]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/host/omap_hsmmc.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / host / omap_hsmmc.c
1 /*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/core.h>
37 #include <linux/mmc/mmc.h>
38 #include <linux/mmc/slot-gpio.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/pinctrl/consumer.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/pm_wakeirq.h>
46 #include <linux/platform_data/hsmmc-omap.h>
47
48 /* OMAP HSMMC Host Controller Registers */
49 #define OMAP_HSMMC_SYSSTATUS 0x0014
50 #define OMAP_HSMMC_CON 0x002C
51 #define OMAP_HSMMC_SDMASA 0x0100
52 #define OMAP_HSMMC_BLK 0x0104
53 #define OMAP_HSMMC_ARG 0x0108
54 #define OMAP_HSMMC_CMD 0x010C
55 #define OMAP_HSMMC_RSP10 0x0110
56 #define OMAP_HSMMC_RSP32 0x0114
57 #define OMAP_HSMMC_RSP54 0x0118
58 #define OMAP_HSMMC_RSP76 0x011C
59 #define OMAP_HSMMC_DATA 0x0120
60 #define OMAP_HSMMC_PSTATE 0x0124
61 #define OMAP_HSMMC_HCTL 0x0128
62 #define OMAP_HSMMC_SYSCTL 0x012C
63 #define OMAP_HSMMC_STAT 0x0130
64 #define OMAP_HSMMC_IE 0x0134
65 #define OMAP_HSMMC_ISE 0x0138
66 #define OMAP_HSMMC_AC12 0x013C
67 #define OMAP_HSMMC_CAPA 0x0140
68
69 #define VS18 (1 << 26)
70 #define VS30 (1 << 25)
71 #define HSS (1 << 21)
72 #define SDVS18 (0x5 << 9)
73 #define SDVS30 (0x6 << 9)
74 #define SDVS33 (0x7 << 9)
75 #define SDVS_MASK 0x00000E00
76 #define SDVSCLR 0xFFFFF1FF
77 #define SDVSDET 0x00000400
78 #define AUTOIDLE 0x1
79 #define SDBP (1 << 8)
80 #define DTO 0xe
81 #define ICE 0x1
82 #define ICS 0x2
83 #define CEN (1 << 2)
84 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
85 #define CLKD_MASK 0x0000FFC0
86 #define CLKD_SHIFT 6
87 #define DTO_MASK 0x000F0000
88 #define DTO_SHIFT 16
89 #define INIT_STREAM (1 << 1)
90 #define ACEN_ACMD23 (2 << 2)
91 #define DP_SELECT (1 << 21)
92 #define DDIR (1 << 4)
93 #define DMAE 0x1
94 #define MSBS (1 << 5)
95 #define BCE (1 << 1)
96 #define FOUR_BIT (1 << 1)
97 #define HSPE (1 << 2)
98 #define IWE (1 << 24)
99 #define DDR (1 << 19)
100 #define CLKEXTFREE (1 << 16)
101 #define CTPL (1 << 11)
102 #define DW8 (1 << 5)
103 #define OD 0x1
104 #define STAT_CLEAR 0xFFFFFFFF
105 #define INIT_STREAM_CMD 0x00000000
106 #define DUAL_VOLT_OCR_BIT 7
107 #define SRC (1 << 25)
108 #define SRD (1 << 26)
109 #define SOFTRESET (1 << 1)
110
111 /* PSTATE */
112 #define DLEV_DAT(x) (1 << (20 + (x)))
113
114 /* Interrupt masks for IE and ISE register */
115 #define CC_EN (1 << 0)
116 #define TC_EN (1 << 1)
117 #define BWR_EN (1 << 4)
118 #define BRR_EN (1 << 5)
119 #define CIRQ_EN (1 << 8)
120 #define ERR_EN (1 << 15)
121 #define CTO_EN (1 << 16)
122 #define CCRC_EN (1 << 17)
123 #define CEB_EN (1 << 18)
124 #define CIE_EN (1 << 19)
125 #define DTO_EN (1 << 20)
126 #define DCRC_EN (1 << 21)
127 #define DEB_EN (1 << 22)
128 #define ACE_EN (1 << 24)
129 #define CERR_EN (1 << 28)
130 #define BADA_EN (1 << 29)
131
132 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
133 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
134 BRR_EN | BWR_EN | TC_EN | CC_EN)
135
136 #define CNI (1 << 7)
137 #define ACIE (1 << 4)
138 #define ACEB (1 << 3)
139 #define ACCE (1 << 2)
140 #define ACTO (1 << 1)
141 #define ACNE (1 << 0)
142
143 #define MMC_AUTOSUSPEND_DELAY 100
144 #define MMC_TIMEOUT_MS 20 /* 20 mSec */
145 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
146 #define OMAP_MMC_MIN_CLOCK 400000
147 #define OMAP_MMC_MAX_CLOCK 52000000
148 #define DRIVER_NAME "omap_hsmmc"
149
150 #define VDD_1V8 1800000 /* 180000 uV */
151 #define VDD_3V0 3000000 /* 300000 uV */
152 #define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
153
154 /*
155 * One controller can have multiple slots, like on some omap boards using
156 * omap.c controller driver. Luckily this is not currently done on any known
157 * omap_hsmmc.c device.
158 */
159 #define mmc_pdata(host) host->pdata
160
161 /*
162 * MMC Host controller read/write API's
163 */
164 #define OMAP_HSMMC_READ(base, reg) \
165 __raw_readl((base) + OMAP_HSMMC_##reg)
166
167 #define OMAP_HSMMC_WRITE(base, reg, val) \
168 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
169
170 struct omap_hsmmc_next {
171 unsigned int dma_len;
172 s32 cookie;
173 };
174
175 struct omap_hsmmc_host {
176 struct device *dev;
177 struct mmc_host *mmc;
178 struct mmc_request *mrq;
179 struct mmc_command *cmd;
180 struct mmc_data *data;
181 struct clk *fclk;
182 struct clk *dbclk;
183 struct regulator *pbias;
184 bool pbias_enabled;
185 void __iomem *base;
186 int vqmmc_enabled;
187 resource_size_t mapbase;
188 spinlock_t irq_lock; /* Prevent races with irq handler */
189 unsigned int dma_len;
190 unsigned int dma_sg_idx;
191 unsigned char bus_mode;
192 unsigned char power_mode;
193 int suspended;
194 u32 con;
195 u32 hctl;
196 u32 sysctl;
197 u32 capa;
198 int irq;
199 int wake_irq;
200 int use_dma, dma_ch;
201 struct dma_chan *tx_chan;
202 struct dma_chan *rx_chan;
203 int response_busy;
204 int context_loss;
205 int protect_card;
206 int reqs_blocked;
207 int req_in_progress;
208 unsigned long clk_rate;
209 unsigned int flags;
210 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
211 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
212 struct omap_hsmmc_next next_data;
213 struct omap_hsmmc_platform_data *pdata;
214
215 /* return MMC cover switch state, can be NULL if not supported.
216 *
217 * possible return values:
218 * 0 - closed
219 * 1 - open
220 */
221 int (*get_cover_state)(struct device *dev);
222
223 int (*card_detect)(struct device *dev);
224 };
225
226 struct omap_mmc_of_data {
227 u32 reg_offset;
228 u8 controller_flags;
229 };
230
231 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232
233 static int omap_hsmmc_card_detect(struct device *dev)
234 {
235 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236
237 return mmc_gpio_get_cd(host->mmc);
238 }
239
240 static int omap_hsmmc_get_cover_state(struct device *dev)
241 {
242 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
243
244 return mmc_gpio_get_cd(host->mmc);
245 }
246
247 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
248 {
249 int ret;
250 struct omap_hsmmc_host *host = mmc_priv(mmc);
251 struct mmc_ios *ios = &mmc->ios;
252
253 if (!IS_ERR(mmc->supply.vmmc)) {
254 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
255 if (ret)
256 return ret;
257 }
258
259 /* Enable interface voltage rail, if needed */
260 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
261 ret = regulator_enable(mmc->supply.vqmmc);
262 if (ret) {
263 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
264 goto err_vqmmc;
265 }
266 host->vqmmc_enabled = 1;
267 }
268
269 return 0;
270
271 err_vqmmc:
272 if (!IS_ERR(mmc->supply.vmmc))
273 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
274
275 return ret;
276 }
277
278 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
279 {
280 int ret;
281 int status;
282 struct omap_hsmmc_host *host = mmc_priv(mmc);
283
284 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
285 ret = regulator_disable(mmc->supply.vqmmc);
286 if (ret) {
287 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
288 return ret;
289 }
290 host->vqmmc_enabled = 0;
291 }
292
293 if (!IS_ERR(mmc->supply.vmmc)) {
294 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
295 if (ret)
296 goto err_set_ocr;
297 }
298
299 return 0;
300
301 err_set_ocr:
302 if (!IS_ERR(mmc->supply.vqmmc)) {
303 status = regulator_enable(mmc->supply.vqmmc);
304 if (status)
305 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
306 }
307
308 return ret;
309 }
310
311 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
312 int vdd)
313 {
314 int ret;
315
316 if (IS_ERR(host->pbias))
317 return 0;
318
319 if (power_on) {
320 if (vdd <= VDD_165_195)
321 ret = regulator_set_voltage(host->pbias, VDD_1V8,
322 VDD_1V8);
323 else
324 ret = regulator_set_voltage(host->pbias, VDD_3V0,
325 VDD_3V0);
326 if (ret < 0) {
327 dev_err(host->dev, "pbias set voltage fail\n");
328 return ret;
329 }
330
331 if (host->pbias_enabled == 0) {
332 ret = regulator_enable(host->pbias);
333 if (ret) {
334 dev_err(host->dev, "pbias reg enable fail\n");
335 return ret;
336 }
337 host->pbias_enabled = 1;
338 }
339 } else {
340 if (host->pbias_enabled == 1) {
341 ret = regulator_disable(host->pbias);
342 if (ret) {
343 dev_err(host->dev, "pbias reg disable fail\n");
344 return ret;
345 }
346 host->pbias_enabled = 0;
347 }
348 }
349
350 return 0;
351 }
352
353 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on,
354 int vdd)
355 {
356 struct mmc_host *mmc = host->mmc;
357 int ret = 0;
358
359 if (mmc_pdata(host)->set_power)
360 return mmc_pdata(host)->set_power(host->dev, power_on, vdd);
361
362 /*
363 * If we don't see a Vcc regulator, assume it's a fixed
364 * voltage always-on regulator.
365 */
366 if (IS_ERR(mmc->supply.vmmc))
367 return 0;
368
369 if (mmc_pdata(host)->before_set_reg)
370 mmc_pdata(host)->before_set_reg(host->dev, power_on, vdd);
371
372 ret = omap_hsmmc_set_pbias(host, false, 0);
373 if (ret)
374 return ret;
375
376 /*
377 * Assume Vcc regulator is used only to power the card ... OMAP
378 * VDDS is used to power the pins, optionally with a transceiver to
379 * support cards using voltages other than VDDS (1.8V nominal). When a
380 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
381 *
382 * In some cases this regulator won't support enable/disable;
383 * e.g. it's a fixed rail for a WLAN chip.
384 *
385 * In other cases vcc_aux switches interface power. Example, for
386 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
387 * chips/cards need an interface voltage rail too.
388 */
389 if (power_on) {
390 ret = omap_hsmmc_enable_supply(mmc);
391 if (ret)
392 return ret;
393
394 ret = omap_hsmmc_set_pbias(host, true, vdd);
395 if (ret)
396 goto err_set_voltage;
397 } else {
398 ret = omap_hsmmc_disable_supply(mmc);
399 if (ret)
400 return ret;
401 }
402
403 if (mmc_pdata(host)->after_set_reg)
404 mmc_pdata(host)->after_set_reg(host->dev, power_on, vdd);
405
406 return 0;
407
408 err_set_voltage:
409 omap_hsmmc_disable_supply(mmc);
410
411 return ret;
412 }
413
414 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
415 {
416 int ret;
417
418 if (IS_ERR(reg))
419 return 0;
420
421 if (regulator_is_enabled(reg)) {
422 ret = regulator_enable(reg);
423 if (ret)
424 return ret;
425
426 ret = regulator_disable(reg);
427 if (ret)
428 return ret;
429 }
430
431 return 0;
432 }
433
434 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
435 {
436 struct mmc_host *mmc = host->mmc;
437 int ret;
438
439 /*
440 * disable regulators enabled during boot and get the usecount
441 * right so that regulators can be enabled/disabled by checking
442 * the return value of regulator_is_enabled
443 */
444 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
445 if (ret) {
446 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
447 return ret;
448 }
449
450 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
451 if (ret) {
452 dev_err(host->dev,
453 "fail to disable boot enabled vmmc_aux reg\n");
454 return ret;
455 }
456
457 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
458 if (ret) {
459 dev_err(host->dev,
460 "failed to disable boot enabled pbias reg\n");
461 return ret;
462 }
463
464 return 0;
465 }
466
467 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
468 {
469 int ret;
470 struct mmc_host *mmc = host->mmc;
471
472 if (mmc_pdata(host)->set_power)
473 return 0;
474
475 ret = mmc_regulator_get_supply(mmc);
476 if (ret == -EPROBE_DEFER)
477 return ret;
478
479 /* Allow an aux regulator */
480 if (IS_ERR(mmc->supply.vqmmc)) {
481 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
482 "vmmc_aux");
483 if (IS_ERR(mmc->supply.vqmmc)) {
484 ret = PTR_ERR(mmc->supply.vqmmc);
485 if ((ret != -ENODEV) && host->dev->of_node)
486 return ret;
487 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
488 PTR_ERR(mmc->supply.vqmmc));
489 }
490 }
491
492 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
493 if (IS_ERR(host->pbias)) {
494 ret = PTR_ERR(host->pbias);
495 if ((ret != -ENODEV) && host->dev->of_node) {
496 dev_err(host->dev,
497 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
498 return ret;
499 }
500 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
501 PTR_ERR(host->pbias));
502 }
503
504 /* For eMMC do not power off when not in sleep state */
505 if (mmc_pdata(host)->no_regulator_off_init)
506 return 0;
507
508 ret = omap_hsmmc_disable_boot_regulators(host);
509 if (ret)
510 return ret;
511
512 return 0;
513 }
514
515 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
516
517 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
518 struct omap_hsmmc_host *host,
519 struct omap_hsmmc_platform_data *pdata)
520 {
521 int ret;
522
523 if (gpio_is_valid(pdata->gpio_cod)) {
524 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
525 if (ret)
526 return ret;
527
528 host->get_cover_state = omap_hsmmc_get_cover_state;
529 mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
530 } else if (gpio_is_valid(pdata->gpio_cd)) {
531 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
532 if (ret)
533 return ret;
534
535 host->card_detect = omap_hsmmc_card_detect;
536 }
537
538 if (gpio_is_valid(pdata->gpio_wp)) {
539 ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
540 if (ret)
541 return ret;
542 }
543
544 return 0;
545 }
546
547 /*
548 * Start clock to the card
549 */
550 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
551 {
552 OMAP_HSMMC_WRITE(host->base, SYSCTL,
553 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
554 }
555
556 /*
557 * Stop clock to the card
558 */
559 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
560 {
561 OMAP_HSMMC_WRITE(host->base, SYSCTL,
562 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
563 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
564 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
565 }
566
567 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
568 struct mmc_command *cmd)
569 {
570 u32 irq_mask = INT_EN_MASK;
571 unsigned long flags;
572
573 if (host->use_dma)
574 irq_mask &= ~(BRR_EN | BWR_EN);
575
576 /* Disable timeout for erases */
577 if (cmd->opcode == MMC_ERASE)
578 irq_mask &= ~DTO_EN;
579
580 spin_lock_irqsave(&host->irq_lock, flags);
581 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
582 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
583
584 /* latch pending CIRQ, but don't signal MMC core */
585 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
586 irq_mask |= CIRQ_EN;
587 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
588 spin_unlock_irqrestore(&host->irq_lock, flags);
589 }
590
591 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
592 {
593 u32 irq_mask = 0;
594 unsigned long flags;
595
596 spin_lock_irqsave(&host->irq_lock, flags);
597 /* no transfer running but need to keep cirq if enabled */
598 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
599 irq_mask |= CIRQ_EN;
600 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
601 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
602 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
603 spin_unlock_irqrestore(&host->irq_lock, flags);
604 }
605
606 /* Calculate divisor for the given clock frequency */
607 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
608 {
609 u16 dsor = 0;
610
611 if (ios->clock) {
612 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
613 if (dsor > CLKD_MAX)
614 dsor = CLKD_MAX;
615 }
616
617 return dsor;
618 }
619
620 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
621 {
622 struct mmc_ios *ios = &host->mmc->ios;
623 unsigned long regval;
624 unsigned long timeout;
625 unsigned long clkdiv;
626
627 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
628
629 omap_hsmmc_stop_clock(host);
630
631 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
632 regval = regval & ~(CLKD_MASK | DTO_MASK);
633 clkdiv = calc_divisor(host, ios);
634 regval = regval | (clkdiv << 6) | (DTO << 16);
635 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
636 OMAP_HSMMC_WRITE(host->base, SYSCTL,
637 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
638
639 /* Wait till the ICS bit is set */
640 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
641 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
642 && time_before(jiffies, timeout))
643 cpu_relax();
644
645 /*
646 * Enable High-Speed Support
647 * Pre-Requisites
648 * - Controller should support High-Speed-Enable Bit
649 * - Controller should not be using DDR Mode
650 * - Controller should advertise that it supports High Speed
651 * in capabilities register
652 * - MMC/SD clock coming out of controller > 25MHz
653 */
654 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
655 (ios->timing != MMC_TIMING_MMC_DDR52) &&
656 (ios->timing != MMC_TIMING_UHS_DDR50) &&
657 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
658 regval = OMAP_HSMMC_READ(host->base, HCTL);
659 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
660 regval |= HSPE;
661 else
662 regval &= ~HSPE;
663
664 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
665 }
666
667 omap_hsmmc_start_clock(host);
668 }
669
670 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
671 {
672 struct mmc_ios *ios = &host->mmc->ios;
673 u32 con;
674
675 con = OMAP_HSMMC_READ(host->base, CON);
676 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
677 ios->timing == MMC_TIMING_UHS_DDR50)
678 con |= DDR; /* configure in DDR mode */
679 else
680 con &= ~DDR;
681 switch (ios->bus_width) {
682 case MMC_BUS_WIDTH_8:
683 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
684 break;
685 case MMC_BUS_WIDTH_4:
686 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
687 OMAP_HSMMC_WRITE(host->base, HCTL,
688 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
689 break;
690 case MMC_BUS_WIDTH_1:
691 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
692 OMAP_HSMMC_WRITE(host->base, HCTL,
693 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
694 break;
695 }
696 }
697
698 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
699 {
700 struct mmc_ios *ios = &host->mmc->ios;
701 u32 con;
702
703 con = OMAP_HSMMC_READ(host->base, CON);
704 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
705 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
706 else
707 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
708 }
709
710 #ifdef CONFIG_PM
711
712 /*
713 * Restore the MMC host context, if it was lost as result of a
714 * power state change.
715 */
716 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
717 {
718 struct mmc_ios *ios = &host->mmc->ios;
719 u32 hctl, capa;
720 unsigned long timeout;
721
722 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
723 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
724 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
725 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
726 return 0;
727
728 host->context_loss++;
729
730 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
731 if (host->power_mode != MMC_POWER_OFF &&
732 (1 << ios->vdd) <= MMC_VDD_23_24)
733 hctl = SDVS18;
734 else
735 hctl = SDVS30;
736 capa = VS30 | VS18;
737 } else {
738 hctl = SDVS18;
739 capa = VS18;
740 }
741
742 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
743 hctl |= IWE;
744
745 OMAP_HSMMC_WRITE(host->base, HCTL,
746 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
747
748 OMAP_HSMMC_WRITE(host->base, CAPA,
749 OMAP_HSMMC_READ(host->base, CAPA) | capa);
750
751 OMAP_HSMMC_WRITE(host->base, HCTL,
752 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
753
754 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
755 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
756 && time_before(jiffies, timeout))
757 ;
758
759 OMAP_HSMMC_WRITE(host->base, ISE, 0);
760 OMAP_HSMMC_WRITE(host->base, IE, 0);
761 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
762
763 /* Do not initialize card-specific things if the power is off */
764 if (host->power_mode == MMC_POWER_OFF)
765 goto out;
766
767 omap_hsmmc_set_bus_width(host);
768
769 omap_hsmmc_set_clock(host);
770
771 omap_hsmmc_set_bus_mode(host);
772
773 out:
774 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
775 host->context_loss);
776 return 0;
777 }
778
779 /*
780 * Save the MMC host context (store the number of power state changes so far).
781 */
782 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
783 {
784 host->con = OMAP_HSMMC_READ(host->base, CON);
785 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
786 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
787 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
788 }
789
790 #else
791
792 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
793 {
794 return 0;
795 }
796
797 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
798 {
799 }
800
801 #endif
802
803 /*
804 * Send init stream sequence to card
805 * before sending IDLE command
806 */
807 static void send_init_stream(struct omap_hsmmc_host *host)
808 {
809 int reg = 0;
810 unsigned long timeout;
811
812 if (host->protect_card)
813 return;
814
815 disable_irq(host->irq);
816
817 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
818 OMAP_HSMMC_WRITE(host->base, CON,
819 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
820 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
821
822 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
823 while ((reg != CC_EN) && time_before(jiffies, timeout))
824 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
825
826 OMAP_HSMMC_WRITE(host->base, CON,
827 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
828
829 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
830 OMAP_HSMMC_READ(host->base, STAT);
831
832 enable_irq(host->irq);
833 }
834
835 static inline
836 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
837 {
838 int r = 1;
839
840 if (host->get_cover_state)
841 r = host->get_cover_state(host->dev);
842 return r;
843 }
844
845 static ssize_t
846 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
847 char *buf)
848 {
849 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
850 struct omap_hsmmc_host *host = mmc_priv(mmc);
851
852 return sprintf(buf, "%s\n",
853 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
854 }
855
856 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
857
858 static ssize_t
859 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
860 char *buf)
861 {
862 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
863 struct omap_hsmmc_host *host = mmc_priv(mmc);
864
865 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
866 }
867
868 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
869
870 /*
871 * Configure the response type and send the cmd.
872 */
873 static void
874 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
875 struct mmc_data *data)
876 {
877 int cmdreg = 0, resptype = 0, cmdtype = 0;
878
879 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
880 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
881 host->cmd = cmd;
882
883 omap_hsmmc_enable_irq(host, cmd);
884
885 host->response_busy = 0;
886 if (cmd->flags & MMC_RSP_PRESENT) {
887 if (cmd->flags & MMC_RSP_136)
888 resptype = 1;
889 else if (cmd->flags & MMC_RSP_BUSY) {
890 resptype = 3;
891 host->response_busy = 1;
892 } else
893 resptype = 2;
894 }
895
896 /*
897 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
898 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
899 * a val of 0x3, rest 0x0.
900 */
901 if (cmd == host->mrq->stop)
902 cmdtype = 0x3;
903
904 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
905
906 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
907 host->mrq->sbc) {
908 cmdreg |= ACEN_ACMD23;
909 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
910 }
911 if (data) {
912 cmdreg |= DP_SELECT | MSBS | BCE;
913 if (data->flags & MMC_DATA_READ)
914 cmdreg |= DDIR;
915 else
916 cmdreg &= ~(DDIR);
917 }
918
919 if (host->use_dma)
920 cmdreg |= DMAE;
921
922 host->req_in_progress = 1;
923
924 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
925 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
926 }
927
928 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
929 struct mmc_data *data)
930 {
931 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
932 }
933
934 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
935 {
936 int dma_ch;
937 unsigned long flags;
938
939 spin_lock_irqsave(&host->irq_lock, flags);
940 host->req_in_progress = 0;
941 dma_ch = host->dma_ch;
942 spin_unlock_irqrestore(&host->irq_lock, flags);
943
944 omap_hsmmc_disable_irq(host);
945 /* Do not complete the request if DMA is still in progress */
946 if (mrq->data && host->use_dma && dma_ch != -1)
947 return;
948 host->mrq = NULL;
949 mmc_request_done(host->mmc, mrq);
950 }
951
952 /*
953 * Notify the transfer complete to MMC core
954 */
955 static void
956 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
957 {
958 if (!data) {
959 struct mmc_request *mrq = host->mrq;
960
961 /* TC before CC from CMD6 - don't know why, but it happens */
962 if (host->cmd && host->cmd->opcode == 6 &&
963 host->response_busy) {
964 host->response_busy = 0;
965 return;
966 }
967
968 omap_hsmmc_request_done(host, mrq);
969 return;
970 }
971
972 host->data = NULL;
973
974 if (!data->error)
975 data->bytes_xfered += data->blocks * (data->blksz);
976 else
977 data->bytes_xfered = 0;
978
979 if (data->stop && (data->error || !host->mrq->sbc))
980 omap_hsmmc_start_command(host, data->stop, NULL);
981 else
982 omap_hsmmc_request_done(host, data->mrq);
983 }
984
985 /*
986 * Notify the core about command completion
987 */
988 static void
989 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
990 {
991 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
992 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
993 host->cmd = NULL;
994 omap_hsmmc_start_dma_transfer(host);
995 omap_hsmmc_start_command(host, host->mrq->cmd,
996 host->mrq->data);
997 return;
998 }
999
1000 host->cmd = NULL;
1001
1002 if (cmd->flags & MMC_RSP_PRESENT) {
1003 if (cmd->flags & MMC_RSP_136) {
1004 /* response type 2 */
1005 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1006 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1007 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1008 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1009 } else {
1010 /* response types 1, 1b, 3, 4, 5, 6 */
1011 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1012 }
1013 }
1014 if ((host->data == NULL && !host->response_busy) || cmd->error)
1015 omap_hsmmc_request_done(host, host->mrq);
1016 }
1017
1018 /*
1019 * DMA clean up for command errors
1020 */
1021 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1022 {
1023 int dma_ch;
1024 unsigned long flags;
1025
1026 host->data->error = errno;
1027
1028 spin_lock_irqsave(&host->irq_lock, flags);
1029 dma_ch = host->dma_ch;
1030 host->dma_ch = -1;
1031 spin_unlock_irqrestore(&host->irq_lock, flags);
1032
1033 if (host->use_dma && dma_ch != -1) {
1034 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1035
1036 dmaengine_terminate_all(chan);
1037 dma_unmap_sg(chan->device->dev,
1038 host->data->sg, host->data->sg_len,
1039 mmc_get_dma_dir(host->data));
1040
1041 host->data->host_cookie = 0;
1042 }
1043 host->data = NULL;
1044 }
1045
1046 /*
1047 * Readable error output
1048 */
1049 #ifdef CONFIG_MMC_DEBUG
1050 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1051 {
1052 /* --- means reserved bit without definition at documentation */
1053 static const char *omap_hsmmc_status_bits[] = {
1054 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1055 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1056 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1057 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1058 };
1059 char res[256];
1060 char *buf = res;
1061 int len, i;
1062
1063 len = sprintf(buf, "MMC IRQ 0x%x :", status);
1064 buf += len;
1065
1066 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1067 if (status & (1 << i)) {
1068 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1069 buf += len;
1070 }
1071
1072 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1073 }
1074 #else
1075 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1076 u32 status)
1077 {
1078 }
1079 #endif /* CONFIG_MMC_DEBUG */
1080
1081 /*
1082 * MMC controller internal state machines reset
1083 *
1084 * Used to reset command or data internal state machines, using respectively
1085 * SRC or SRD bit of SYSCTL register
1086 * Can be called from interrupt context
1087 */
1088 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1089 unsigned long bit)
1090 {
1091 unsigned long i = 0;
1092 unsigned long limit = MMC_TIMEOUT_US;
1093
1094 OMAP_HSMMC_WRITE(host->base, SYSCTL,
1095 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1096
1097 /*
1098 * OMAP4 ES2 and greater has an updated reset logic.
1099 * Monitor a 0->1 transition first
1100 */
1101 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1102 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1103 && (i++ < limit))
1104 udelay(1);
1105 }
1106 i = 0;
1107
1108 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1109 (i++ < limit))
1110 udelay(1);
1111
1112 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1113 dev_err(mmc_dev(host->mmc),
1114 "Timeout waiting on controller reset in %s\n",
1115 __func__);
1116 }
1117
1118 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1119 int err, int end_cmd)
1120 {
1121 if (end_cmd) {
1122 omap_hsmmc_reset_controller_fsm(host, SRC);
1123 if (host->cmd)
1124 host->cmd->error = err;
1125 }
1126
1127 if (host->data) {
1128 omap_hsmmc_reset_controller_fsm(host, SRD);
1129 omap_hsmmc_dma_cleanup(host, err);
1130 } else if (host->mrq && host->mrq->cmd)
1131 host->mrq->cmd->error = err;
1132 }
1133
1134 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1135 {
1136 struct mmc_data *data;
1137 int end_cmd = 0, end_trans = 0;
1138 int error = 0;
1139
1140 data = host->data;
1141 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1142
1143 if (status & ERR_EN) {
1144 omap_hsmmc_dbg_report_irq(host, status);
1145
1146 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1147 end_cmd = 1;
1148 if (host->data || host->response_busy) {
1149 end_trans = !end_cmd;
1150 host->response_busy = 0;
1151 }
1152 if (status & (CTO_EN | DTO_EN))
1153 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1154 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1155 BADA_EN))
1156 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1157
1158 if (status & ACE_EN) {
1159 u32 ac12;
1160 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1161 if (!(ac12 & ACNE) && host->mrq->sbc) {
1162 end_cmd = 1;
1163 if (ac12 & ACTO)
1164 error = -ETIMEDOUT;
1165 else if (ac12 & (ACCE | ACEB | ACIE))
1166 error = -EILSEQ;
1167 host->mrq->sbc->error = error;
1168 hsmmc_command_incomplete(host, error, end_cmd);
1169 }
1170 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1171 }
1172 }
1173
1174 OMAP_HSMMC_WRITE(host->base, STAT, status);
1175 if (end_cmd || ((status & CC_EN) && host->cmd))
1176 omap_hsmmc_cmd_done(host, host->cmd);
1177 if ((end_trans || (status & TC_EN)) && host->mrq)
1178 omap_hsmmc_xfer_done(host, data);
1179 }
1180
1181 /*
1182 * MMC controller IRQ handler
1183 */
1184 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1185 {
1186 struct omap_hsmmc_host *host = dev_id;
1187 int status;
1188
1189 status = OMAP_HSMMC_READ(host->base, STAT);
1190 while (status & (INT_EN_MASK | CIRQ_EN)) {
1191 if (host->req_in_progress)
1192 omap_hsmmc_do_irq(host, status);
1193
1194 if (status & CIRQ_EN)
1195 mmc_signal_sdio_irq(host->mmc);
1196
1197 /* Flush posted write */
1198 status = OMAP_HSMMC_READ(host->base, STAT);
1199 }
1200
1201 return IRQ_HANDLED;
1202 }
1203
1204 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1205 {
1206 unsigned long i;
1207
1208 OMAP_HSMMC_WRITE(host->base, HCTL,
1209 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1210 for (i = 0; i < loops_per_jiffy; i++) {
1211 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1212 break;
1213 cpu_relax();
1214 }
1215 }
1216
1217 /*
1218 * Switch MMC interface voltage ... only relevant for MMC1.
1219 *
1220 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1221 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1222 * Some chips, like eMMC ones, use internal transceivers.
1223 */
1224 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1225 {
1226 u32 reg_val = 0;
1227 int ret;
1228
1229 /* Disable the clocks */
1230 if (host->dbclk)
1231 clk_disable_unprepare(host->dbclk);
1232
1233 /* Turn the power off */
1234 ret = omap_hsmmc_set_power(host, 0, 0);
1235
1236 /* Turn the power ON with given VDD 1.8 or 3.0v */
1237 if (!ret)
1238 ret = omap_hsmmc_set_power(host, 1, vdd);
1239 if (host->dbclk)
1240 clk_prepare_enable(host->dbclk);
1241
1242 if (ret != 0)
1243 goto err;
1244
1245 OMAP_HSMMC_WRITE(host->base, HCTL,
1246 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1247 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1248
1249 /*
1250 * If a MMC dual voltage card is detected, the set_ios fn calls
1251 * this fn with VDD bit set for 1.8V. Upon card removal from the
1252 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1253 *
1254 * Cope with a bit of slop in the range ... per data sheets:
1255 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1256 * but recommended values are 1.71V to 1.89V
1257 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1258 * but recommended values are 2.7V to 3.3V
1259 *
1260 * Board setup code shouldn't permit anything very out-of-range.
1261 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1262 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1263 */
1264 if ((1 << vdd) <= MMC_VDD_23_24)
1265 reg_val |= SDVS18;
1266 else
1267 reg_val |= SDVS30;
1268
1269 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1270 set_sd_bus_power(host);
1271
1272 return 0;
1273 err:
1274 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1275 return ret;
1276 }
1277
1278 /* Protect the card while the cover is open */
1279 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1280 {
1281 if (!host->get_cover_state)
1282 return;
1283
1284 host->reqs_blocked = 0;
1285 if (host->get_cover_state(host->dev)) {
1286 if (host->protect_card) {
1287 dev_info(host->dev, "%s: cover is closed, "
1288 "card is now accessible\n",
1289 mmc_hostname(host->mmc));
1290 host->protect_card = 0;
1291 }
1292 } else {
1293 if (!host->protect_card) {
1294 dev_info(host->dev, "%s: cover is open, "
1295 "card is now inaccessible\n",
1296 mmc_hostname(host->mmc));
1297 host->protect_card = 1;
1298 }
1299 }
1300 }
1301
1302 /*
1303 * irq handler when (cell-phone) cover is mounted/removed
1304 */
1305 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1306 {
1307 struct omap_hsmmc_host *host = dev_id;
1308
1309 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1310
1311 omap_hsmmc_protect_card(host);
1312 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1313 return IRQ_HANDLED;
1314 }
1315
1316 static void omap_hsmmc_dma_callback(void *param)
1317 {
1318 struct omap_hsmmc_host *host = param;
1319 struct dma_chan *chan;
1320 struct mmc_data *data;
1321 int req_in_progress;
1322
1323 spin_lock_irq(&host->irq_lock);
1324 if (host->dma_ch < 0) {
1325 spin_unlock_irq(&host->irq_lock);
1326 return;
1327 }
1328
1329 data = host->mrq->data;
1330 chan = omap_hsmmc_get_dma_chan(host, data);
1331 if (!data->host_cookie)
1332 dma_unmap_sg(chan->device->dev,
1333 data->sg, data->sg_len,
1334 mmc_get_dma_dir(data));
1335
1336 req_in_progress = host->req_in_progress;
1337 host->dma_ch = -1;
1338 spin_unlock_irq(&host->irq_lock);
1339
1340 /* If DMA has finished after TC, complete the request */
1341 if (!req_in_progress) {
1342 struct mmc_request *mrq = host->mrq;
1343
1344 host->mrq = NULL;
1345 mmc_request_done(host->mmc, mrq);
1346 }
1347 }
1348
1349 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1350 struct mmc_data *data,
1351 struct omap_hsmmc_next *next,
1352 struct dma_chan *chan)
1353 {
1354 int dma_len;
1355
1356 if (!next && data->host_cookie &&
1357 data->host_cookie != host->next_data.cookie) {
1358 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1359 " host->next_data.cookie %d\n",
1360 __func__, data->host_cookie, host->next_data.cookie);
1361 data->host_cookie = 0;
1362 }
1363
1364 /* Check if next job is already prepared */
1365 if (next || data->host_cookie != host->next_data.cookie) {
1366 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1367 mmc_get_dma_dir(data));
1368
1369 } else {
1370 dma_len = host->next_data.dma_len;
1371 host->next_data.dma_len = 0;
1372 }
1373
1374
1375 if (dma_len == 0)
1376 return -EINVAL;
1377
1378 if (next) {
1379 next->dma_len = dma_len;
1380 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1381 } else
1382 host->dma_len = dma_len;
1383
1384 return 0;
1385 }
1386
1387 /*
1388 * Routine to configure and start DMA for the MMC card
1389 */
1390 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1391 struct mmc_request *req)
1392 {
1393 struct dma_async_tx_descriptor *tx;
1394 int ret = 0, i;
1395 struct mmc_data *data = req->data;
1396 struct dma_chan *chan;
1397 struct dma_slave_config cfg = {
1398 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1399 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1400 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1401 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1402 .src_maxburst = data->blksz / 4,
1403 .dst_maxburst = data->blksz / 4,
1404 };
1405
1406 /* Sanity check: all the SG entries must be aligned by block size. */
1407 for (i = 0; i < data->sg_len; i++) {
1408 struct scatterlist *sgl;
1409
1410 sgl = data->sg + i;
1411 if (sgl->length % data->blksz)
1412 return -EINVAL;
1413 }
1414 if ((data->blksz % 4) != 0)
1415 /* REVISIT: The MMC buffer increments only when MSB is written.
1416 * Return error for blksz which is non multiple of four.
1417 */
1418 return -EINVAL;
1419
1420 BUG_ON(host->dma_ch != -1);
1421
1422 chan = omap_hsmmc_get_dma_chan(host, data);
1423
1424 ret = dmaengine_slave_config(chan, &cfg);
1425 if (ret)
1426 return ret;
1427
1428 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1429 if (ret)
1430 return ret;
1431
1432 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1433 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1434 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1435 if (!tx) {
1436 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1437 /* FIXME: cleanup */
1438 return -1;
1439 }
1440
1441 tx->callback = omap_hsmmc_dma_callback;
1442 tx->callback_param = host;
1443
1444 /* Does not fail */
1445 dmaengine_submit(tx);
1446
1447 host->dma_ch = 1;
1448
1449 return 0;
1450 }
1451
1452 static void set_data_timeout(struct omap_hsmmc_host *host,
1453 unsigned long long timeout_ns,
1454 unsigned int timeout_clks)
1455 {
1456 unsigned long long timeout = timeout_ns;
1457 unsigned int cycle_ns;
1458 uint32_t reg, clkd, dto = 0;
1459
1460 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1461 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1462 if (clkd == 0)
1463 clkd = 1;
1464
1465 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1466 do_div(timeout, cycle_ns);
1467 timeout += timeout_clks;
1468 if (timeout) {
1469 while ((timeout & 0x80000000) == 0) {
1470 dto += 1;
1471 timeout <<= 1;
1472 }
1473 dto = 31 - dto;
1474 timeout <<= 1;
1475 if (timeout && dto)
1476 dto += 1;
1477 if (dto >= 13)
1478 dto -= 13;
1479 else
1480 dto = 0;
1481 if (dto > 14)
1482 dto = 14;
1483 }
1484
1485 reg &= ~DTO_MASK;
1486 reg |= dto << DTO_SHIFT;
1487 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1488 }
1489
1490 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1491 {
1492 struct mmc_request *req = host->mrq;
1493 struct dma_chan *chan;
1494
1495 if (!req->data)
1496 return;
1497 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1498 | (req->data->blocks << 16));
1499 set_data_timeout(host, req->data->timeout_ns,
1500 req->data->timeout_clks);
1501 chan = omap_hsmmc_get_dma_chan(host, req->data);
1502 dma_async_issue_pending(chan);
1503 }
1504
1505 /*
1506 * Configure block length for MMC/SD cards and initiate the transfer.
1507 */
1508 static int
1509 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1510 {
1511 int ret;
1512 unsigned long long timeout;
1513
1514 host->data = req->data;
1515
1516 if (req->data == NULL) {
1517 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1518 if (req->cmd->flags & MMC_RSP_BUSY) {
1519 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1520
1521 /*
1522 * Set an arbitrary 100ms data timeout for commands with
1523 * busy signal and no indication of busy_timeout.
1524 */
1525 if (!timeout)
1526 timeout = 100000000U;
1527
1528 set_data_timeout(host, timeout, 0);
1529 }
1530 return 0;
1531 }
1532
1533 if (host->use_dma) {
1534 ret = omap_hsmmc_setup_dma_transfer(host, req);
1535 if (ret != 0) {
1536 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1537 return ret;
1538 }
1539 }
1540 return 0;
1541 }
1542
1543 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1544 int err)
1545 {
1546 struct omap_hsmmc_host *host = mmc_priv(mmc);
1547 struct mmc_data *data = mrq->data;
1548
1549 if (host->use_dma && data->host_cookie) {
1550 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1551
1552 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1553 mmc_get_dma_dir(data));
1554 data->host_cookie = 0;
1555 }
1556 }
1557
1558 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1559 {
1560 struct omap_hsmmc_host *host = mmc_priv(mmc);
1561
1562 if (mrq->data->host_cookie) {
1563 mrq->data->host_cookie = 0;
1564 return ;
1565 }
1566
1567 if (host->use_dma) {
1568 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1569
1570 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1571 &host->next_data, c))
1572 mrq->data->host_cookie = 0;
1573 }
1574 }
1575
1576 /*
1577 * Request function. for read/write operation
1578 */
1579 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1580 {
1581 struct omap_hsmmc_host *host = mmc_priv(mmc);
1582 int err;
1583
1584 BUG_ON(host->req_in_progress);
1585 BUG_ON(host->dma_ch != -1);
1586 if (host->protect_card) {
1587 if (host->reqs_blocked < 3) {
1588 /*
1589 * Ensure the controller is left in a consistent
1590 * state by resetting the command and data state
1591 * machines.
1592 */
1593 omap_hsmmc_reset_controller_fsm(host, SRD);
1594 omap_hsmmc_reset_controller_fsm(host, SRC);
1595 host->reqs_blocked += 1;
1596 }
1597 req->cmd->error = -EBADF;
1598 if (req->data)
1599 req->data->error = -EBADF;
1600 req->cmd->retries = 0;
1601 mmc_request_done(mmc, req);
1602 return;
1603 } else if (host->reqs_blocked)
1604 host->reqs_blocked = 0;
1605 WARN_ON(host->mrq != NULL);
1606 host->mrq = req;
1607 host->clk_rate = clk_get_rate(host->fclk);
1608 err = omap_hsmmc_prepare_data(host, req);
1609 if (err) {
1610 req->cmd->error = err;
1611 if (req->data)
1612 req->data->error = err;
1613 host->mrq = NULL;
1614 mmc_request_done(mmc, req);
1615 return;
1616 }
1617 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1618 omap_hsmmc_start_command(host, req->sbc, NULL);
1619 return;
1620 }
1621
1622 omap_hsmmc_start_dma_transfer(host);
1623 omap_hsmmc_start_command(host, req->cmd, req->data);
1624 }
1625
1626 /* Routine to configure clock values. Exposed API to core */
1627 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1628 {
1629 struct omap_hsmmc_host *host = mmc_priv(mmc);
1630 int do_send_init_stream = 0;
1631
1632 if (ios->power_mode != host->power_mode) {
1633 switch (ios->power_mode) {
1634 case MMC_POWER_OFF:
1635 omap_hsmmc_set_power(host, 0, 0);
1636 break;
1637 case MMC_POWER_UP:
1638 omap_hsmmc_set_power(host, 1, ios->vdd);
1639 break;
1640 case MMC_POWER_ON:
1641 do_send_init_stream = 1;
1642 break;
1643 }
1644 host->power_mode = ios->power_mode;
1645 }
1646
1647 /* FIXME: set registers based only on changes to ios */
1648
1649 omap_hsmmc_set_bus_width(host);
1650
1651 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1652 /* Only MMC1 can interface at 3V without some flavor
1653 * of external transceiver; but they all handle 1.8V.
1654 */
1655 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1656 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1657 /*
1658 * The mmc_select_voltage fn of the core does
1659 * not seem to set the power_mode to
1660 * MMC_POWER_UP upon recalculating the voltage.
1661 * vdd 1.8v.
1662 */
1663 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1664 dev_dbg(mmc_dev(host->mmc),
1665 "Switch operation failed\n");
1666 }
1667 }
1668
1669 omap_hsmmc_set_clock(host);
1670
1671 if (do_send_init_stream)
1672 send_init_stream(host);
1673
1674 omap_hsmmc_set_bus_mode(host);
1675 }
1676
1677 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1678 {
1679 struct omap_hsmmc_host *host = mmc_priv(mmc);
1680
1681 if (!host->card_detect)
1682 return -ENOSYS;
1683 return host->card_detect(host->dev);
1684 }
1685
1686 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1687 {
1688 struct omap_hsmmc_host *host = mmc_priv(mmc);
1689
1690 if (mmc_pdata(host)->init_card)
1691 mmc_pdata(host)->init_card(card);
1692 }
1693
1694 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1695 {
1696 struct omap_hsmmc_host *host = mmc_priv(mmc);
1697 u32 irq_mask, con;
1698 unsigned long flags;
1699
1700 spin_lock_irqsave(&host->irq_lock, flags);
1701
1702 con = OMAP_HSMMC_READ(host->base, CON);
1703 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1704 if (enable) {
1705 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1706 irq_mask |= CIRQ_EN;
1707 con |= CTPL | CLKEXTFREE;
1708 } else {
1709 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1710 irq_mask &= ~CIRQ_EN;
1711 con &= ~(CTPL | CLKEXTFREE);
1712 }
1713 OMAP_HSMMC_WRITE(host->base, CON, con);
1714 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1715
1716 /*
1717 * if enable, piggy back detection on current request
1718 * but always disable immediately
1719 */
1720 if (!host->req_in_progress || !enable)
1721 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1722
1723 /* flush posted write */
1724 OMAP_HSMMC_READ(host->base, IE);
1725
1726 spin_unlock_irqrestore(&host->irq_lock, flags);
1727 }
1728
1729 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1730 {
1731 int ret;
1732
1733 /*
1734 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1735 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1736 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1737 * with functional clock disabled.
1738 */
1739 if (!host->dev->of_node || !host->wake_irq)
1740 return -ENODEV;
1741
1742 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1743 if (ret) {
1744 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1745 goto err;
1746 }
1747
1748 /*
1749 * Some omaps don't have wake-up path from deeper idle states
1750 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1751 */
1752 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1753 struct pinctrl *p = devm_pinctrl_get(host->dev);
1754 if (IS_ERR(p)) {
1755 ret = PTR_ERR(p);
1756 goto err_free_irq;
1757 }
1758 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1759 dev_info(host->dev, "missing default pinctrl state\n");
1760 devm_pinctrl_put(p);
1761 ret = -EINVAL;
1762 goto err_free_irq;
1763 }
1764
1765 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1766 dev_info(host->dev, "missing idle pinctrl state\n");
1767 devm_pinctrl_put(p);
1768 ret = -EINVAL;
1769 goto err_free_irq;
1770 }
1771 devm_pinctrl_put(p);
1772 }
1773
1774 OMAP_HSMMC_WRITE(host->base, HCTL,
1775 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1776 return 0;
1777
1778 err_free_irq:
1779 dev_pm_clear_wake_irq(host->dev);
1780 err:
1781 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1782 host->wake_irq = 0;
1783 return ret;
1784 }
1785
1786 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1787 {
1788 u32 hctl, capa, value;
1789
1790 /* Only MMC1 supports 3.0V */
1791 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1792 hctl = SDVS30;
1793 capa = VS30 | VS18;
1794 } else {
1795 hctl = SDVS18;
1796 capa = VS18;
1797 }
1798
1799 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1800 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1801
1802 value = OMAP_HSMMC_READ(host->base, CAPA);
1803 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1804
1805 /* Set SD bus power bit */
1806 set_sd_bus_power(host);
1807 }
1808
1809 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1810 unsigned int direction, int blk_size)
1811 {
1812 /* This controller can't do multiblock reads due to hw bugs */
1813 if (direction == MMC_DATA_READ)
1814 return 1;
1815
1816 return blk_size;
1817 }
1818
1819 static struct mmc_host_ops omap_hsmmc_ops = {
1820 .post_req = omap_hsmmc_post_req,
1821 .pre_req = omap_hsmmc_pre_req,
1822 .request = omap_hsmmc_request,
1823 .set_ios = omap_hsmmc_set_ios,
1824 .get_cd = omap_hsmmc_get_cd,
1825 .get_ro = mmc_gpio_get_ro,
1826 .init_card = omap_hsmmc_init_card,
1827 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1828 };
1829
1830 #ifdef CONFIG_DEBUG_FS
1831
1832 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1833 {
1834 struct mmc_host *mmc = s->private;
1835 struct omap_hsmmc_host *host = mmc_priv(mmc);
1836
1837 seq_printf(s, "mmc%d:\n", mmc->index);
1838 seq_printf(s, "sdio irq mode\t%s\n",
1839 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1840
1841 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1842 seq_printf(s, "sdio irq \t%s\n",
1843 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1844 : "disabled");
1845 }
1846 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1847
1848 pm_runtime_get_sync(host->dev);
1849 seq_puts(s, "\nregs:\n");
1850 seq_printf(s, "CON:\t\t0x%08x\n",
1851 OMAP_HSMMC_READ(host->base, CON));
1852 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1853 OMAP_HSMMC_READ(host->base, PSTATE));
1854 seq_printf(s, "HCTL:\t\t0x%08x\n",
1855 OMAP_HSMMC_READ(host->base, HCTL));
1856 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1857 OMAP_HSMMC_READ(host->base, SYSCTL));
1858 seq_printf(s, "IE:\t\t0x%08x\n",
1859 OMAP_HSMMC_READ(host->base, IE));
1860 seq_printf(s, "ISE:\t\t0x%08x\n",
1861 OMAP_HSMMC_READ(host->base, ISE));
1862 seq_printf(s, "CAPA:\t\t0x%08x\n",
1863 OMAP_HSMMC_READ(host->base, CAPA));
1864
1865 pm_runtime_mark_last_busy(host->dev);
1866 pm_runtime_put_autosuspend(host->dev);
1867
1868 return 0;
1869 }
1870
1871 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1872 {
1873 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1874 }
1875
1876 static const struct file_operations mmc_regs_fops = {
1877 .open = omap_hsmmc_regs_open,
1878 .read = seq_read,
1879 .llseek = seq_lseek,
1880 .release = single_release,
1881 };
1882
1883 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1884 {
1885 if (mmc->debugfs_root)
1886 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1887 mmc, &mmc_regs_fops);
1888 }
1889
1890 #else
1891
1892 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1893 {
1894 }
1895
1896 #endif
1897
1898 #ifdef CONFIG_OF
1899 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1900 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1901 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1902 };
1903
1904 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1905 .reg_offset = 0x100,
1906 };
1907 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1908 .reg_offset = 0x100,
1909 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1910 };
1911
1912 static const struct of_device_id omap_mmc_of_match[] = {
1913 {
1914 .compatible = "ti,omap2-hsmmc",
1915 },
1916 {
1917 .compatible = "ti,omap3-pre-es3-hsmmc",
1918 .data = &omap3_pre_es3_mmc_of_data,
1919 },
1920 {
1921 .compatible = "ti,omap3-hsmmc",
1922 },
1923 {
1924 .compatible = "ti,omap4-hsmmc",
1925 .data = &omap4_mmc_of_data,
1926 },
1927 {
1928 .compatible = "ti,am33xx-hsmmc",
1929 .data = &am33xx_mmc_of_data,
1930 },
1931 {},
1932 };
1933 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1934
1935 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1936 {
1937 struct omap_hsmmc_platform_data *pdata, *legacy;
1938 struct device_node *np = dev->of_node;
1939
1940 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1941 if (!pdata)
1942 return ERR_PTR(-ENOMEM); /* out of memory */
1943
1944 legacy = dev_get_platdata(dev);
1945 if (legacy && legacy->name)
1946 pdata->name = legacy->name;
1947
1948 if (of_find_property(np, "ti,dual-volt", NULL))
1949 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1950
1951 pdata->gpio_cd = -EINVAL;
1952 pdata->gpio_cod = -EINVAL;
1953 pdata->gpio_wp = -EINVAL;
1954
1955 if (of_find_property(np, "ti,non-removable", NULL)) {
1956 pdata->nonremovable = true;
1957 pdata->no_regulator_off_init = true;
1958 }
1959
1960 if (of_find_property(np, "ti,needs-special-reset", NULL))
1961 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1962
1963 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1964 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1965
1966 return pdata;
1967 }
1968 #else
1969 static inline struct omap_hsmmc_platform_data
1970 *of_get_hsmmc_pdata(struct device *dev)
1971 {
1972 return ERR_PTR(-EINVAL);
1973 }
1974 #endif
1975
1976 static int omap_hsmmc_probe(struct platform_device *pdev)
1977 {
1978 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1979 struct mmc_host *mmc;
1980 struct omap_hsmmc_host *host = NULL;
1981 struct resource *res;
1982 int ret, irq;
1983 const struct of_device_id *match;
1984 const struct omap_mmc_of_data *data;
1985 void __iomem *base;
1986
1987 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1988 if (match) {
1989 pdata = of_get_hsmmc_pdata(&pdev->dev);
1990
1991 if (IS_ERR(pdata))
1992 return PTR_ERR(pdata);
1993
1994 if (match->data) {
1995 data = match->data;
1996 pdata->reg_offset = data->reg_offset;
1997 pdata->controller_flags |= data->controller_flags;
1998 }
1999 }
2000
2001 if (pdata == NULL) {
2002 dev_err(&pdev->dev, "Platform Data is missing\n");
2003 return -ENXIO;
2004 }
2005
2006 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2007 irq = platform_get_irq(pdev, 0);
2008 if (res == NULL || irq < 0)
2009 return -ENXIO;
2010
2011 base = devm_ioremap_resource(&pdev->dev, res);
2012 if (IS_ERR(base))
2013 return PTR_ERR(base);
2014
2015 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2016 if (!mmc) {
2017 ret = -ENOMEM;
2018 goto err;
2019 }
2020
2021 ret = mmc_of_parse(mmc);
2022 if (ret)
2023 goto err1;
2024
2025 host = mmc_priv(mmc);
2026 host->mmc = mmc;
2027 host->pdata = pdata;
2028 host->dev = &pdev->dev;
2029 host->use_dma = 1;
2030 host->dma_ch = -1;
2031 host->irq = irq;
2032 host->mapbase = res->start + pdata->reg_offset;
2033 host->base = base + pdata->reg_offset;
2034 host->power_mode = MMC_POWER_OFF;
2035 host->next_data.cookie = 1;
2036 host->pbias_enabled = 0;
2037 host->vqmmc_enabled = 0;
2038
2039 ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2040 if (ret)
2041 goto err_gpio;
2042
2043 platform_set_drvdata(pdev, host);
2044
2045 if (pdev->dev.of_node)
2046 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2047
2048 mmc->ops = &omap_hsmmc_ops;
2049
2050 mmc->f_min = OMAP_MMC_MIN_CLOCK;
2051
2052 if (pdata->max_freq > 0)
2053 mmc->f_max = pdata->max_freq;
2054 else if (mmc->f_max == 0)
2055 mmc->f_max = OMAP_MMC_MAX_CLOCK;
2056
2057 spin_lock_init(&host->irq_lock);
2058
2059 host->fclk = devm_clk_get(&pdev->dev, "fck");
2060 if (IS_ERR(host->fclk)) {
2061 ret = PTR_ERR(host->fclk);
2062 host->fclk = NULL;
2063 goto err1;
2064 }
2065
2066 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2067 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2068 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2069 }
2070
2071 device_init_wakeup(&pdev->dev, true);
2072 pm_runtime_enable(host->dev);
2073 pm_runtime_get_sync(host->dev);
2074 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2075 pm_runtime_use_autosuspend(host->dev);
2076
2077 omap_hsmmc_context_save(host);
2078
2079 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2080 /*
2081 * MMC can still work without debounce clock.
2082 */
2083 if (IS_ERR(host->dbclk)) {
2084 host->dbclk = NULL;
2085 } else if (clk_prepare_enable(host->dbclk) != 0) {
2086 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2087 host->dbclk = NULL;
2088 }
2089
2090 /* Since we do only SG emulation, we can have as many segs
2091 * as we want. */
2092 mmc->max_segs = 1024;
2093
2094 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
2095 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
2096 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2097 mmc->max_seg_size = mmc->max_req_size;
2098
2099 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2100 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2101
2102 mmc->caps |= mmc_pdata(host)->caps;
2103 if (mmc->caps & MMC_CAP_8_BIT_DATA)
2104 mmc->caps |= MMC_CAP_4_BIT_DATA;
2105
2106 if (mmc_pdata(host)->nonremovable)
2107 mmc->caps |= MMC_CAP_NONREMOVABLE;
2108
2109 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2110
2111 omap_hsmmc_conf_bus_power(host);
2112
2113 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
2114 if (IS_ERR(host->rx_chan)) {
2115 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
2116 ret = PTR_ERR(host->rx_chan);
2117 goto err_irq;
2118 }
2119
2120 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
2121 if (IS_ERR(host->tx_chan)) {
2122 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
2123 ret = PTR_ERR(host->tx_chan);
2124 goto err_irq;
2125 }
2126
2127 /* Request IRQ for MMC operations */
2128 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2129 mmc_hostname(mmc), host);
2130 if (ret) {
2131 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2132 goto err_irq;
2133 }
2134
2135 ret = omap_hsmmc_reg_get(host);
2136 if (ret)
2137 goto err_irq;
2138
2139 if (!mmc->ocr_avail)
2140 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2141
2142 omap_hsmmc_disable_irq(host);
2143
2144 /*
2145 * For now, only support SDIO interrupt if we have a separate
2146 * wake-up interrupt configured from device tree. This is because
2147 * the wake-up interrupt is needed for idle state and some
2148 * platforms need special quirks. And we don't want to add new
2149 * legacy mux platform init code callbacks any longer as we
2150 * are moving to DT based booting anyways.
2151 */
2152 ret = omap_hsmmc_configure_wake_irq(host);
2153 if (!ret)
2154 mmc->caps |= MMC_CAP_SDIO_IRQ;
2155
2156 omap_hsmmc_protect_card(host);
2157
2158 mmc_add_host(mmc);
2159
2160 if (mmc_pdata(host)->name != NULL) {
2161 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2162 if (ret < 0)
2163 goto err_slot_name;
2164 }
2165 if (host->get_cover_state) {
2166 ret = device_create_file(&mmc->class_dev,
2167 &dev_attr_cover_switch);
2168 if (ret < 0)
2169 goto err_slot_name;
2170 }
2171
2172 omap_hsmmc_debugfs(mmc);
2173 pm_runtime_mark_last_busy(host->dev);
2174 pm_runtime_put_autosuspend(host->dev);
2175
2176 return 0;
2177
2178 err_slot_name:
2179 mmc_remove_host(mmc);
2180 err_irq:
2181 device_init_wakeup(&pdev->dev, false);
2182 if (!IS_ERR_OR_NULL(host->tx_chan))
2183 dma_release_channel(host->tx_chan);
2184 if (!IS_ERR_OR_NULL(host->rx_chan))
2185 dma_release_channel(host->rx_chan);
2186 pm_runtime_dont_use_autosuspend(host->dev);
2187 pm_runtime_put_sync(host->dev);
2188 pm_runtime_disable(host->dev);
2189 if (host->dbclk)
2190 clk_disable_unprepare(host->dbclk);
2191 err1:
2192 err_gpio:
2193 mmc_free_host(mmc);
2194 err:
2195 return ret;
2196 }
2197
2198 static int omap_hsmmc_remove(struct platform_device *pdev)
2199 {
2200 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2201
2202 pm_runtime_get_sync(host->dev);
2203 mmc_remove_host(host->mmc);
2204
2205 dma_release_channel(host->tx_chan);
2206 dma_release_channel(host->rx_chan);
2207
2208 pm_runtime_dont_use_autosuspend(host->dev);
2209 pm_runtime_put_sync(host->dev);
2210 pm_runtime_disable(host->dev);
2211 device_init_wakeup(&pdev->dev, false);
2212 if (host->dbclk)
2213 clk_disable_unprepare(host->dbclk);
2214
2215 mmc_free_host(host->mmc);
2216
2217 return 0;
2218 }
2219
2220 #ifdef CONFIG_PM_SLEEP
2221 static int omap_hsmmc_suspend(struct device *dev)
2222 {
2223 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2224
2225 if (!host)
2226 return 0;
2227
2228 pm_runtime_get_sync(host->dev);
2229
2230 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2231 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2232 OMAP_HSMMC_WRITE(host->base, IE, 0);
2233 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2234 OMAP_HSMMC_WRITE(host->base, HCTL,
2235 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2236 }
2237
2238 if (host->dbclk)
2239 clk_disable_unprepare(host->dbclk);
2240
2241 pm_runtime_put_sync(host->dev);
2242 return 0;
2243 }
2244
2245 /* Routine to resume the MMC device */
2246 static int omap_hsmmc_resume(struct device *dev)
2247 {
2248 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2249
2250 if (!host)
2251 return 0;
2252
2253 pm_runtime_get_sync(host->dev);
2254
2255 if (host->dbclk)
2256 clk_prepare_enable(host->dbclk);
2257
2258 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2259 omap_hsmmc_conf_bus_power(host);
2260
2261 omap_hsmmc_protect_card(host);
2262 pm_runtime_mark_last_busy(host->dev);
2263 pm_runtime_put_autosuspend(host->dev);
2264 return 0;
2265 }
2266 #endif
2267
2268 static int omap_hsmmc_runtime_suspend(struct device *dev)
2269 {
2270 struct omap_hsmmc_host *host;
2271 unsigned long flags;
2272 int ret = 0;
2273
2274 host = platform_get_drvdata(to_platform_device(dev));
2275 omap_hsmmc_context_save(host);
2276 dev_dbg(dev, "disabled\n");
2277
2278 spin_lock_irqsave(&host->irq_lock, flags);
2279 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2280 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2281 /* disable sdio irq handling to prevent race */
2282 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2283 OMAP_HSMMC_WRITE(host->base, IE, 0);
2284
2285 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2286 /*
2287 * dat1 line low, pending sdio irq
2288 * race condition: possible irq handler running on
2289 * multi-core, abort
2290 */
2291 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2292 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2293 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2294 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2295 pm_runtime_mark_last_busy(dev);
2296 ret = -EBUSY;
2297 goto abort;
2298 }
2299
2300 pinctrl_pm_select_idle_state(dev);
2301 } else {
2302 pinctrl_pm_select_idle_state(dev);
2303 }
2304
2305 abort:
2306 spin_unlock_irqrestore(&host->irq_lock, flags);
2307 return ret;
2308 }
2309
2310 static int omap_hsmmc_runtime_resume(struct device *dev)
2311 {
2312 struct omap_hsmmc_host *host;
2313 unsigned long flags;
2314
2315 host = platform_get_drvdata(to_platform_device(dev));
2316 omap_hsmmc_context_restore(host);
2317 dev_dbg(dev, "enabled\n");
2318
2319 spin_lock_irqsave(&host->irq_lock, flags);
2320 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2321 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2322
2323 pinctrl_pm_select_default_state(host->dev);
2324
2325 /* irq lost, if pinmux incorrect */
2326 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2327 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2328 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2329 } else {
2330 pinctrl_pm_select_default_state(host->dev);
2331 }
2332 spin_unlock_irqrestore(&host->irq_lock, flags);
2333 return 0;
2334 }
2335
2336 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2337 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2338 .runtime_suspend = omap_hsmmc_runtime_suspend,
2339 .runtime_resume = omap_hsmmc_runtime_resume,
2340 };
2341
2342 static struct platform_driver omap_hsmmc_driver = {
2343 .probe = omap_hsmmc_probe,
2344 .remove = omap_hsmmc_remove,
2345 .driver = {
2346 .name = DRIVER_NAME,
2347 .pm = &omap_hsmmc_dev_pm_ops,
2348 .of_match_table = of_match_ptr(omap_mmc_of_match),
2349 },
2350 };
2351
2352 module_platform_driver(omap_hsmmc_driver);
2353 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2354 MODULE_LICENSE("GPL");
2355 MODULE_ALIAS("platform:" DRIVER_NAME);
2356 MODULE_AUTHOR("Texas Instruments Inc");