runtime_enable(host->dev);
2092 pm_runtime_get_sync(host->dev);
2093 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2094 pm_runtime_use_autosuspend(host->dev);
2095
2096 omap_hsmmc_context_save(host);
2097
2098 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2099 /*
2100 * MMC can still work without debounce clock.
2101 */
2102 if (IS_ERR(host->dbclk)) {
2103 host->dbclk = NULL;
2104 } else if (clk_prepare_enable(host->dbclk) != 0) {
2105 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2106 host->dbclk = NULL;
2107 }
2108
2109 /* Since we do only SG emulation, we can have as many segs
2110 * as we want. */
2111 mmc->max_segs = 1024;
2112
2113 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
2114 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
2115 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2116 mmc->max_seg_size = mmc->max_req_size;
2117
2118 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2119 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2120
2121 mmc->caps |= mmc_pdata(host)->caps;
2122 if (mmc->caps & MMC_CAP_8_BIT_DATA)
2123 mmc->caps |= MMC_CAP_4_BIT_DATA;
2124
2125 if (mmc_pdata(host)->nonremovable)
2126 mmc->caps |= MMC_CAP_NONREMOVABLE;
2127
2128 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2129
2130 omap_hsmmc_conf_bus_power(host);
2131
2132 if (!pdev->dev.of_node) {
2133 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2134 if (!res) {
2135 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2136 ret = -ENXIO;
2137 goto err_irq;
2138 }
2139 tx_req = res->start;
2140
2141 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2142 if (!res) {
2143 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2144 ret = -ENXIO;
2145 goto err_irq;
2146 }
2147 rx_req = res->start;
2148 }
2149
2150 dma_cap_zero(mask);
2151 dma_cap_set(DMA_SLAVE, mask);
2152
2153 host->rx_chan =
2154 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2155 &rx_req, &pdev->dev, "rx");
2156
2157 if (!host->rx_chan) {
2158 dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2159 ret = -ENXIO;
2160 goto err_irq;
2161 }
2162
2163 host->tx_chan =
2164 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2165 &tx_req, &pdev->dev, "tx");
2166
2167 if (!host->tx_chan) {
2168 dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2169 ret = -ENXIO;
2170 goto err_irq;
2171 }
2172
2173 /* Request IRQ for MMC operations */
2174 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2175 mmc_hostname(mmc), host);
2176 if (ret) {
2177 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2178 goto err_irq;
2179 }
2180
2181 ret = omap_hsmmc_reg_get(host);
2182 if (ret)
2183 goto err_irq;
2184
2185 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2186
2187 omap_hsmmc_disable_irq(host);
2188
2189 /*
2190 * For now, only support SDIO interrupt if we have a separate
2191 * wake-up interrupt configured from device tree. This is because
2192 * the wake-up interrupt is needed for idle state and some
2193 * platforms need special quirks. And we don't want to add new
2194 * legacy mux platform init code callbacks any longer as we
2195 * are moving to DT based booting anyways.
2196 */
2197 ret = omap_hsmmc_configure_wake_irq(host);
2198 if (!ret)
2199 mmc->caps |= MMC_CAP_SDIO_IRQ;
2200
2201 omap_hsmmc_protect_card(host);
2202
2203 mmc_add_host(mmc);
2204
2205 if (mmc_pdata(host)->name != NULL) {
2206 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2207 if (ret < 0)
2208 goto err_slot_name;
2209 }
2210 if (host->get_cover_state) {
2211 ret = device_create_file(&mmc->class_dev,
2212 &dev_attr_cover_switch);
2213 if (ret < 0)
2214 goto err_slot_name;
2215 }
2216
2217 omap_hsmmc_debugfs(mmc);
2218 pm_runtime_mark_last_busy(host->dev);
2219 pm_runtime_put_autosuspend(host->dev);
2220
2221 return 0;
2222
2223 err_slot_name:
2224 mmc_remove_host(mmc);
2225 err_irq:
2226 device_init_wakeup(&pdev->dev, false);
2227 if (host->tx_chan)
2228 dma_release_channel(host->tx_chan);
2229 if (host->rx_chan)
2230 dma_release_channel(host->rx_chan);
2231 pm_runtime_put_sync(host->dev);
2232 pm_runtime_disable(host->dev);
2233 if (host->dbclk)
2234 clk_disable_unprepare(host->dbclk);
2235 err1:
2236 err_gpio:
2237 mmc_free_host(mmc);
2238 err:
2239 return ret;
2240 }
2241
2242 static int omap_hsmmc_remove(struct platform_device *pdev)
2243 {
2244 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2245
2246 pm_runtime_get_sync(host->dev);
2247 mmc_remove_host(host->mmc);
2248
2249 if (host->tx_chan)
2250 dma_release_channel(host->tx_chan);
2251 if (host->rx_chan)
2252 dma_release_channel(host->rx_chan);
2253
2254 pm_runtime_put_sync(host->dev);
2255 pm_runtime_disable(host->dev);
2256 device_init_wakeup(&pdev->dev, false);
2257 if (host->dbclk)
2258 clk_disable_unprepare(host->dbclk);
2259
2260 mmc_free_host(host->mmc);
2261
2262 return 0;
2263 }
2264
2265 #ifdef CONFIG_PM_SLEEP
2266 static int omap_hsmmc_suspend(struct device *dev)
2267 {
2268 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2269
2270 if (!host)
2271 return 0;
2272
2273 pm_runtime_get_sync(host->dev);
2274
2275 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2276 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2277 OMAP_HSMMC_WRITE(host->base, IE, 0);
2278 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2279 OMAP_HSMMC_WRITE(host->base, HCTL,
2280 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2281 }
2282
2283 if (host->dbclk)
2284 clk_disable_unprepare(host->dbclk);
2285
2286 pm_runtime_put_sync(host->dev);
2287 return 0;
2288 }
2289
2290 /* Routine to resume the MMC device */
2291 static int omap_hsmmc_resume(struct device *dev)
2292 {
2293 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2294
2295 if (!host)
2296 return 0;
2297
2298 pm_runtime_get_sync(host->dev);
2299
2300 if (host->dbclk)
2301 clk_prepare_enable(host->dbclk);
2302
2303 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2304 omap_hsmmc_conf_bus_power(host);
2305
2306 omap_hsmmc_protect_card(host);
2307 pm_runtime_mark_last_busy(host->dev);
2308 pm_runtime_put_autosuspend(host->dev);
2309 return 0;
2310 }
2311 #endif
2312
2313 static int omap_hsmmc_runtime_suspend(struct device *dev)
2314 {
2315 struct omap_hsmmc_host *host;
2316 unsigned long flags;
2317 int ret = 0;
2318
2319 host = platform_get_drvdata(to_platform_device(dev));
2320 omap_hsmmc_context_save(host);
2321 dev_dbg(dev, "disabled\n");
2322
2323 spin_lock_irqsave(&host->irq_lock, flags);
2324 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2325 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2326 /* disable sdio irq handling to prevent race */
2327 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2328 OMAP_HSMMC_WRITE(host->base, IE, 0);
2329
2330 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2331 /*
2332 * dat1 line low, pending sdio irq
2333 * race condition: possible irq handler running on
2334 * multi-core, abort
2335 */
2336 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2337 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2338 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2339 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2340 pm_runtime_mark_last_busy(dev);
2341 ret = -EBUSY;
2342 goto abort;
2343 }
2344
2345 pinctrl_pm_select_idle_state(dev);
2346 } else {
2347 pinctrl_pm_select_idle_state(dev);
2348 }
2349
2350 abort:
2351 spin_unlock_irqrestore(&host->irq_lock, flags);
2352 return ret;
2353 }
2354
2355 static int omap_hsmmc_runtime_resume(struct device *dev)
2356 {
2357 struct omap_hsmmc_host *host;
2358 unsigned long flags;
2359
2360 host = platform_get_drvdata(to_platform_device(dev));
2361 omap_hsmmc_context_restore(host);
2362 dev_dbg(dev, "enabled\n");
2363
2364 spin_lock_irqsave(&host->irq_lock, flags);
2365 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2366 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2367
2368 pinctrl_pm_select_default_state(host->dev);
2369
2370 /* irq lost, if pinmux incorrect */
2371 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2372 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2373 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2374 } else {
2375 pinctrl_pm_select_default_state(host->dev);
2376 }
2377 spin_unlock_irqrestore(&host->irq_lock, flags);
2378 return 0;
2379 }
2380
2381 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2382 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2383 .runtime_suspend = omap_hsmmc_runtime_suspend,
2384 .runtime_resume = omap_hsmmc_runtime_resume,
2385 };
2386
2387 static struct platform_driver omap_hsmmc_driver = {
2388 .probe = omap_hsmmc_probe,
2389 .remove = omap_hsmmc_remove,
2390 .driver = {
2391 .name = DRIVER_NAME,
2392 .pm = &omap_hsmmc_dev_pm_ops,
2393 .of_match_table = of_match_ptr(omap_mmc_of_match),
2394 },
2395 };
2396
2397 module_platform_driver(omap_hsmmc_driver);
2398 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2399 MODULE_LICENSE("GPL");
2400 MODULE_ALIAS("platform:" DRIVER_NAME);
2401 MODULE_AUTHOR("Texas Instruments Inc");