]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/host/sdhci-msm.c
Merge tag 'drm-fixes-for-v4.15-rc2' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / host / sdhci-msm.c
1 /*
2 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3 *
4 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24
25 #include "sdhci-pltfm.h"
26
27 #define CORE_MCI_VERSION 0x50
28 #define CORE_VERSION_MAJOR_SHIFT 28
29 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK 0xff
31
32 #define CORE_HC_MODE 0x78
33 #define HC_MODE_EN 0x1
34 #define CORE_POWER 0x0
35 #define CORE_SW_RST BIT(7)
36 #define FF_CLK_SW_RST_DIS BIT(13)
37
38 #define CORE_PWRCTL_STATUS 0xdc
39 #define CORE_PWRCTL_MASK 0xe0
40 #define CORE_PWRCTL_CLEAR 0xe4
41 #define CORE_PWRCTL_CTL 0xe8
42 #define CORE_PWRCTL_BUS_OFF BIT(0)
43 #define CORE_PWRCTL_BUS_ON BIT(1)
44 #define CORE_PWRCTL_IO_LOW BIT(2)
45 #define CORE_PWRCTL_IO_HIGH BIT(3)
46 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
47 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
48 #define REQ_BUS_OFF BIT(0)
49 #define REQ_BUS_ON BIT(1)
50 #define REQ_IO_LOW BIT(2)
51 #define REQ_IO_HIGH BIT(3)
52 #define INT_MASK 0xf
53 #define MAX_PHASES 16
54 #define CORE_DLL_LOCK BIT(7)
55 #define CORE_DDR_DLL_LOCK BIT(11)
56 #define CORE_DLL_EN BIT(16)
57 #define CORE_CDR_EN BIT(17)
58 #define CORE_CK_OUT_EN BIT(18)
59 #define CORE_CDR_EXT_EN BIT(19)
60 #define CORE_DLL_PDN BIT(29)
61 #define CORE_DLL_RST BIT(30)
62 #define CORE_DLL_CONFIG 0x100
63 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
64 #define CORE_DLL_STATUS 0x108
65
66 #define CORE_DLL_CONFIG_2 0x1b4
67 #define CORE_DDR_CAL_EN BIT(0)
68 #define CORE_FLL_CYCLE_CNT BIT(18)
69 #define CORE_DLL_CLOCK_DISABLE BIT(21)
70
71 #define CORE_VENDOR_SPEC 0x10c
72 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
73 #define CORE_CLK_PWRSAVE BIT(1)
74 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
75 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
76 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
77 #define CORE_HC_SELECT_IN_EN BIT(18)
78 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
79 #define CORE_HC_SELECT_IN_MASK (7 << 19)
80
81 #define CORE_CSR_CDC_CTLR_CFG0 0x130
82 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
83 #define CORE_HW_AUTOCAL_ENA BIT(17)
84
85 #define CORE_CSR_CDC_CTLR_CFG1 0x134
86 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
87 #define CORE_TIMER_ENA BIT(16)
88
89 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
90 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
91 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
92 #define CORE_CDC_OFFSET_CFG 0x14C
93 #define CORE_CSR_CDC_DELAY_CFG 0x150
94 #define CORE_CDC_SLAVE_DDA_CFG 0x160
95 #define CORE_CSR_CDC_STATUS0 0x164
96 #define CORE_CALIBRATION_DONE BIT(0)
97
98 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
99
100 #define CORE_CSR_CDC_GEN_CFG 0x178
101 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
102 #define CORE_CDC_SWITCH_RC_EN BIT(1)
103
104 #define CORE_DDR_200_CFG 0x184
105 #define CORE_CDC_T4_DLY_SEL BIT(0)
106 #define CORE_CMDIN_RCLK_EN BIT(1)
107 #define CORE_START_CDC_TRAFFIC BIT(6)
108 #define CORE_VENDOR_SPEC3 0x1b0
109 #define CORE_PWRSAVE_DLL BIT(3)
110
111 #define CORE_DDR_CONFIG 0x1b8
112 #define DDR_CONFIG_POR_VAL 0x80040853
113
114 #define CORE_VENDOR_SPEC_CAPABILITIES0 0x11c
115
116 #define INVALID_TUNING_PHASE -1
117 #define SDHCI_MSM_MIN_CLOCK 400000
118 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
119
120 #define CDR_SELEXT_SHIFT 20
121 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
122 #define CMUX_SHIFT_PHASE_SHIFT 24
123 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
124
125 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
126
127 /* Timeout value to avoid infinite waiting for pwr_irq */
128 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
129
130 struct sdhci_msm_host {
131 struct platform_device *pdev;
132 void __iomem *core_mem; /* MSM SDCC mapped address */
133 int pwr_irq; /* power irq */
134 struct clk *bus_clk; /* SDHC bus voter clock */
135 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
136 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
137 unsigned long clk_rate;
138 struct mmc_host *mmc;
139 bool use_14lpp_dll_reset;
140 bool tuning_done;
141 bool calibration_done;
142 u8 saved_tuning_phase;
143 bool use_cdclp533;
144 u32 curr_pwr_state;
145 u32 curr_io_level;
146 wait_queue_head_t pwr_irq_wait;
147 bool pwr_irq_flag;
148 };
149
150 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
151 unsigned int clock)
152 {
153 struct mmc_ios ios = host->mmc->ios;
154 /*
155 * The SDHC requires internal clock frequency to be double the
156 * actual clock that will be set for DDR mode. The controller
157 * uses the faster clock(100/400MHz) for some of its parts and
158 * send the actual required clock (50/200MHz) to the card.
159 */
160 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
161 ios.timing == MMC_TIMING_MMC_DDR52 ||
162 ios.timing == MMC_TIMING_MMC_HS400 ||
163 host->flags & SDHCI_HS400_TUNING)
164 clock *= 2;
165 return clock;
166 }
167
168 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
169 unsigned int clock)
170 {
171 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
173 struct mmc_ios curr_ios = host->mmc->ios;
174 struct clk *core_clk = msm_host->bulk_clks[0].clk;
175 int rc;
176
177 clock = msm_get_clock_rate_for_bus_mode(host, clock);
178 rc = clk_set_rate(core_clk, clock);
179 if (rc) {
180 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
181 mmc_hostname(host->mmc), clock,
182 curr_ios.timing);
183 return;
184 }
185 msm_host->clk_rate = clock;
186 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
187 mmc_hostname(host->mmc), clk_get_rate(core_clk),
188 curr_ios.timing);
189 }
190
191 /* Platform specific tuning */
192 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
193 {
194 u32 wait_cnt = 50;
195 u8 ck_out_en;
196 struct mmc_host *mmc = host->mmc;
197
198 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
199 ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
200 CORE_CK_OUT_EN);
201
202 while (ck_out_en != poll) {
203 if (--wait_cnt == 0) {
204 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
205 mmc_hostname(mmc), poll);
206 return -ETIMEDOUT;
207 }
208 udelay(1);
209
210 ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
211 CORE_CK_OUT_EN);
212 }
213
214 return 0;
215 }
216
217 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
218 {
219 int rc;
220 static const u8 grey_coded_phase_table[] = {
221 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
222 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
223 };
224 unsigned long flags;
225 u32 config;
226 struct mmc_host *mmc = host->mmc;
227
228 if (phase > 0xf)
229 return -EINVAL;
230
231 spin_lock_irqsave(&host->lock, flags);
232
233 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
234 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
235 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
236 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
237
238 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
239 rc = msm_dll_poll_ck_out_en(host, 0);
240 if (rc)
241 goto err_out;
242
243 /*
244 * Write the selected DLL clock output phase (0 ... 15)
245 * to CDR_SELEXT bit field of DLL_CONFIG register.
246 */
247 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
248 config &= ~CDR_SELEXT_MASK;
249 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
250 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
251
252 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
253 config |= CORE_CK_OUT_EN;
254 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
255
256 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
257 rc = msm_dll_poll_ck_out_en(host, 1);
258 if (rc)
259 goto err_out;
260
261 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
262 config |= CORE_CDR_EN;
263 config &= ~CORE_CDR_EXT_EN;
264 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
265 goto out;
266
267 err_out:
268 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
269 mmc_hostname(mmc), phase);
270 out:
271 spin_unlock_irqrestore(&host->lock, flags);
272 return rc;
273 }
274
275 /*
276 * Find out the greatest range of consecuitive selected
277 * DLL clock output phases that can be used as sampling
278 * setting for SD3.0 UHS-I card read operation (in SDR104
279 * timing mode) or for eMMC4.5 card read operation (in
280 * HS400/HS200 timing mode).
281 * Select the 3/4 of the range and configure the DLL with the
282 * selected DLL clock output phase.
283 */
284
285 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
286 u8 *phase_table, u8 total_phases)
287 {
288 int ret;
289 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
290 u8 phases_per_row[MAX_PHASES] = { 0 };
291 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
292 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
293 bool phase_0_found = false, phase_15_found = false;
294 struct mmc_host *mmc = host->mmc;
295
296 if (!total_phases || (total_phases > MAX_PHASES)) {
297 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
298 mmc_hostname(mmc), total_phases);
299 return -EINVAL;
300 }
301
302 for (cnt = 0; cnt < total_phases; cnt++) {
303 ranges[row_index][col_index] = phase_table[cnt];
304 phases_per_row[row_index] += 1;
305 col_index++;
306
307 if ((cnt + 1) == total_phases) {
308 continue;
309 /* check if next phase in phase_table is consecutive or not */
310 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
311 row_index++;
312 col_index = 0;
313 }
314 }
315
316 if (row_index >= MAX_PHASES)
317 return -EINVAL;
318
319 /* Check if phase-0 is present in first valid window? */
320 if (!ranges[0][0]) {
321 phase_0_found = true;
322 phase_0_raw_index = 0;
323 /* Check if cycle exist between 2 valid windows */
324 for (cnt = 1; cnt <= row_index; cnt++) {
325 if (phases_per_row[cnt]) {
326 for (i = 0; i < phases_per_row[cnt]; i++) {
327 if (ranges[cnt][i] == 15) {
328 phase_15_found = true;
329 phase_15_raw_index = cnt;
330 break;
331 }
332 }
333 }
334 }
335 }
336
337 /* If 2 valid windows form cycle then merge them as single window */
338 if (phase_0_found && phase_15_found) {
339 /* number of phases in raw where phase 0 is present */
340 u8 phases_0 = phases_per_row[phase_0_raw_index];
341 /* number of phases in raw where phase 15 is present */
342 u8 phases_15 = phases_per_row[phase_15_raw_index];
343
344 if (phases_0 + phases_15 >= MAX_PHASES)
345 /*
346 * If there are more than 1 phase windows then total
347 * number of phases in both the windows should not be
348 * more than or equal to MAX_PHASES.
349 */
350 return -EINVAL;
351
352 /* Merge 2 cyclic windows */
353 i = phases_15;
354 for (cnt = 0; cnt < phases_0; cnt++) {
355 ranges[phase_15_raw_index][i] =
356 ranges[phase_0_raw_index][cnt];
357 if (++i >= MAX_PHASES)
358 break;
359 }
360
361 phases_per_row[phase_0_raw_index] = 0;
362 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
363 }
364
365 for (cnt = 0; cnt <= row_index; cnt++) {
366 if (phases_per_row[cnt] > curr_max) {
367 curr_max = phases_per_row[cnt];
368 selected_row_index = cnt;
369 }
370 }
371
372 i = (curr_max * 3) / 4;
373 if (i)
374 i--;
375
376 ret = ranges[selected_row_index][i];
377
378 if (ret >= MAX_PHASES) {
379 ret = -EINVAL;
380 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
381 mmc_hostname(mmc), ret);
382 }
383
384 return ret;
385 }
386
387 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
388 {
389 u32 mclk_freq = 0, config;
390
391 /* Program the MCLK value to MCLK_FREQ bit field */
392 if (host->clock <= 112000000)
393 mclk_freq = 0;
394 else if (host->clock <= 125000000)
395 mclk_freq = 1;
396 else if (host->clock <= 137000000)
397 mclk_freq = 2;
398 else if (host->clock <= 150000000)
399 mclk_freq = 3;
400 else if (host->clock <= 162000000)
401 mclk_freq = 4;
402 else if (host->clock <= 175000000)
403 mclk_freq = 5;
404 else if (host->clock <= 187000000)
405 mclk_freq = 6;
406 else if (host->clock <= 200000000)
407 mclk_freq = 7;
408
409 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
410 config &= ~CMUX_SHIFT_PHASE_MASK;
411 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
412 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
413 }
414
415 /* Initialize the DLL (Programmable Delay Line) */
416 static int msm_init_cm_dll(struct sdhci_host *host)
417 {
418 struct mmc_host *mmc = host->mmc;
419 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
420 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
421 int wait_cnt = 50;
422 unsigned long flags;
423 u32 config;
424
425 spin_lock_irqsave(&host->lock, flags);
426
427 /*
428 * Make sure that clock is always enabled when DLL
429 * tuning is in progress. Keeping PWRSAVE ON may
430 * turn off the clock.
431 */
432 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
433 config &= ~CORE_CLK_PWRSAVE;
434 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
435
436 if (msm_host->use_14lpp_dll_reset) {
437 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
438 config &= ~CORE_CK_OUT_EN;
439 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
440
441 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
442 config |= CORE_DLL_CLOCK_DISABLE;
443 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
444 }
445
446 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
447 config |= CORE_DLL_RST;
448 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
449
450 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
451 config |= CORE_DLL_PDN;
452 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
453 msm_cm_dll_set_freq(host);
454
455 if (msm_host->use_14lpp_dll_reset &&
456 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
457 u32 mclk_freq = 0;
458
459 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
460 config &= CORE_FLL_CYCLE_CNT;
461 if (config)
462 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
463 clk_get_rate(msm_host->xo_clk));
464 else
465 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
466 clk_get_rate(msm_host->xo_clk));
467
468 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
469 config &= ~(0xFF << 10);
470 config |= mclk_freq << 10;
471
472 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
473 /* wait for 5us before enabling DLL clock */
474 udelay(5);
475 }
476
477 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
478 config &= ~CORE_DLL_RST;
479 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
480
481 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
482 config &= ~CORE_DLL_PDN;
483 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
484
485 if (msm_host->use_14lpp_dll_reset) {
486 msm_cm_dll_set_freq(host);
487 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
488 config &= ~CORE_DLL_CLOCK_DISABLE;
489 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
490 }
491
492 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
493 config |= CORE_DLL_EN;
494 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
495
496 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
497 config |= CORE_CK_OUT_EN;
498 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
499
500 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
501 while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) &
502 CORE_DLL_LOCK)) {
503 /* max. wait for 50us sec for LOCK bit to be set */
504 if (--wait_cnt == 0) {
505 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
506 mmc_hostname(mmc));
507 spin_unlock_irqrestore(&host->lock, flags);
508 return -ETIMEDOUT;
509 }
510 udelay(1);
511 }
512
513 spin_unlock_irqrestore(&host->lock, flags);
514 return 0;
515 }
516
517 static void msm_hc_select_default(struct sdhci_host *host)
518 {
519 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
520 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
521 u32 config;
522
523 if (!msm_host->use_cdclp533) {
524 config = readl_relaxed(host->ioaddr +
525 CORE_VENDOR_SPEC3);
526 config &= ~CORE_PWRSAVE_DLL;
527 writel_relaxed(config, host->ioaddr +
528 CORE_VENDOR_SPEC3);
529 }
530
531 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
532 config &= ~CORE_HC_MCLK_SEL_MASK;
533 config |= CORE_HC_MCLK_SEL_DFLT;
534 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
535
536 /*
537 * Disable HC_SELECT_IN to be able to use the UHS mode select
538 * configuration from Host Control2 register for all other
539 * modes.
540 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
541 * in VENDOR_SPEC_FUNC
542 */
543 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
544 config &= ~CORE_HC_SELECT_IN_EN;
545 config &= ~CORE_HC_SELECT_IN_MASK;
546 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
547
548 /*
549 * Make sure above writes impacting free running MCLK are completed
550 * before changing the clk_rate at GCC.
551 */
552 wmb();
553 }
554
555 static void msm_hc_select_hs400(struct sdhci_host *host)
556 {
557 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
558 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
559 struct mmc_ios ios = host->mmc->ios;
560 u32 config, dll_lock;
561 int rc;
562
563 /* Select the divided clock (free running MCLK/2) */
564 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
565 config &= ~CORE_HC_MCLK_SEL_MASK;
566 config |= CORE_HC_MCLK_SEL_HS400;
567
568 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
569 /*
570 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
571 * register
572 */
573 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
574 !msm_host->calibration_done) {
575 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
576 config |= CORE_HC_SELECT_IN_HS400;
577 config |= CORE_HC_SELECT_IN_EN;
578 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
579 }
580 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
581 /*
582 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
583 * CORE_DLL_STATUS to be set. This should get set
584 * within 15 us at 200 MHz.
585 */
586 rc = readl_relaxed_poll_timeout(host->ioaddr +
587 CORE_DLL_STATUS,
588 dll_lock,
589 (dll_lock &
590 (CORE_DLL_LOCK |
591 CORE_DDR_DLL_LOCK)), 10,
592 1000);
593 if (rc == -ETIMEDOUT)
594 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
595 mmc_hostname(host->mmc), dll_lock);
596 }
597 /*
598 * Make sure above writes impacting free running MCLK are completed
599 * before changing the clk_rate at GCC.
600 */
601 wmb();
602 }
603
604 /*
605 * sdhci_msm_hc_select_mode :- In general all timing modes are
606 * controlled via UHS mode select in Host Control2 register.
607 * eMMC specific HS200/HS400 doesn't have their respective modes
608 * defined here, hence we use these values.
609 *
610 * HS200 - SDR104 (Since they both are equivalent in functionality)
611 * HS400 - This involves multiple configurations
612 * Initially SDR104 - when tuning is required as HS200
613 * Then when switching to DDR @ 400MHz (HS400) we use
614 * the vendor specific HC_SELECT_IN to control the mode.
615 *
616 * In addition to controlling the modes we also need to select the
617 * correct input clock for DLL depending on the mode.
618 *
619 * HS400 - divided clock (free running MCLK/2)
620 * All other modes - default (free running MCLK)
621 */
622 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
623 {
624 struct mmc_ios ios = host->mmc->ios;
625
626 if (ios.timing == MMC_TIMING_MMC_HS400 ||
627 host->flags & SDHCI_HS400_TUNING)
628 msm_hc_select_hs400(host);
629 else
630 msm_hc_select_default(host);
631 }
632
633 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
634 {
635 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
636 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
637 u32 config, calib_done;
638 int ret;
639
640 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
641
642 /*
643 * Retuning in HS400 (DDR mode) will fail, just reset the
644 * tuning block and restore the saved tuning phase.
645 */
646 ret = msm_init_cm_dll(host);
647 if (ret)
648 goto out;
649
650 /* Set the selected phase in delay line hw block */
651 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
652 if (ret)
653 goto out;
654
655 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
656 config |= CORE_CMD_DAT_TRACK_SEL;
657 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
658
659 config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
660 config &= ~CORE_CDC_T4_DLY_SEL;
661 writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
662
663 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
664 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
665 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
666
667 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
668 config |= CORE_CDC_SWITCH_RC_EN;
669 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
670
671 config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
672 config &= ~CORE_START_CDC_TRAFFIC;
673 writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
674
675 /* Perform CDC Register Initialization Sequence */
676
677 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
678 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
679 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
680 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
681 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
682 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
683 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
684 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
685 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
686
687 /* CDC HW Calibration */
688
689 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
690 config |= CORE_SW_TRIG_FULL_CALIB;
691 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
692
693 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
694 config &= ~CORE_SW_TRIG_FULL_CALIB;
695 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
696
697 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
698 config |= CORE_HW_AUTOCAL_ENA;
699 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
700
701 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
702 config |= CORE_TIMER_ENA;
703 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
704
705 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
706 calib_done,
707 (calib_done & CORE_CALIBRATION_DONE),
708 1, 50);
709
710 if (ret == -ETIMEDOUT) {
711 pr_err("%s: %s: CDC calibration was not completed\n",
712 mmc_hostname(host->mmc), __func__);
713 goto out;
714 }
715
716 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
717 & CORE_CDC_ERROR_CODE_MASK;
718 if (ret) {
719 pr_err("%s: %s: CDC error code %d\n",
720 mmc_hostname(host->mmc), __func__, ret);
721 ret = -EINVAL;
722 goto out;
723 }
724
725 config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
726 config |= CORE_START_CDC_TRAFFIC;
727 writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
728 out:
729 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
730 __func__, ret);
731 return ret;
732 }
733
734 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
735 {
736 struct mmc_host *mmc = host->mmc;
737 u32 dll_status, config;
738 int ret;
739
740 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
741
742 /*
743 * Currently the CORE_DDR_CONFIG register defaults to desired
744 * configuration on reset. Currently reprogramming the power on
745 * reset (POR) value in case it might have been modified by
746 * bootloaders. In the future, if this changes, then the desired
747 * values will need to be programmed appropriately.
748 */
749 writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG);
750
751 if (mmc->ios.enhanced_strobe) {
752 config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
753 config |= CORE_CMDIN_RCLK_EN;
754 writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
755 }
756
757 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
758 config |= CORE_DDR_CAL_EN;
759 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
760
761 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS,
762 dll_status,
763 (dll_status & CORE_DDR_DLL_LOCK),
764 10, 1000);
765
766 if (ret == -ETIMEDOUT) {
767 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
768 mmc_hostname(host->mmc), __func__);
769 goto out;
770 }
771
772 config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3);
773 config |= CORE_PWRSAVE_DLL;
774 writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3);
775
776 /*
777 * Drain writebuffer to ensure above DLL calibration
778 * and PWRSAVE DLL is enabled.
779 */
780 wmb();
781 out:
782 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
783 __func__, ret);
784 return ret;
785 }
786
787 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
788 {
789 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
790 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
791 struct mmc_host *mmc = host->mmc;
792 int ret;
793 u32 config;
794
795 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
796
797 /*
798 * Retuning in HS400 (DDR mode) will fail, just reset the
799 * tuning block and restore the saved tuning phase.
800 */
801 ret = msm_init_cm_dll(host);
802 if (ret)
803 goto out;
804
805 if (!mmc->ios.enhanced_strobe) {
806 /* Set the selected phase in delay line hw block */
807 ret = msm_config_cm_dll_phase(host,
808 msm_host->saved_tuning_phase);
809 if (ret)
810 goto out;
811 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
812 config |= CORE_CMD_DAT_TRACK_SEL;
813 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
814 }
815
816 if (msm_host->use_cdclp533)
817 ret = sdhci_msm_cdclp533_calibration(host);
818 else
819 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
820 out:
821 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
822 __func__, ret);
823 return ret;
824 }
825
826 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
827 {
828 struct sdhci_host *host = mmc_priv(mmc);
829 int tuning_seq_cnt = 3;
830 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
831 int rc;
832 struct mmc_ios ios = host->mmc->ios;
833 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
834 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
835
836 /*
837 * Tuning is required for SDR104, HS200 and HS400 cards and
838 * if clock frequency is greater than 100MHz in these modes.
839 */
840 if (host->clock <= CORE_FREQ_100MHZ ||
841 !(ios.timing == MMC_TIMING_MMC_HS400 ||
842 ios.timing == MMC_TIMING_MMC_HS200 ||
843 ios.timing == MMC_TIMING_UHS_SDR104))
844 return 0;
845
846 /*
847 * For HS400 tuning in HS200 timing requires:
848 * - select MCLK/2 in VENDOR_SPEC
849 * - program MCLK to 400MHz (or nearest supported) in GCC
850 */
851 if (host->flags & SDHCI_HS400_TUNING) {
852 sdhci_msm_hc_select_mode(host);
853 msm_set_clock_rate_for_bus_mode(host, ios.clock);
854 host->flags &= ~SDHCI_HS400_TUNING;
855 }
856
857 retry:
858 /* First of all reset the tuning block */
859 rc = msm_init_cm_dll(host);
860 if (rc)
861 return rc;
862
863 phase = 0;
864 do {
865 /* Set the phase in delay line hw block */
866 rc = msm_config_cm_dll_phase(host, phase);
867 if (rc)
868 return rc;
869
870 msm_host->saved_tuning_phase = phase;
871 rc = mmc_send_tuning(mmc, opcode, NULL);
872 if (!rc) {
873 /* Tuning is successful at this tuning point */
874 tuned_phases[tuned_phase_cnt++] = phase;
875 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
876 mmc_hostname(mmc), phase);
877 }
878 } while (++phase < ARRAY_SIZE(tuned_phases));
879
880 if (tuned_phase_cnt) {
881 rc = msm_find_most_appropriate_phase(host, tuned_phases,
882 tuned_phase_cnt);
883 if (rc < 0)
884 return rc;
885 else
886 phase = rc;
887
888 /*
889 * Finally set the selected phase in delay
890 * line hw block.
891 */
892 rc = msm_config_cm_dll_phase(host, phase);
893 if (rc)
894 return rc;
895 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
896 mmc_hostname(mmc), phase);
897 } else {
898 if (--tuning_seq_cnt)
899 goto retry;
900 /* Tuning failed */
901 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
902 mmc_hostname(mmc));
903 rc = -EIO;
904 }
905
906 if (!rc)
907 msm_host->tuning_done = true;
908 return rc;
909 }
910
911 /*
912 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
913 * This needs to be done for both tuning and enhanced_strobe mode.
914 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
915 * fixed feedback clock is used.
916 */
917 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
918 {
919 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
920 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
921 int ret;
922
923 if (host->clock > CORE_FREQ_100MHZ &&
924 (msm_host->tuning_done || ios->enhanced_strobe) &&
925 !msm_host->calibration_done) {
926 ret = sdhci_msm_hs400_dll_calibration(host);
927 if (!ret)
928 msm_host->calibration_done = true;
929 else
930 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
931 mmc_hostname(host->mmc), ret);
932 }
933 }
934
935 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
936 unsigned int uhs)
937 {
938 struct mmc_host *mmc = host->mmc;
939 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
940 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
941 u16 ctrl_2;
942 u32 config;
943
944 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
945 /* Select Bus Speed Mode for host */
946 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
947 switch (uhs) {
948 case MMC_TIMING_UHS_SDR12:
949 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
950 break;
951 case MMC_TIMING_UHS_SDR25:
952 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
953 break;
954 case MMC_TIMING_UHS_SDR50:
955 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
956 break;
957 case MMC_TIMING_MMC_HS400:
958 case MMC_TIMING_MMC_HS200:
959 case MMC_TIMING_UHS_SDR104:
960 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
961 break;
962 case MMC_TIMING_UHS_DDR50:
963 case MMC_TIMING_MMC_DDR52:
964 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
965 break;
966 }
967
968 /*
969 * When clock frequency is less than 100MHz, the feedback clock must be
970 * provided and DLL must not be used so that tuning can be skipped. To
971 * provide feedback clock, the mode selection can be any value less
972 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
973 */
974 if (host->clock <= CORE_FREQ_100MHZ) {
975 if (uhs == MMC_TIMING_MMC_HS400 ||
976 uhs == MMC_TIMING_MMC_HS200 ||
977 uhs == MMC_TIMING_UHS_SDR104)
978 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
979 /*
980 * DLL is not required for clock <= 100MHz
981 * Thus, make sure DLL it is disabled when not required
982 */
983 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
984 config |= CORE_DLL_RST;
985 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
986
987 config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
988 config |= CORE_DLL_PDN;
989 writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
990
991 /*
992 * The DLL needs to be restored and CDCLP533 recalibrated
993 * when the clock frequency is set back to 400MHz.
994 */
995 msm_host->calibration_done = false;
996 }
997
998 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
999 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1000 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1001
1002 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1003 sdhci_msm_hs400(host, &mmc->ios);
1004 }
1005
1006 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1007 {
1008 init_waitqueue_head(&msm_host->pwr_irq_wait);
1009 }
1010
1011 static inline void sdhci_msm_complete_pwr_irq_wait(
1012 struct sdhci_msm_host *msm_host)
1013 {
1014 wake_up(&msm_host->pwr_irq_wait);
1015 }
1016
1017 /*
1018 * sdhci_msm_check_power_status API should be called when registers writes
1019 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1020 * To what state the register writes will change the IO lines should be passed
1021 * as the argument req_type. This API will check whether the IO line's state
1022 * is already the expected state and will wait for power irq only if
1023 * power irq is expected to be trigerred based on the current IO line state
1024 * and expected IO line state.
1025 */
1026 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1027 {
1028 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1029 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1030 bool done = false;
1031
1032 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1033 mmc_hostname(host->mmc), __func__, req_type,
1034 msm_host->curr_pwr_state, msm_host->curr_io_level);
1035
1036 /*
1037 * The IRQ for request type IO High/LOW will be generated when -
1038 * there is a state change in 1.8V enable bit (bit 3) of
1039 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1040 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1041 * to set it to 3.3V before card detection happens, the
1042 * IRQ doesn't get triggered as there is no state change in this bit.
1043 * The driver already handles this case by changing the IO voltage
1044 * level to high as part of controller power up sequence. Hence, check
1045 * for host->pwr to handle a case where IO voltage high request is
1046 * issued even before controller power up.
1047 */
1048 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1049 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1050 mmc_hostname(host->mmc), req_type);
1051 return;
1052 }
1053 if ((req_type & msm_host->curr_pwr_state) ||
1054 (req_type & msm_host->curr_io_level))
1055 done = true;
1056 /*
1057 * This is needed here to handle cases where register writes will
1058 * not change the current bus state or io level of the controller.
1059 * In this case, no power irq will be triggerred and we should
1060 * not wait.
1061 */
1062 if (!done) {
1063 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1064 msm_host->pwr_irq_flag,
1065 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1066 dev_warn(&msm_host->pdev->dev,
1067 "%s: pwr_irq for req: (%d) timed out\n",
1068 mmc_hostname(host->mmc), req_type);
1069 }
1070 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1071 __func__, req_type);
1072 }
1073
1074 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1075 {
1076 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1077 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1078
1079 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1080 mmc_hostname(host->mmc),
1081 readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS),
1082 readl_relaxed(msm_host->core_mem + CORE_PWRCTL_MASK),
1083 readl_relaxed(msm_host->core_mem + CORE_PWRCTL_CTL));
1084 }
1085
1086 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1087 {
1088 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1089 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1090 u32 irq_status, irq_ack = 0;
1091 int retry = 10;
1092 int pwr_state = 0, io_level = 0;
1093
1094
1095 irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS);
1096 irq_status &= INT_MASK;
1097
1098 writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR);
1099
1100 /*
1101 * There is a rare HW scenario where the first clear pulse could be
1102 * lost when actual reset and clear/read of status register is
1103 * happening at a time. Hence, retry for at least 10 times to make
1104 * sure status register is cleared. Otherwise, this will result in
1105 * a spurious power IRQ resulting in system instability.
1106 */
1107 while (irq_status & readl_relaxed(msm_host->core_mem +
1108 CORE_PWRCTL_STATUS)) {
1109 if (retry == 0) {
1110 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1111 mmc_hostname(host->mmc), irq_status);
1112 sdhci_msm_dump_pwr_ctrl_regs(host);
1113 WARN_ON(1);
1114 break;
1115 }
1116 writel_relaxed(irq_status,
1117 msm_host->core_mem + CORE_PWRCTL_CLEAR);
1118 retry--;
1119 udelay(10);
1120 }
1121
1122 /* Handle BUS ON/OFF*/
1123 if (irq_status & CORE_PWRCTL_BUS_ON) {
1124 pwr_state = REQ_BUS_ON;
1125 io_level = REQ_IO_HIGH;
1126 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1127 }
1128 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1129 pwr_state = REQ_BUS_OFF;
1130 io_level = REQ_IO_LOW;
1131 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1132 }
1133 /* Handle IO LOW/HIGH */
1134 if (irq_status & CORE_PWRCTL_IO_LOW) {
1135 io_level = REQ_IO_LOW;
1136 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1137 }
1138 if (irq_status & CORE_PWRCTL_IO_HIGH) {
1139 io_level = REQ_IO_HIGH;
1140 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1141 }
1142
1143 /*
1144 * The driver has to acknowledge the interrupt, switch voltages and
1145 * report back if it succeded or not to this register. The voltage
1146 * switches are handled by the sdhci core, so just report success.
1147 */
1148 writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL);
1149
1150 if (pwr_state)
1151 msm_host->curr_pwr_state = pwr_state;
1152 if (io_level)
1153 msm_host->curr_io_level = io_level;
1154
1155 pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1156 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1157 irq_ack);
1158 }
1159
1160 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1161 {
1162 struct sdhci_host *host = (struct sdhci_host *)data;
1163 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1164 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1165
1166 sdhci_msm_handle_pwr_irq(host, irq);
1167 msm_host->pwr_irq_flag = 1;
1168 sdhci_msm_complete_pwr_irq_wait(msm_host);
1169
1170
1171 return IRQ_HANDLED;
1172 }
1173
1174 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1175 {
1176 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1177 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1178 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1179
1180 return clk_round_rate(core_clk, ULONG_MAX);
1181 }
1182
1183 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1184 {
1185 return SDHCI_MSM_MIN_CLOCK;
1186 }
1187
1188 /**
1189 * __sdhci_msm_set_clock - sdhci_msm clock control.
1190 *
1191 * Description:
1192 * MSM controller does not use internal divider and
1193 * instead directly control the GCC clock as per
1194 * HW recommendation.
1195 **/
1196 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1197 {
1198 u16 clk;
1199 /*
1200 * Keep actual_clock as zero -
1201 * - since there is no divider used so no need of having actual_clock.
1202 * - MSM controller uses SDCLK for data timeout calculation. If
1203 * actual_clock is zero, host->clock is taken for calculation.
1204 */
1205 host->mmc->actual_clock = 0;
1206
1207 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1208
1209 if (clock == 0)
1210 return;
1211
1212 /*
1213 * MSM controller do not use clock divider.
1214 * Thus read SDHCI_CLOCK_CONTROL and only enable
1215 * clock with no divider value programmed.
1216 */
1217 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1218 sdhci_enable_clk(host, clk);
1219 }
1220
1221 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1222 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1223 {
1224 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1225 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1226
1227 if (!clock) {
1228 msm_host->clk_rate = clock;
1229 goto out;
1230 }
1231
1232 sdhci_msm_hc_select_mode(host);
1233
1234 msm_set_clock_rate_for_bus_mode(host, clock);
1235 out:
1236 __sdhci_msm_set_clock(host, clock);
1237 }
1238
1239 /*
1240 * Platform specific register write functions. This is so that, if any
1241 * register write needs to be followed up by platform specific actions,
1242 * they can be added here. These functions can go to sleep when writes
1243 * to certain registers are done.
1244 * These functions are relying on sdhci_set_ios not using spinlock.
1245 */
1246 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1247 {
1248 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1249 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1250 u32 req_type = 0;
1251
1252 switch (reg) {
1253 case SDHCI_HOST_CONTROL2:
1254 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1255 REQ_IO_HIGH;
1256 break;
1257 case SDHCI_SOFTWARE_RESET:
1258 if (host->pwr && (val & SDHCI_RESET_ALL))
1259 req_type = REQ_BUS_OFF;
1260 break;
1261 case SDHCI_POWER_CONTROL:
1262 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1263 break;
1264 }
1265
1266 if (req_type) {
1267 msm_host->pwr_irq_flag = 0;
1268 /*
1269 * Since this register write may trigger a power irq, ensure
1270 * all previous register writes are complete by this point.
1271 */
1272 mb();
1273 }
1274 return req_type;
1275 }
1276
1277 /* This function may sleep*/
1278 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1279 {
1280 u32 req_type = 0;
1281
1282 req_type = __sdhci_msm_check_write(host, val, reg);
1283 writew_relaxed(val, host->ioaddr + reg);
1284
1285 if (req_type)
1286 sdhci_msm_check_power_status(host, req_type);
1287 }
1288
1289 /* This function may sleep*/
1290 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1291 {
1292 u32 req_type = 0;
1293
1294 req_type = __sdhci_msm_check_write(host, val, reg);
1295
1296 writeb_relaxed(val, host->ioaddr + reg);
1297
1298 if (req_type)
1299 sdhci_msm_check_power_status(host, req_type);
1300 }
1301
1302 static const struct of_device_id sdhci_msm_dt_match[] = {
1303 { .compatible = "qcom,sdhci-msm-v4" },
1304 {},
1305 };
1306
1307 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1308
1309 static const struct sdhci_ops sdhci_msm_ops = {
1310 .reset = sdhci_reset,
1311 .set_clock = sdhci_msm_set_clock,
1312 .get_min_clock = sdhci_msm_get_min_clock,
1313 .get_max_clock = sdhci_msm_get_max_clock,
1314 .set_bus_width = sdhci_set_bus_width,
1315 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1316 .write_w = sdhci_msm_writew,
1317 .write_b = sdhci_msm_writeb,
1318 };
1319
1320 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1321 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1322 SDHCI_QUIRK_NO_CARD_NO_RESET |
1323 SDHCI_QUIRK_SINGLE_POWER_WRITE |
1324 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1325 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1326 .ops = &sdhci_msm_ops,
1327 };
1328
1329 static int sdhci_msm_probe(struct platform_device *pdev)
1330 {
1331 struct sdhci_host *host;
1332 struct sdhci_pltfm_host *pltfm_host;
1333 struct sdhci_msm_host *msm_host;
1334 struct resource *core_memres;
1335 struct clk *clk;
1336 int ret;
1337 u16 host_version, core_minor;
1338 u32 core_version, config;
1339 u8 core_major;
1340
1341 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1342 if (IS_ERR(host))
1343 return PTR_ERR(host);
1344
1345 host->sdma_boundary = 0;
1346 pltfm_host = sdhci_priv(host);
1347 msm_host = sdhci_pltfm_priv(pltfm_host);
1348 msm_host->mmc = host->mmc;
1349 msm_host->pdev = pdev;
1350
1351 ret = mmc_of_parse(host->mmc);
1352 if (ret)
1353 goto pltfm_free;
1354
1355 sdhci_get_of_property(pdev);
1356
1357 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1358
1359 /* Setup SDCC bus voter clock. */
1360 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1361 if (!IS_ERR(msm_host->bus_clk)) {
1362 /* Vote for max. clk rate for max. performance */
1363 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1364 if (ret)
1365 goto pltfm_free;
1366 ret = clk_prepare_enable(msm_host->bus_clk);
1367 if (ret)
1368 goto pltfm_free;
1369 }
1370
1371 /* Setup main peripheral bus clock */
1372 clk = devm_clk_get(&pdev->dev, "iface");
1373 if (IS_ERR(clk)) {
1374 ret = PTR_ERR(clk);
1375 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1376 goto bus_clk_disable;
1377 }
1378 msm_host->bulk_clks[1].clk = clk;
1379
1380 /* Setup SDC MMC clock */
1381 clk = devm_clk_get(&pdev->dev, "core");
1382 if (IS_ERR(clk)) {
1383 ret = PTR_ERR(clk);
1384 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1385 goto bus_clk_disable;
1386 }
1387 msm_host->bulk_clks[0].clk = clk;
1388
1389 /* Vote for maximum clock rate for maximum performance */
1390 ret = clk_set_rate(clk, INT_MAX);
1391 if (ret)
1392 dev_warn(&pdev->dev, "core clock boost failed\n");
1393
1394 clk = devm_clk_get(&pdev->dev, "cal");
1395 if (IS_ERR(clk))
1396 clk = NULL;
1397 msm_host->bulk_clks[2].clk = clk;
1398
1399 clk = devm_clk_get(&pdev->dev, "sleep");
1400 if (IS_ERR(clk))
1401 clk = NULL;
1402 msm_host->bulk_clks[3].clk = clk;
1403
1404 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1405 msm_host->bulk_clks);
1406 if (ret)
1407 goto bus_clk_disable;
1408
1409 /*
1410 * xo clock is needed for FLL feature of cm_dll.
1411 * In case if xo clock is not mentioned in DT, warn and proceed.
1412 */
1413 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1414 if (IS_ERR(msm_host->xo_clk)) {
1415 ret = PTR_ERR(msm_host->xo_clk);
1416 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1417 }
1418
1419 core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1420 msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres);
1421
1422 if (IS_ERR(msm_host->core_mem)) {
1423 dev_err(&pdev->dev, "Failed to remap registers\n");
1424 ret = PTR_ERR(msm_host->core_mem);
1425 goto clk_disable;
1426 }
1427
1428 /* Reset the vendor spec register to power on reset state */
1429 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1430 host->ioaddr + CORE_VENDOR_SPEC);
1431
1432 /* Set HC_MODE_EN bit in HC_MODE register */
1433 writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE));
1434
1435 config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE);
1436 config |= FF_CLK_SW_RST_DIS;
1437 writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE);
1438
1439 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1440 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1441 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1442 SDHCI_VENDOR_VER_SHIFT));
1443
1444 core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION);
1445 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1446 CORE_VERSION_MAJOR_SHIFT;
1447 core_minor = core_version & CORE_VERSION_MINOR_MASK;
1448 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1449 core_version, core_major, core_minor);
1450
1451 if (core_major == 1 && core_minor >= 0x42)
1452 msm_host->use_14lpp_dll_reset = true;
1453
1454 /*
1455 * SDCC 5 controller with major version 1, minor version 0x34 and later
1456 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1457 */
1458 if (core_major == 1 && core_minor < 0x34)
1459 msm_host->use_cdclp533 = true;
1460
1461 /*
1462 * Support for some capabilities is not advertised by newer
1463 * controller versions and must be explicitly enabled.
1464 */
1465 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1466 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1467 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1468 writel_relaxed(config, host->ioaddr +
1469 CORE_VENDOR_SPEC_CAPABILITIES0);
1470 }
1471
1472 /*
1473 * Power on reset state may trigger power irq if previous status of
1474 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1475 * interrupt in GIC, any pending power irq interrupt should be
1476 * acknowledged. Otherwise power irq interrupt handler would be
1477 * fired prematurely.
1478 */
1479 sdhci_msm_handle_pwr_irq(host, 0);
1480
1481 /*
1482 * Ensure that above writes are propogated before interrupt enablement
1483 * in GIC.
1484 */
1485 mb();
1486
1487 /* Setup IRQ for handling power/voltage tasks with PMIC */
1488 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1489 if (msm_host->pwr_irq < 0) {
1490 dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1491 msm_host->pwr_irq);
1492 ret = msm_host->pwr_irq;
1493 goto clk_disable;
1494 }
1495
1496 sdhci_msm_init_pwr_irq_wait(msm_host);
1497 /* Enable pwr irq interrupts */
1498 writel_relaxed(INT_MASK, msm_host->core_mem + CORE_PWRCTL_MASK);
1499
1500 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1501 sdhci_msm_pwr_irq, IRQF_ONESHOT,
1502 dev_name(&pdev->dev), host);
1503 if (ret) {
1504 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1505 goto clk_disable;
1506 }
1507
1508 pm_runtime_get_noresume(&pdev->dev);
1509 pm_runtime_set_active(&pdev->dev);
1510 pm_runtime_enable(&pdev->dev);
1511 pm_runtime_set_autosuspend_delay(&pdev->dev,
1512 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1513 pm_runtime_use_autosuspend(&pdev->dev);
1514
1515 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1516 ret = sdhci_add_host(host);
1517 if (ret)
1518 goto pm_runtime_disable;
1519
1520 pm_runtime_mark_last_busy(&pdev->dev);
1521 pm_runtime_put_autosuspend(&pdev->dev);
1522
1523 return 0;
1524
1525 pm_runtime_disable:
1526 pm_runtime_disable(&pdev->dev);
1527 pm_runtime_set_suspended(&pdev->dev);
1528 pm_runtime_put_noidle(&pdev->dev);
1529 clk_disable:
1530 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1531 msm_host->bulk_clks);
1532 bus_clk_disable:
1533 if (!IS_ERR(msm_host->bus_clk))
1534 clk_disable_unprepare(msm_host->bus_clk);
1535 pltfm_free:
1536 sdhci_pltfm_free(pdev);
1537 return ret;
1538 }
1539
1540 static int sdhci_msm_remove(struct platform_device *pdev)
1541 {
1542 struct sdhci_host *host = platform_get_drvdata(pdev);
1543 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1544 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1545 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1546 0xffffffff);
1547
1548 sdhci_remove_host(host, dead);
1549
1550 pm_runtime_get_sync(&pdev->dev);
1551 pm_runtime_disable(&pdev->dev);
1552 pm_runtime_put_noidle(&pdev->dev);
1553
1554 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1555 msm_host->bulk_clks);
1556 if (!IS_ERR(msm_host->bus_clk))
1557 clk_disable_unprepare(msm_host->bus_clk);
1558 sdhci_pltfm_free(pdev);
1559 return 0;
1560 }
1561
1562 #ifdef CONFIG_PM
1563 static int sdhci_msm_runtime_suspend(struct device *dev)
1564 {
1565 struct sdhci_host *host = dev_get_drvdata(dev);
1566 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1567 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1568
1569 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1570 msm_host->bulk_clks);
1571
1572 return 0;
1573 }
1574
1575 static int sdhci_msm_runtime_resume(struct device *dev)
1576 {
1577 struct sdhci_host *host = dev_get_drvdata(dev);
1578 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1579 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1580
1581 return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1582 msm_host->bulk_clks);
1583 }
1584 #endif
1585
1586 static const struct dev_pm_ops sdhci_msm_pm_ops = {
1587 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1588 pm_runtime_force_resume)
1589 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
1590 sdhci_msm_runtime_resume,
1591 NULL)
1592 };
1593
1594 static struct platform_driver sdhci_msm_driver = {
1595 .probe = sdhci_msm_probe,
1596 .remove = sdhci_msm_remove,
1597 .driver = {
1598 .name = "sdhci_msm",
1599 .of_match_table = sdhci_msm_dt_match,
1600 .pm = &sdhci_msm_pm_ops,
1601 },
1602 };
1603
1604 module_platform_driver(sdhci_msm_driver);
1605
1606 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
1607 MODULE_LICENSE("GPL v2");