]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mmc/host/sdhci-msm.c
Merge branch 'sfc-fix-bugs-introduced-by-XDP-patches'
[mirror_ubuntu-jammy-kernel.git] / drivers / mmc / host / sdhci-msm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/iopoll.h>
15 #include <linux/regulator/consumer.h>
16
17 #include "sdhci-pltfm.h"
18
19 #define CORE_MCI_VERSION 0x50
20 #define CORE_VERSION_MAJOR_SHIFT 28
21 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
22 #define CORE_VERSION_MINOR_MASK 0xff
23
24 #define CORE_MCI_GENERICS 0x70
25 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
26
27 #define HC_MODE_EN 0x1
28 #define CORE_POWER 0x0
29 #define CORE_SW_RST BIT(7)
30 #define FF_CLK_SW_RST_DIS BIT(13)
31
32 #define CORE_PWRCTL_BUS_OFF BIT(0)
33 #define CORE_PWRCTL_BUS_ON BIT(1)
34 #define CORE_PWRCTL_IO_LOW BIT(2)
35 #define CORE_PWRCTL_IO_HIGH BIT(3)
36 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
37 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
38 #define REQ_BUS_OFF BIT(0)
39 #define REQ_BUS_ON BIT(1)
40 #define REQ_IO_LOW BIT(2)
41 #define REQ_IO_HIGH BIT(3)
42 #define INT_MASK 0xf
43 #define MAX_PHASES 16
44 #define CORE_DLL_LOCK BIT(7)
45 #define CORE_DDR_DLL_LOCK BIT(11)
46 #define CORE_DLL_EN BIT(16)
47 #define CORE_CDR_EN BIT(17)
48 #define CORE_CK_OUT_EN BIT(18)
49 #define CORE_CDR_EXT_EN BIT(19)
50 #define CORE_DLL_PDN BIT(29)
51 #define CORE_DLL_RST BIT(30)
52 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
53
54 #define CORE_DDR_CAL_EN BIT(0)
55 #define CORE_FLL_CYCLE_CNT BIT(18)
56 #define CORE_DLL_CLOCK_DISABLE BIT(21)
57
58 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
59 #define CORE_CLK_PWRSAVE BIT(1)
60 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
61 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
62 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
63 #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15)
64 #define CORE_IO_PAD_PWR_SWITCH (1 << 16)
65 #define CORE_HC_SELECT_IN_EN BIT(18)
66 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
67 #define CORE_HC_SELECT_IN_MASK (7 << 19)
68
69 #define CORE_3_0V_SUPPORT (1 << 25)
70 #define CORE_1_8V_SUPPORT (1 << 26)
71 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
72
73 #define CORE_CSR_CDC_CTLR_CFG0 0x130
74 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
75 #define CORE_HW_AUTOCAL_ENA BIT(17)
76
77 #define CORE_CSR_CDC_CTLR_CFG1 0x134
78 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
79 #define CORE_TIMER_ENA BIT(16)
80
81 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
82 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
83 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
84 #define CORE_CDC_OFFSET_CFG 0x14C
85 #define CORE_CSR_CDC_DELAY_CFG 0x150
86 #define CORE_CDC_SLAVE_DDA_CFG 0x160
87 #define CORE_CSR_CDC_STATUS0 0x164
88 #define CORE_CALIBRATION_DONE BIT(0)
89
90 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
91
92 #define CORE_CSR_CDC_GEN_CFG 0x178
93 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
94 #define CORE_CDC_SWITCH_RC_EN BIT(1)
95
96 #define CORE_CDC_T4_DLY_SEL BIT(0)
97 #define CORE_CMDIN_RCLK_EN BIT(1)
98 #define CORE_START_CDC_TRAFFIC BIT(6)
99
100 #define CORE_PWRSAVE_DLL BIT(3)
101
102 #define DDR_CONFIG_POR_VAL 0x80040853
103
104
105 #define INVALID_TUNING_PHASE -1
106 #define SDHCI_MSM_MIN_CLOCK 400000
107 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
108
109 #define CDR_SELEXT_SHIFT 20
110 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
111 #define CMUX_SHIFT_PHASE_SHIFT 24
112 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
113
114 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
115
116 /* Timeout value to avoid infinite waiting for pwr_irq */
117 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
118
119 #define msm_host_readl(msm_host, host, offset) \
120 msm_host->var_ops->msm_readl_relaxed(host, offset)
121
122 #define msm_host_writel(msm_host, val, host, offset) \
123 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
124
125 struct sdhci_msm_offset {
126 u32 core_hc_mode;
127 u32 core_mci_data_cnt;
128 u32 core_mci_status;
129 u32 core_mci_fifo_cnt;
130 u32 core_mci_version;
131 u32 core_generics;
132 u32 core_testbus_config;
133 u32 core_testbus_sel2_bit;
134 u32 core_testbus_ena;
135 u32 core_testbus_sel2;
136 u32 core_pwrctl_status;
137 u32 core_pwrctl_mask;
138 u32 core_pwrctl_clear;
139 u32 core_pwrctl_ctl;
140 u32 core_sdcc_debug_reg;
141 u32 core_dll_config;
142 u32 core_dll_status;
143 u32 core_vendor_spec;
144 u32 core_vendor_spec_adma_err_addr0;
145 u32 core_vendor_spec_adma_err_addr1;
146 u32 core_vendor_spec_func2;
147 u32 core_vendor_spec_capabilities0;
148 u32 core_ddr_200_cfg;
149 u32 core_vendor_spec3;
150 u32 core_dll_config_2;
151 u32 core_ddr_config;
152 u32 core_ddr_config_2;
153 };
154
155 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
156 .core_mci_data_cnt = 0x35c,
157 .core_mci_status = 0x324,
158 .core_mci_fifo_cnt = 0x308,
159 .core_mci_version = 0x318,
160 .core_generics = 0x320,
161 .core_testbus_config = 0x32c,
162 .core_testbus_sel2_bit = 3,
163 .core_testbus_ena = (1 << 31),
164 .core_testbus_sel2 = (1 << 3),
165 .core_pwrctl_status = 0x240,
166 .core_pwrctl_mask = 0x244,
167 .core_pwrctl_clear = 0x248,
168 .core_pwrctl_ctl = 0x24c,
169 .core_sdcc_debug_reg = 0x358,
170 .core_dll_config = 0x200,
171 .core_dll_status = 0x208,
172 .core_vendor_spec = 0x20c,
173 .core_vendor_spec_adma_err_addr0 = 0x214,
174 .core_vendor_spec_adma_err_addr1 = 0x218,
175 .core_vendor_spec_func2 = 0x210,
176 .core_vendor_spec_capabilities0 = 0x21c,
177 .core_ddr_200_cfg = 0x224,
178 .core_vendor_spec3 = 0x250,
179 .core_dll_config_2 = 0x254,
180 .core_ddr_config = 0x258,
181 .core_ddr_config_2 = 0x25c,
182 };
183
184 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
185 .core_hc_mode = 0x78,
186 .core_mci_data_cnt = 0x30,
187 .core_mci_status = 0x34,
188 .core_mci_fifo_cnt = 0x44,
189 .core_mci_version = 0x050,
190 .core_generics = 0x70,
191 .core_testbus_config = 0x0cc,
192 .core_testbus_sel2_bit = 4,
193 .core_testbus_ena = (1 << 3),
194 .core_testbus_sel2 = (1 << 4),
195 .core_pwrctl_status = 0xdc,
196 .core_pwrctl_mask = 0xe0,
197 .core_pwrctl_clear = 0xe4,
198 .core_pwrctl_ctl = 0xe8,
199 .core_sdcc_debug_reg = 0x124,
200 .core_dll_config = 0x100,
201 .core_dll_status = 0x108,
202 .core_vendor_spec = 0x10c,
203 .core_vendor_spec_adma_err_addr0 = 0x114,
204 .core_vendor_spec_adma_err_addr1 = 0x118,
205 .core_vendor_spec_func2 = 0x110,
206 .core_vendor_spec_capabilities0 = 0x11c,
207 .core_ddr_200_cfg = 0x184,
208 .core_vendor_spec3 = 0x1b0,
209 .core_dll_config_2 = 0x1b4,
210 .core_ddr_config = 0x1b8,
211 .core_ddr_config_2 = 0x1bc,
212 };
213
214 struct sdhci_msm_variant_ops {
215 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
216 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
217 u32 offset);
218 };
219
220 /*
221 * From V5, register spaces have changed. Wrap this info in a structure
222 * and choose the data_structure based on version info mentioned in DT.
223 */
224 struct sdhci_msm_variant_info {
225 bool mci_removed;
226 bool restore_dll_config;
227 const struct sdhci_msm_variant_ops *var_ops;
228 const struct sdhci_msm_offset *offset;
229 };
230
231 struct sdhci_msm_host {
232 struct platform_device *pdev;
233 void __iomem *core_mem; /* MSM SDCC mapped address */
234 int pwr_irq; /* power irq */
235 struct clk *bus_clk; /* SDHC bus voter clock */
236 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
237 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
238 unsigned long clk_rate;
239 struct mmc_host *mmc;
240 bool use_14lpp_dll_reset;
241 bool tuning_done;
242 bool calibration_done;
243 u8 saved_tuning_phase;
244 bool use_cdclp533;
245 u32 curr_pwr_state;
246 u32 curr_io_level;
247 wait_queue_head_t pwr_irq_wait;
248 bool pwr_irq_flag;
249 u32 caps_0;
250 bool mci_removed;
251 bool restore_dll_config;
252 const struct sdhci_msm_variant_ops *var_ops;
253 const struct sdhci_msm_offset *offset;
254 bool use_cdr;
255 u32 transfer_mode;
256 };
257
258 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
259 {
260 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
261 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
262
263 return msm_host->offset;
264 }
265
266 /*
267 * APIs to read/write to vendor specific registers which were there in the
268 * core_mem region before MCI was removed.
269 */
270 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
271 u32 offset)
272 {
273 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
274 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
275
276 return readl_relaxed(msm_host->core_mem + offset);
277 }
278
279 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
280 u32 offset)
281 {
282 return readl_relaxed(host->ioaddr + offset);
283 }
284
285 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
286 struct sdhci_host *host, u32 offset)
287 {
288 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
289 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
290
291 writel_relaxed(val, msm_host->core_mem + offset);
292 }
293
294 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
295 struct sdhci_host *host, u32 offset)
296 {
297 writel_relaxed(val, host->ioaddr + offset);
298 }
299
300 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
301 unsigned int clock)
302 {
303 struct mmc_ios ios = host->mmc->ios;
304 /*
305 * The SDHC requires internal clock frequency to be double the
306 * actual clock that will be set for DDR mode. The controller
307 * uses the faster clock(100/400MHz) for some of its parts and
308 * send the actual required clock (50/200MHz) to the card.
309 */
310 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
311 ios.timing == MMC_TIMING_MMC_DDR52 ||
312 ios.timing == MMC_TIMING_MMC_HS400 ||
313 host->flags & SDHCI_HS400_TUNING)
314 clock *= 2;
315 return clock;
316 }
317
318 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
319 unsigned int clock)
320 {
321 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
322 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
323 struct mmc_ios curr_ios = host->mmc->ios;
324 struct clk *core_clk = msm_host->bulk_clks[0].clk;
325 int rc;
326
327 clock = msm_get_clock_rate_for_bus_mode(host, clock);
328 rc = clk_set_rate(core_clk, clock);
329 if (rc) {
330 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
331 mmc_hostname(host->mmc), clock,
332 curr_ios.timing);
333 return;
334 }
335 msm_host->clk_rate = clock;
336 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
337 mmc_hostname(host->mmc), clk_get_rate(core_clk),
338 curr_ios.timing);
339 }
340
341 /* Platform specific tuning */
342 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
343 {
344 u32 wait_cnt = 50;
345 u8 ck_out_en;
346 struct mmc_host *mmc = host->mmc;
347 const struct sdhci_msm_offset *msm_offset =
348 sdhci_priv_msm_offset(host);
349
350 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
351 ck_out_en = !!(readl_relaxed(host->ioaddr +
352 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
353
354 while (ck_out_en != poll) {
355 if (--wait_cnt == 0) {
356 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
357 mmc_hostname(mmc), poll);
358 return -ETIMEDOUT;
359 }
360 udelay(1);
361
362 ck_out_en = !!(readl_relaxed(host->ioaddr +
363 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
364 }
365
366 return 0;
367 }
368
369 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
370 {
371 int rc;
372 static const u8 grey_coded_phase_table[] = {
373 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
374 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
375 };
376 unsigned long flags;
377 u32 config;
378 struct mmc_host *mmc = host->mmc;
379 const struct sdhci_msm_offset *msm_offset =
380 sdhci_priv_msm_offset(host);
381
382 if (phase > 0xf)
383 return -EINVAL;
384
385 spin_lock_irqsave(&host->lock, flags);
386
387 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
388 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
389 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
390 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
391
392 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
393 rc = msm_dll_poll_ck_out_en(host, 0);
394 if (rc)
395 goto err_out;
396
397 /*
398 * Write the selected DLL clock output phase (0 ... 15)
399 * to CDR_SELEXT bit field of DLL_CONFIG register.
400 */
401 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
402 config &= ~CDR_SELEXT_MASK;
403 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
404 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
405
406 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
407 config |= CORE_CK_OUT_EN;
408 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
409
410 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
411 rc = msm_dll_poll_ck_out_en(host, 1);
412 if (rc)
413 goto err_out;
414
415 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
416 config |= CORE_CDR_EN;
417 config &= ~CORE_CDR_EXT_EN;
418 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
419 goto out;
420
421 err_out:
422 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
423 mmc_hostname(mmc), phase);
424 out:
425 spin_unlock_irqrestore(&host->lock, flags);
426 return rc;
427 }
428
429 /*
430 * Find out the greatest range of consecuitive selected
431 * DLL clock output phases that can be used as sampling
432 * setting for SD3.0 UHS-I card read operation (in SDR104
433 * timing mode) or for eMMC4.5 card read operation (in
434 * HS400/HS200 timing mode).
435 * Select the 3/4 of the range and configure the DLL with the
436 * selected DLL clock output phase.
437 */
438
439 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
440 u8 *phase_table, u8 total_phases)
441 {
442 int ret;
443 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
444 u8 phases_per_row[MAX_PHASES] = { 0 };
445 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
446 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
447 bool phase_0_found = false, phase_15_found = false;
448 struct mmc_host *mmc = host->mmc;
449
450 if (!total_phases || (total_phases > MAX_PHASES)) {
451 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
452 mmc_hostname(mmc), total_phases);
453 return -EINVAL;
454 }
455
456 for (cnt = 0; cnt < total_phases; cnt++) {
457 ranges[row_index][col_index] = phase_table[cnt];
458 phases_per_row[row_index] += 1;
459 col_index++;
460
461 if ((cnt + 1) == total_phases) {
462 continue;
463 /* check if next phase in phase_table is consecutive or not */
464 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
465 row_index++;
466 col_index = 0;
467 }
468 }
469
470 if (row_index >= MAX_PHASES)
471 return -EINVAL;
472
473 /* Check if phase-0 is present in first valid window? */
474 if (!ranges[0][0]) {
475 phase_0_found = true;
476 phase_0_raw_index = 0;
477 /* Check if cycle exist between 2 valid windows */
478 for (cnt = 1; cnt <= row_index; cnt++) {
479 if (phases_per_row[cnt]) {
480 for (i = 0; i < phases_per_row[cnt]; i++) {
481 if (ranges[cnt][i] == 15) {
482 phase_15_found = true;
483 phase_15_raw_index = cnt;
484 break;
485 }
486 }
487 }
488 }
489 }
490
491 /* If 2 valid windows form cycle then merge them as single window */
492 if (phase_0_found && phase_15_found) {
493 /* number of phases in raw where phase 0 is present */
494 u8 phases_0 = phases_per_row[phase_0_raw_index];
495 /* number of phases in raw where phase 15 is present */
496 u8 phases_15 = phases_per_row[phase_15_raw_index];
497
498 if (phases_0 + phases_15 >= MAX_PHASES)
499 /*
500 * If there are more than 1 phase windows then total
501 * number of phases in both the windows should not be
502 * more than or equal to MAX_PHASES.
503 */
504 return -EINVAL;
505
506 /* Merge 2 cyclic windows */
507 i = phases_15;
508 for (cnt = 0; cnt < phases_0; cnt++) {
509 ranges[phase_15_raw_index][i] =
510 ranges[phase_0_raw_index][cnt];
511 if (++i >= MAX_PHASES)
512 break;
513 }
514
515 phases_per_row[phase_0_raw_index] = 0;
516 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
517 }
518
519 for (cnt = 0; cnt <= row_index; cnt++) {
520 if (phases_per_row[cnt] > curr_max) {
521 curr_max = phases_per_row[cnt];
522 selected_row_index = cnt;
523 }
524 }
525
526 i = (curr_max * 3) / 4;
527 if (i)
528 i--;
529
530 ret = ranges[selected_row_index][i];
531
532 if (ret >= MAX_PHASES) {
533 ret = -EINVAL;
534 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
535 mmc_hostname(mmc), ret);
536 }
537
538 return ret;
539 }
540
541 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
542 {
543 u32 mclk_freq = 0, config;
544 const struct sdhci_msm_offset *msm_offset =
545 sdhci_priv_msm_offset(host);
546
547 /* Program the MCLK value to MCLK_FREQ bit field */
548 if (host->clock <= 112000000)
549 mclk_freq = 0;
550 else if (host->clock <= 125000000)
551 mclk_freq = 1;
552 else if (host->clock <= 137000000)
553 mclk_freq = 2;
554 else if (host->clock <= 150000000)
555 mclk_freq = 3;
556 else if (host->clock <= 162000000)
557 mclk_freq = 4;
558 else if (host->clock <= 175000000)
559 mclk_freq = 5;
560 else if (host->clock <= 187000000)
561 mclk_freq = 6;
562 else if (host->clock <= 200000000)
563 mclk_freq = 7;
564
565 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
566 config &= ~CMUX_SHIFT_PHASE_MASK;
567 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
568 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
569 }
570
571 /* Initialize the DLL (Programmable Delay Line) */
572 static int msm_init_cm_dll(struct sdhci_host *host)
573 {
574 struct mmc_host *mmc = host->mmc;
575 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
576 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
577 int wait_cnt = 50;
578 unsigned long flags, xo_clk = 0;
579 u32 config;
580 const struct sdhci_msm_offset *msm_offset =
581 msm_host->offset;
582
583 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
584 xo_clk = clk_get_rate(msm_host->xo_clk);
585
586 spin_lock_irqsave(&host->lock, flags);
587
588 /*
589 * Make sure that clock is always enabled when DLL
590 * tuning is in progress. Keeping PWRSAVE ON may
591 * turn off the clock.
592 */
593 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
594 config &= ~CORE_CLK_PWRSAVE;
595 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
596
597 if (msm_host->use_14lpp_dll_reset) {
598 config = readl_relaxed(host->ioaddr +
599 msm_offset->core_dll_config);
600 config &= ~CORE_CK_OUT_EN;
601 writel_relaxed(config, host->ioaddr +
602 msm_offset->core_dll_config);
603
604 config = readl_relaxed(host->ioaddr +
605 msm_offset->core_dll_config_2);
606 config |= CORE_DLL_CLOCK_DISABLE;
607 writel_relaxed(config, host->ioaddr +
608 msm_offset->core_dll_config_2);
609 }
610
611 config = readl_relaxed(host->ioaddr +
612 msm_offset->core_dll_config);
613 config |= CORE_DLL_RST;
614 writel_relaxed(config, host->ioaddr +
615 msm_offset->core_dll_config);
616
617 config = readl_relaxed(host->ioaddr +
618 msm_offset->core_dll_config);
619 config |= CORE_DLL_PDN;
620 writel_relaxed(config, host->ioaddr +
621 msm_offset->core_dll_config);
622 msm_cm_dll_set_freq(host);
623
624 if (msm_host->use_14lpp_dll_reset &&
625 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
626 u32 mclk_freq = 0;
627
628 config = readl_relaxed(host->ioaddr +
629 msm_offset->core_dll_config_2);
630 config &= CORE_FLL_CYCLE_CNT;
631 if (config)
632 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
633 xo_clk);
634 else
635 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
636 xo_clk);
637
638 config = readl_relaxed(host->ioaddr +
639 msm_offset->core_dll_config_2);
640 config &= ~(0xFF << 10);
641 config |= mclk_freq << 10;
642
643 writel_relaxed(config, host->ioaddr +
644 msm_offset->core_dll_config_2);
645 /* wait for 5us before enabling DLL clock */
646 udelay(5);
647 }
648
649 config = readl_relaxed(host->ioaddr +
650 msm_offset->core_dll_config);
651 config &= ~CORE_DLL_RST;
652 writel_relaxed(config, host->ioaddr +
653 msm_offset->core_dll_config);
654
655 config = readl_relaxed(host->ioaddr +
656 msm_offset->core_dll_config);
657 config &= ~CORE_DLL_PDN;
658 writel_relaxed(config, host->ioaddr +
659 msm_offset->core_dll_config);
660
661 if (msm_host->use_14lpp_dll_reset) {
662 msm_cm_dll_set_freq(host);
663 config = readl_relaxed(host->ioaddr +
664 msm_offset->core_dll_config_2);
665 config &= ~CORE_DLL_CLOCK_DISABLE;
666 writel_relaxed(config, host->ioaddr +
667 msm_offset->core_dll_config_2);
668 }
669
670 config = readl_relaxed(host->ioaddr +
671 msm_offset->core_dll_config);
672 config |= CORE_DLL_EN;
673 writel_relaxed(config, host->ioaddr +
674 msm_offset->core_dll_config);
675
676 config = readl_relaxed(host->ioaddr +
677 msm_offset->core_dll_config);
678 config |= CORE_CK_OUT_EN;
679 writel_relaxed(config, host->ioaddr +
680 msm_offset->core_dll_config);
681
682 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
683 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
684 CORE_DLL_LOCK)) {
685 /* max. wait for 50us sec for LOCK bit to be set */
686 if (--wait_cnt == 0) {
687 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
688 mmc_hostname(mmc));
689 spin_unlock_irqrestore(&host->lock, flags);
690 return -ETIMEDOUT;
691 }
692 udelay(1);
693 }
694
695 spin_unlock_irqrestore(&host->lock, flags);
696 return 0;
697 }
698
699 static void msm_hc_select_default(struct sdhci_host *host)
700 {
701 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
702 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
703 u32 config;
704 const struct sdhci_msm_offset *msm_offset =
705 msm_host->offset;
706
707 if (!msm_host->use_cdclp533) {
708 config = readl_relaxed(host->ioaddr +
709 msm_offset->core_vendor_spec3);
710 config &= ~CORE_PWRSAVE_DLL;
711 writel_relaxed(config, host->ioaddr +
712 msm_offset->core_vendor_spec3);
713 }
714
715 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
716 config &= ~CORE_HC_MCLK_SEL_MASK;
717 config |= CORE_HC_MCLK_SEL_DFLT;
718 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
719
720 /*
721 * Disable HC_SELECT_IN to be able to use the UHS mode select
722 * configuration from Host Control2 register for all other
723 * modes.
724 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
725 * in VENDOR_SPEC_FUNC
726 */
727 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
728 config &= ~CORE_HC_SELECT_IN_EN;
729 config &= ~CORE_HC_SELECT_IN_MASK;
730 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
731
732 /*
733 * Make sure above writes impacting free running MCLK are completed
734 * before changing the clk_rate at GCC.
735 */
736 wmb();
737 }
738
739 static void msm_hc_select_hs400(struct sdhci_host *host)
740 {
741 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
742 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
743 struct mmc_ios ios = host->mmc->ios;
744 u32 config, dll_lock;
745 int rc;
746 const struct sdhci_msm_offset *msm_offset =
747 msm_host->offset;
748
749 /* Select the divided clock (free running MCLK/2) */
750 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
751 config &= ~CORE_HC_MCLK_SEL_MASK;
752 config |= CORE_HC_MCLK_SEL_HS400;
753
754 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
755 /*
756 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
757 * register
758 */
759 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
760 !msm_host->calibration_done) {
761 config = readl_relaxed(host->ioaddr +
762 msm_offset->core_vendor_spec);
763 config |= CORE_HC_SELECT_IN_HS400;
764 config |= CORE_HC_SELECT_IN_EN;
765 writel_relaxed(config, host->ioaddr +
766 msm_offset->core_vendor_spec);
767 }
768 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
769 /*
770 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
771 * core_dll_status to be set. This should get set
772 * within 15 us at 200 MHz.
773 */
774 rc = readl_relaxed_poll_timeout(host->ioaddr +
775 msm_offset->core_dll_status,
776 dll_lock,
777 (dll_lock &
778 (CORE_DLL_LOCK |
779 CORE_DDR_DLL_LOCK)), 10,
780 1000);
781 if (rc == -ETIMEDOUT)
782 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
783 mmc_hostname(host->mmc), dll_lock);
784 }
785 /*
786 * Make sure above writes impacting free running MCLK are completed
787 * before changing the clk_rate at GCC.
788 */
789 wmb();
790 }
791
792 /*
793 * sdhci_msm_hc_select_mode :- In general all timing modes are
794 * controlled via UHS mode select in Host Control2 register.
795 * eMMC specific HS200/HS400 doesn't have their respective modes
796 * defined here, hence we use these values.
797 *
798 * HS200 - SDR104 (Since they both are equivalent in functionality)
799 * HS400 - This involves multiple configurations
800 * Initially SDR104 - when tuning is required as HS200
801 * Then when switching to DDR @ 400MHz (HS400) we use
802 * the vendor specific HC_SELECT_IN to control the mode.
803 *
804 * In addition to controlling the modes we also need to select the
805 * correct input clock for DLL depending on the mode.
806 *
807 * HS400 - divided clock (free running MCLK/2)
808 * All other modes - default (free running MCLK)
809 */
810 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
811 {
812 struct mmc_ios ios = host->mmc->ios;
813
814 if (ios.timing == MMC_TIMING_MMC_HS400 ||
815 host->flags & SDHCI_HS400_TUNING)
816 msm_hc_select_hs400(host);
817 else
818 msm_hc_select_default(host);
819 }
820
821 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
822 {
823 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
824 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
825 u32 config, calib_done;
826 int ret;
827 const struct sdhci_msm_offset *msm_offset =
828 msm_host->offset;
829
830 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
831
832 /*
833 * Retuning in HS400 (DDR mode) will fail, just reset the
834 * tuning block and restore the saved tuning phase.
835 */
836 ret = msm_init_cm_dll(host);
837 if (ret)
838 goto out;
839
840 /* Set the selected phase in delay line hw block */
841 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
842 if (ret)
843 goto out;
844
845 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
846 config |= CORE_CMD_DAT_TRACK_SEL;
847 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
848
849 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
850 config &= ~CORE_CDC_T4_DLY_SEL;
851 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
852
853 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
854 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
855 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
856
857 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
858 config |= CORE_CDC_SWITCH_RC_EN;
859 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
860
861 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
862 config &= ~CORE_START_CDC_TRAFFIC;
863 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
864
865 /* Perform CDC Register Initialization Sequence */
866
867 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
868 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
869 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
870 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
871 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
872 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
873 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
874 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
875 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
876
877 /* CDC HW Calibration */
878
879 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
880 config |= CORE_SW_TRIG_FULL_CALIB;
881 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
882
883 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
884 config &= ~CORE_SW_TRIG_FULL_CALIB;
885 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
886
887 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
888 config |= CORE_HW_AUTOCAL_ENA;
889 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
890
891 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
892 config |= CORE_TIMER_ENA;
893 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
894
895 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
896 calib_done,
897 (calib_done & CORE_CALIBRATION_DONE),
898 1, 50);
899
900 if (ret == -ETIMEDOUT) {
901 pr_err("%s: %s: CDC calibration was not completed\n",
902 mmc_hostname(host->mmc), __func__);
903 goto out;
904 }
905
906 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
907 & CORE_CDC_ERROR_CODE_MASK;
908 if (ret) {
909 pr_err("%s: %s: CDC error code %d\n",
910 mmc_hostname(host->mmc), __func__, ret);
911 ret = -EINVAL;
912 goto out;
913 }
914
915 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
916 config |= CORE_START_CDC_TRAFFIC;
917 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
918 out:
919 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
920 __func__, ret);
921 return ret;
922 }
923
924 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
925 {
926 struct mmc_host *mmc = host->mmc;
927 u32 dll_status, config;
928 int ret;
929 const struct sdhci_msm_offset *msm_offset =
930 sdhci_priv_msm_offset(host);
931
932 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
933
934 /*
935 * Currently the core_ddr_config register defaults to desired
936 * configuration on reset. Currently reprogramming the power on
937 * reset (POR) value in case it might have been modified by
938 * bootloaders. In the future, if this changes, then the desired
939 * values will need to be programmed appropriately.
940 */
941 writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr +
942 msm_offset->core_ddr_config);
943
944 if (mmc->ios.enhanced_strobe) {
945 config = readl_relaxed(host->ioaddr +
946 msm_offset->core_ddr_200_cfg);
947 config |= CORE_CMDIN_RCLK_EN;
948 writel_relaxed(config, host->ioaddr +
949 msm_offset->core_ddr_200_cfg);
950 }
951
952 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
953 config |= CORE_DDR_CAL_EN;
954 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
955
956 ret = readl_relaxed_poll_timeout(host->ioaddr +
957 msm_offset->core_dll_status,
958 dll_status,
959 (dll_status & CORE_DDR_DLL_LOCK),
960 10, 1000);
961
962 if (ret == -ETIMEDOUT) {
963 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
964 mmc_hostname(host->mmc), __func__);
965 goto out;
966 }
967
968 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
969 config |= CORE_PWRSAVE_DLL;
970 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
971
972 /*
973 * Drain writebuffer to ensure above DLL calibration
974 * and PWRSAVE DLL is enabled.
975 */
976 wmb();
977 out:
978 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
979 __func__, ret);
980 return ret;
981 }
982
983 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
984 {
985 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
986 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
987 struct mmc_host *mmc = host->mmc;
988 int ret;
989 u32 config;
990 const struct sdhci_msm_offset *msm_offset =
991 msm_host->offset;
992
993 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
994
995 /*
996 * Retuning in HS400 (DDR mode) will fail, just reset the
997 * tuning block and restore the saved tuning phase.
998 */
999 ret = msm_init_cm_dll(host);
1000 if (ret)
1001 goto out;
1002
1003 if (!mmc->ios.enhanced_strobe) {
1004 /* Set the selected phase in delay line hw block */
1005 ret = msm_config_cm_dll_phase(host,
1006 msm_host->saved_tuning_phase);
1007 if (ret)
1008 goto out;
1009 config = readl_relaxed(host->ioaddr +
1010 msm_offset->core_dll_config);
1011 config |= CORE_CMD_DAT_TRACK_SEL;
1012 writel_relaxed(config, host->ioaddr +
1013 msm_offset->core_dll_config);
1014 }
1015
1016 if (msm_host->use_cdclp533)
1017 ret = sdhci_msm_cdclp533_calibration(host);
1018 else
1019 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1020 out:
1021 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1022 __func__, ret);
1023 return ret;
1024 }
1025
1026 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1027 {
1028 struct mmc_ios *ios = &host->mmc->ios;
1029
1030 /*
1031 * Tuning is required for SDR104, HS200 and HS400 cards and
1032 * if clock frequency is greater than 100MHz in these modes.
1033 */
1034 if (host->clock <= CORE_FREQ_100MHZ ||
1035 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1036 ios->timing == MMC_TIMING_MMC_HS200 ||
1037 ios->timing == MMC_TIMING_UHS_SDR104) ||
1038 ios->enhanced_strobe)
1039 return false;
1040
1041 return true;
1042 }
1043
1044 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1045 {
1046 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1047 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1048 int ret;
1049
1050 /*
1051 * SDR DLL comes into picture only for timing modes which needs
1052 * tuning.
1053 */
1054 if (!sdhci_msm_is_tuning_needed(host))
1055 return 0;
1056
1057 /* Reset the tuning block */
1058 ret = msm_init_cm_dll(host);
1059 if (ret)
1060 return ret;
1061
1062 /* Restore the tuning block */
1063 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1064
1065 return ret;
1066 }
1067
1068 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1069 {
1070 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1071 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1072 msm_offset->core_dll_config);
1073
1074 config = oldconfig;
1075 if (enable) {
1076 config |= CORE_CDR_EN;
1077 config &= ~CORE_CDR_EXT_EN;
1078 } else {
1079 config &= ~CORE_CDR_EN;
1080 config |= CORE_CDR_EXT_EN;
1081 }
1082
1083 if (config != oldconfig) {
1084 writel_relaxed(config, host->ioaddr +
1085 msm_offset->core_dll_config);
1086 }
1087 }
1088
1089 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1090 {
1091 struct sdhci_host *host = mmc_priv(mmc);
1092 int tuning_seq_cnt = 3;
1093 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1094 int rc;
1095 struct mmc_ios ios = host->mmc->ios;
1096 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1097 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1098
1099 if (!sdhci_msm_is_tuning_needed(host)) {
1100 msm_host->use_cdr = false;
1101 sdhci_msm_set_cdr(host, false);
1102 return 0;
1103 }
1104
1105 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1106 msm_host->use_cdr = true;
1107
1108 /*
1109 * For HS400 tuning in HS200 timing requires:
1110 * - select MCLK/2 in VENDOR_SPEC
1111 * - program MCLK to 400MHz (or nearest supported) in GCC
1112 */
1113 if (host->flags & SDHCI_HS400_TUNING) {
1114 sdhci_msm_hc_select_mode(host);
1115 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1116 host->flags &= ~SDHCI_HS400_TUNING;
1117 }
1118
1119 retry:
1120 /* First of all reset the tuning block */
1121 rc = msm_init_cm_dll(host);
1122 if (rc)
1123 return rc;
1124
1125 phase = 0;
1126 do {
1127 /* Set the phase in delay line hw block */
1128 rc = msm_config_cm_dll_phase(host, phase);
1129 if (rc)
1130 return rc;
1131
1132 rc = mmc_send_tuning(mmc, opcode, NULL);
1133 if (!rc) {
1134 /* Tuning is successful at this tuning point */
1135 tuned_phases[tuned_phase_cnt++] = phase;
1136 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1137 mmc_hostname(mmc), phase);
1138 }
1139 } while (++phase < ARRAY_SIZE(tuned_phases));
1140
1141 if (tuned_phase_cnt) {
1142 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1143 tuned_phase_cnt);
1144 if (rc < 0)
1145 return rc;
1146 else
1147 phase = rc;
1148
1149 /*
1150 * Finally set the selected phase in delay
1151 * line hw block.
1152 */
1153 rc = msm_config_cm_dll_phase(host, phase);
1154 if (rc)
1155 return rc;
1156 msm_host->saved_tuning_phase = phase;
1157 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1158 mmc_hostname(mmc), phase);
1159 } else {
1160 if (--tuning_seq_cnt)
1161 goto retry;
1162 /* Tuning failed */
1163 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1164 mmc_hostname(mmc));
1165 rc = -EIO;
1166 }
1167
1168 if (!rc)
1169 msm_host->tuning_done = true;
1170 return rc;
1171 }
1172
1173 /*
1174 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1175 * This needs to be done for both tuning and enhanced_strobe mode.
1176 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1177 * fixed feedback clock is used.
1178 */
1179 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1180 {
1181 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1182 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1183 int ret;
1184
1185 if (host->clock > CORE_FREQ_100MHZ &&
1186 (msm_host->tuning_done || ios->enhanced_strobe) &&
1187 !msm_host->calibration_done) {
1188 ret = sdhci_msm_hs400_dll_calibration(host);
1189 if (!ret)
1190 msm_host->calibration_done = true;
1191 else
1192 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1193 mmc_hostname(host->mmc), ret);
1194 }
1195 }
1196
1197 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1198 unsigned int uhs)
1199 {
1200 struct mmc_host *mmc = host->mmc;
1201 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1202 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1203 u16 ctrl_2;
1204 u32 config;
1205 const struct sdhci_msm_offset *msm_offset =
1206 msm_host->offset;
1207
1208 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1209 /* Select Bus Speed Mode for host */
1210 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1211 switch (uhs) {
1212 case MMC_TIMING_UHS_SDR12:
1213 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1214 break;
1215 case MMC_TIMING_UHS_SDR25:
1216 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1217 break;
1218 case MMC_TIMING_UHS_SDR50:
1219 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1220 break;
1221 case MMC_TIMING_MMC_HS400:
1222 case MMC_TIMING_MMC_HS200:
1223 case MMC_TIMING_UHS_SDR104:
1224 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1225 break;
1226 case MMC_TIMING_UHS_DDR50:
1227 case MMC_TIMING_MMC_DDR52:
1228 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1229 break;
1230 }
1231
1232 /*
1233 * When clock frequency is less than 100MHz, the feedback clock must be
1234 * provided and DLL must not be used so that tuning can be skipped. To
1235 * provide feedback clock, the mode selection can be any value less
1236 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1237 */
1238 if (host->clock <= CORE_FREQ_100MHZ) {
1239 if (uhs == MMC_TIMING_MMC_HS400 ||
1240 uhs == MMC_TIMING_MMC_HS200 ||
1241 uhs == MMC_TIMING_UHS_SDR104)
1242 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1243 /*
1244 * DLL is not required for clock <= 100MHz
1245 * Thus, make sure DLL it is disabled when not required
1246 */
1247 config = readl_relaxed(host->ioaddr +
1248 msm_offset->core_dll_config);
1249 config |= CORE_DLL_RST;
1250 writel_relaxed(config, host->ioaddr +
1251 msm_offset->core_dll_config);
1252
1253 config = readl_relaxed(host->ioaddr +
1254 msm_offset->core_dll_config);
1255 config |= CORE_DLL_PDN;
1256 writel_relaxed(config, host->ioaddr +
1257 msm_offset->core_dll_config);
1258
1259 /*
1260 * The DLL needs to be restored and CDCLP533 recalibrated
1261 * when the clock frequency is set back to 400MHz.
1262 */
1263 msm_host->calibration_done = false;
1264 }
1265
1266 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1267 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1268 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1269
1270 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1271 sdhci_msm_hs400(host, &mmc->ios);
1272 }
1273
1274 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1275 {
1276 init_waitqueue_head(&msm_host->pwr_irq_wait);
1277 }
1278
1279 static inline void sdhci_msm_complete_pwr_irq_wait(
1280 struct sdhci_msm_host *msm_host)
1281 {
1282 wake_up(&msm_host->pwr_irq_wait);
1283 }
1284
1285 /*
1286 * sdhci_msm_check_power_status API should be called when registers writes
1287 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1288 * To what state the register writes will change the IO lines should be passed
1289 * as the argument req_type. This API will check whether the IO line's state
1290 * is already the expected state and will wait for power irq only if
1291 * power irq is expected to be trigerred based on the current IO line state
1292 * and expected IO line state.
1293 */
1294 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1295 {
1296 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1297 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1298 bool done = false;
1299 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1300 const struct sdhci_msm_offset *msm_offset =
1301 msm_host->offset;
1302
1303 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1304 mmc_hostname(host->mmc), __func__, req_type,
1305 msm_host->curr_pwr_state, msm_host->curr_io_level);
1306
1307 /*
1308 * The power interrupt will not be generated for signal voltage
1309 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1310 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1311 * it as always set.
1312 */
1313 if (!msm_host->mci_removed)
1314 val = msm_host_readl(msm_host, host,
1315 msm_offset->core_generics);
1316 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1317 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1318 return;
1319 }
1320
1321 /*
1322 * The IRQ for request type IO High/LOW will be generated when -
1323 * there is a state change in 1.8V enable bit (bit 3) of
1324 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1325 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1326 * to set it to 3.3V before card detection happens, the
1327 * IRQ doesn't get triggered as there is no state change in this bit.
1328 * The driver already handles this case by changing the IO voltage
1329 * level to high as part of controller power up sequence. Hence, check
1330 * for host->pwr to handle a case where IO voltage high request is
1331 * issued even before controller power up.
1332 */
1333 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1334 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1335 mmc_hostname(host->mmc), req_type);
1336 return;
1337 }
1338 if ((req_type & msm_host->curr_pwr_state) ||
1339 (req_type & msm_host->curr_io_level))
1340 done = true;
1341 /*
1342 * This is needed here to handle cases where register writes will
1343 * not change the current bus state or io level of the controller.
1344 * In this case, no power irq will be triggerred and we should
1345 * not wait.
1346 */
1347 if (!done) {
1348 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1349 msm_host->pwr_irq_flag,
1350 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1351 dev_warn(&msm_host->pdev->dev,
1352 "%s: pwr_irq for req: (%d) timed out\n",
1353 mmc_hostname(host->mmc), req_type);
1354 }
1355 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1356 __func__, req_type);
1357 }
1358
1359 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1360 {
1361 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1362 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1363 const struct sdhci_msm_offset *msm_offset =
1364 msm_host->offset;
1365
1366 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1367 mmc_hostname(host->mmc),
1368 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1369 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1370 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1371 }
1372
1373 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1374 {
1375 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1376 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1377 u32 irq_status, irq_ack = 0;
1378 int retry = 10;
1379 u32 pwr_state = 0, io_level = 0;
1380 u32 config;
1381 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1382
1383 irq_status = msm_host_readl(msm_host, host,
1384 msm_offset->core_pwrctl_status);
1385 irq_status &= INT_MASK;
1386
1387 msm_host_writel(msm_host, irq_status, host,
1388 msm_offset->core_pwrctl_clear);
1389
1390 /*
1391 * There is a rare HW scenario where the first clear pulse could be
1392 * lost when actual reset and clear/read of status register is
1393 * happening at a time. Hence, retry for at least 10 times to make
1394 * sure status register is cleared. Otherwise, this will result in
1395 * a spurious power IRQ resulting in system instability.
1396 */
1397 while (irq_status & msm_host_readl(msm_host, host,
1398 msm_offset->core_pwrctl_status)) {
1399 if (retry == 0) {
1400 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1401 mmc_hostname(host->mmc), irq_status);
1402 sdhci_msm_dump_pwr_ctrl_regs(host);
1403 WARN_ON(1);
1404 break;
1405 }
1406 msm_host_writel(msm_host, irq_status, host,
1407 msm_offset->core_pwrctl_clear);
1408 retry--;
1409 udelay(10);
1410 }
1411
1412 /* Handle BUS ON/OFF*/
1413 if (irq_status & CORE_PWRCTL_BUS_ON) {
1414 pwr_state = REQ_BUS_ON;
1415 io_level = REQ_IO_HIGH;
1416 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1417 }
1418 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1419 pwr_state = REQ_BUS_OFF;
1420 io_level = REQ_IO_LOW;
1421 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1422 }
1423 /* Handle IO LOW/HIGH */
1424 if (irq_status & CORE_PWRCTL_IO_LOW) {
1425 io_level = REQ_IO_LOW;
1426 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1427 }
1428 if (irq_status & CORE_PWRCTL_IO_HIGH) {
1429 io_level = REQ_IO_HIGH;
1430 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1431 }
1432
1433 /*
1434 * The driver has to acknowledge the interrupt, switch voltages and
1435 * report back if it succeded or not to this register. The voltage
1436 * switches are handled by the sdhci core, so just report success.
1437 */
1438 msm_host_writel(msm_host, irq_ack, host,
1439 msm_offset->core_pwrctl_ctl);
1440
1441 /*
1442 * If we don't have info regarding the voltage levels supported by
1443 * regulators, don't change the IO PAD PWR SWITCH.
1444 */
1445 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1446 u32 new_config;
1447 /*
1448 * We should unset IO PAD PWR switch only if the register write
1449 * can set IO lines high and the regulator also switches to 3 V.
1450 * Else, we should keep the IO PAD PWR switch set.
1451 * This is applicable to certain targets where eMMC vccq supply
1452 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1453 * IO PAD PWR switch must be kept set to reflect actual
1454 * regulator voltage. This way, during initialization of
1455 * controllers with only 1.8V, we will set the IO PAD bit
1456 * without waiting for a REQ_IO_LOW.
1457 */
1458 config = readl_relaxed(host->ioaddr +
1459 msm_offset->core_vendor_spec);
1460 new_config = config;
1461
1462 if ((io_level & REQ_IO_HIGH) &&
1463 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1464 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1465 else if ((io_level & REQ_IO_LOW) ||
1466 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1467 new_config |= CORE_IO_PAD_PWR_SWITCH;
1468
1469 if (config ^ new_config)
1470 writel_relaxed(new_config, host->ioaddr +
1471 msm_offset->core_vendor_spec);
1472 }
1473
1474 if (pwr_state)
1475 msm_host->curr_pwr_state = pwr_state;
1476 if (io_level)
1477 msm_host->curr_io_level = io_level;
1478
1479 pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1480 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1481 irq_ack);
1482 }
1483
1484 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1485 {
1486 struct sdhci_host *host = (struct sdhci_host *)data;
1487 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1488 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1489
1490 sdhci_msm_handle_pwr_irq(host, irq);
1491 msm_host->pwr_irq_flag = 1;
1492 sdhci_msm_complete_pwr_irq_wait(msm_host);
1493
1494
1495 return IRQ_HANDLED;
1496 }
1497
1498 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1499 {
1500 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1501 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1502 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1503
1504 return clk_round_rate(core_clk, ULONG_MAX);
1505 }
1506
1507 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1508 {
1509 return SDHCI_MSM_MIN_CLOCK;
1510 }
1511
1512 /**
1513 * __sdhci_msm_set_clock - sdhci_msm clock control.
1514 *
1515 * Description:
1516 * MSM controller does not use internal divider and
1517 * instead directly control the GCC clock as per
1518 * HW recommendation.
1519 **/
1520 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1521 {
1522 u16 clk;
1523 /*
1524 * Keep actual_clock as zero -
1525 * - since there is no divider used so no need of having actual_clock.
1526 * - MSM controller uses SDCLK for data timeout calculation. If
1527 * actual_clock is zero, host->clock is taken for calculation.
1528 */
1529 host->mmc->actual_clock = 0;
1530
1531 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1532
1533 if (clock == 0)
1534 return;
1535
1536 /*
1537 * MSM controller do not use clock divider.
1538 * Thus read SDHCI_CLOCK_CONTROL and only enable
1539 * clock with no divider value programmed.
1540 */
1541 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1542 sdhci_enable_clk(host, clk);
1543 }
1544
1545 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1546 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1547 {
1548 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1549 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1550
1551 if (!clock) {
1552 msm_host->clk_rate = clock;
1553 goto out;
1554 }
1555
1556 sdhci_msm_hc_select_mode(host);
1557
1558 msm_set_clock_rate_for_bus_mode(host, clock);
1559 out:
1560 __sdhci_msm_set_clock(host, clock);
1561 }
1562
1563 /*
1564 * Platform specific register write functions. This is so that, if any
1565 * register write needs to be followed up by platform specific actions,
1566 * they can be added here. These functions can go to sleep when writes
1567 * to certain registers are done.
1568 * These functions are relying on sdhci_set_ios not using spinlock.
1569 */
1570 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1571 {
1572 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1573 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1574 u32 req_type = 0;
1575
1576 switch (reg) {
1577 case SDHCI_HOST_CONTROL2:
1578 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1579 REQ_IO_HIGH;
1580 break;
1581 case SDHCI_SOFTWARE_RESET:
1582 if (host->pwr && (val & SDHCI_RESET_ALL))
1583 req_type = REQ_BUS_OFF;
1584 break;
1585 case SDHCI_POWER_CONTROL:
1586 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1587 break;
1588 case SDHCI_TRANSFER_MODE:
1589 msm_host->transfer_mode = val;
1590 break;
1591 case SDHCI_COMMAND:
1592 if (!msm_host->use_cdr)
1593 break;
1594 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1595 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1596 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1597 sdhci_msm_set_cdr(host, true);
1598 else
1599 sdhci_msm_set_cdr(host, false);
1600 break;
1601 }
1602
1603 if (req_type) {
1604 msm_host->pwr_irq_flag = 0;
1605 /*
1606 * Since this register write may trigger a power irq, ensure
1607 * all previous register writes are complete by this point.
1608 */
1609 mb();
1610 }
1611 return req_type;
1612 }
1613
1614 /* This function may sleep*/
1615 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1616 {
1617 u32 req_type = 0;
1618
1619 req_type = __sdhci_msm_check_write(host, val, reg);
1620 writew_relaxed(val, host->ioaddr + reg);
1621
1622 if (req_type)
1623 sdhci_msm_check_power_status(host, req_type);
1624 }
1625
1626 /* This function may sleep*/
1627 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1628 {
1629 u32 req_type = 0;
1630
1631 req_type = __sdhci_msm_check_write(host, val, reg);
1632
1633 writeb_relaxed(val, host->ioaddr + reg);
1634
1635 if (req_type)
1636 sdhci_msm_check_power_status(host, req_type);
1637 }
1638
1639 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1640 {
1641 struct mmc_host *mmc = msm_host->mmc;
1642 struct regulator *supply = mmc->supply.vqmmc;
1643 u32 caps = 0, config;
1644 struct sdhci_host *host = mmc_priv(mmc);
1645 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1646
1647 if (!IS_ERR(mmc->supply.vqmmc)) {
1648 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1649 caps |= CORE_1_8V_SUPPORT;
1650 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1651 caps |= CORE_3_0V_SUPPORT;
1652
1653 if (!caps)
1654 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1655 mmc_hostname(mmc));
1656 }
1657
1658 if (caps) {
1659 /*
1660 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1661 * bit can be used as required later on.
1662 */
1663 u32 io_level = msm_host->curr_io_level;
1664
1665 config = readl_relaxed(host->ioaddr +
1666 msm_offset->core_vendor_spec);
1667 config |= CORE_IO_PAD_PWR_SWITCH_EN;
1668
1669 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
1670 config &= ~CORE_IO_PAD_PWR_SWITCH;
1671 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1672 config |= CORE_IO_PAD_PWR_SWITCH;
1673
1674 writel_relaxed(config,
1675 host->ioaddr + msm_offset->core_vendor_spec);
1676 }
1677 msm_host->caps_0 |= caps;
1678 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1679 }
1680
1681 static const struct sdhci_msm_variant_ops mci_var_ops = {
1682 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1683 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1684 };
1685
1686 static const struct sdhci_msm_variant_ops v5_var_ops = {
1687 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1688 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1689 };
1690
1691 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1692 .var_ops = &mci_var_ops,
1693 .offset = &sdhci_msm_mci_offset,
1694 };
1695
1696 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1697 .mci_removed = true,
1698 .var_ops = &v5_var_ops,
1699 .offset = &sdhci_msm_v5_offset,
1700 };
1701
1702 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
1703 .mci_removed = true,
1704 .restore_dll_config = true,
1705 .var_ops = &v5_var_ops,
1706 .offset = &sdhci_msm_v5_offset,
1707 };
1708
1709 static const struct of_device_id sdhci_msm_dt_match[] = {
1710 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1711 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1712 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
1713 {},
1714 };
1715
1716 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1717
1718 static const struct sdhci_ops sdhci_msm_ops = {
1719 .reset = sdhci_reset,
1720 .set_clock = sdhci_msm_set_clock,
1721 .get_min_clock = sdhci_msm_get_min_clock,
1722 .get_max_clock = sdhci_msm_get_max_clock,
1723 .set_bus_width = sdhci_set_bus_width,
1724 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1725 .write_w = sdhci_msm_writew,
1726 .write_b = sdhci_msm_writeb,
1727 };
1728
1729 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1730 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1731 SDHCI_QUIRK_SINGLE_POWER_WRITE |
1732 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1733 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1734 .ops = &sdhci_msm_ops,
1735 };
1736
1737 static int sdhci_msm_probe(struct platform_device *pdev)
1738 {
1739 struct sdhci_host *host;
1740 struct sdhci_pltfm_host *pltfm_host;
1741 struct sdhci_msm_host *msm_host;
1742 struct resource *core_memres;
1743 struct clk *clk;
1744 int ret;
1745 u16 host_version, core_minor;
1746 u32 core_version, config;
1747 u8 core_major;
1748 const struct sdhci_msm_offset *msm_offset;
1749 const struct sdhci_msm_variant_info *var_info;
1750
1751 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1752 if (IS_ERR(host))
1753 return PTR_ERR(host);
1754
1755 host->sdma_boundary = 0;
1756 pltfm_host = sdhci_priv(host);
1757 msm_host = sdhci_pltfm_priv(pltfm_host);
1758 msm_host->mmc = host->mmc;
1759 msm_host->pdev = pdev;
1760
1761 ret = mmc_of_parse(host->mmc);
1762 if (ret)
1763 goto pltfm_free;
1764
1765 /*
1766 * Based on the compatible string, load the required msm host info from
1767 * the data associated with the version info.
1768 */
1769 var_info = of_device_get_match_data(&pdev->dev);
1770
1771 msm_host->mci_removed = var_info->mci_removed;
1772 msm_host->restore_dll_config = var_info->restore_dll_config;
1773 msm_host->var_ops = var_info->var_ops;
1774 msm_host->offset = var_info->offset;
1775
1776 msm_offset = msm_host->offset;
1777
1778 sdhci_get_of_property(pdev);
1779
1780 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1781
1782 /* Setup SDCC bus voter clock. */
1783 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1784 if (!IS_ERR(msm_host->bus_clk)) {
1785 /* Vote for max. clk rate for max. performance */
1786 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1787 if (ret)
1788 goto pltfm_free;
1789 ret = clk_prepare_enable(msm_host->bus_clk);
1790 if (ret)
1791 goto pltfm_free;
1792 }
1793
1794 /* Setup main peripheral bus clock */
1795 clk = devm_clk_get(&pdev->dev, "iface");
1796 if (IS_ERR(clk)) {
1797 ret = PTR_ERR(clk);
1798 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1799 goto bus_clk_disable;
1800 }
1801 msm_host->bulk_clks[1].clk = clk;
1802
1803 /* Setup SDC MMC clock */
1804 clk = devm_clk_get(&pdev->dev, "core");
1805 if (IS_ERR(clk)) {
1806 ret = PTR_ERR(clk);
1807 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1808 goto bus_clk_disable;
1809 }
1810 msm_host->bulk_clks[0].clk = clk;
1811
1812 /* Vote for maximum clock rate for maximum performance */
1813 ret = clk_set_rate(clk, INT_MAX);
1814 if (ret)
1815 dev_warn(&pdev->dev, "core clock boost failed\n");
1816
1817 clk = devm_clk_get(&pdev->dev, "cal");
1818 if (IS_ERR(clk))
1819 clk = NULL;
1820 msm_host->bulk_clks[2].clk = clk;
1821
1822 clk = devm_clk_get(&pdev->dev, "sleep");
1823 if (IS_ERR(clk))
1824 clk = NULL;
1825 msm_host->bulk_clks[3].clk = clk;
1826
1827 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1828 msm_host->bulk_clks);
1829 if (ret)
1830 goto bus_clk_disable;
1831
1832 /*
1833 * xo clock is needed for FLL feature of cm_dll.
1834 * In case if xo clock is not mentioned in DT, warn and proceed.
1835 */
1836 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1837 if (IS_ERR(msm_host->xo_clk)) {
1838 ret = PTR_ERR(msm_host->xo_clk);
1839 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1840 }
1841
1842 if (!msm_host->mci_removed) {
1843 core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1844 msm_host->core_mem = devm_ioremap_resource(&pdev->dev,
1845 core_memres);
1846
1847 if (IS_ERR(msm_host->core_mem)) {
1848 ret = PTR_ERR(msm_host->core_mem);
1849 goto clk_disable;
1850 }
1851 }
1852
1853 /* Reset the vendor spec register to power on reset state */
1854 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1855 host->ioaddr + msm_offset->core_vendor_spec);
1856
1857 if (!msm_host->mci_removed) {
1858 /* Set HC_MODE_EN bit in HC_MODE register */
1859 msm_host_writel(msm_host, HC_MODE_EN, host,
1860 msm_offset->core_hc_mode);
1861 config = msm_host_readl(msm_host, host,
1862 msm_offset->core_hc_mode);
1863 config |= FF_CLK_SW_RST_DIS;
1864 msm_host_writel(msm_host, config, host,
1865 msm_offset->core_hc_mode);
1866 }
1867
1868 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1869 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1870 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1871 SDHCI_VENDOR_VER_SHIFT));
1872
1873 core_version = msm_host_readl(msm_host, host,
1874 msm_offset->core_mci_version);
1875 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1876 CORE_VERSION_MAJOR_SHIFT;
1877 core_minor = core_version & CORE_VERSION_MINOR_MASK;
1878 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1879 core_version, core_major, core_minor);
1880
1881 if (core_major == 1 && core_minor >= 0x42)
1882 msm_host->use_14lpp_dll_reset = true;
1883
1884 /*
1885 * SDCC 5 controller with major version 1, minor version 0x34 and later
1886 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1887 */
1888 if (core_major == 1 && core_minor < 0x34)
1889 msm_host->use_cdclp533 = true;
1890
1891 /*
1892 * Support for some capabilities is not advertised by newer
1893 * controller versions and must be explicitly enabled.
1894 */
1895 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1896 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1897 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1898 writel_relaxed(config, host->ioaddr +
1899 msm_offset->core_vendor_spec_capabilities0);
1900 }
1901
1902 /*
1903 * Power on reset state may trigger power irq if previous status of
1904 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1905 * interrupt in GIC, any pending power irq interrupt should be
1906 * acknowledged. Otherwise power irq interrupt handler would be
1907 * fired prematurely.
1908 */
1909 sdhci_msm_handle_pwr_irq(host, 0);
1910
1911 /*
1912 * Ensure that above writes are propogated before interrupt enablement
1913 * in GIC.
1914 */
1915 mb();
1916
1917 /* Setup IRQ for handling power/voltage tasks with PMIC */
1918 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1919 if (msm_host->pwr_irq < 0) {
1920 ret = msm_host->pwr_irq;
1921 goto clk_disable;
1922 }
1923
1924 sdhci_msm_init_pwr_irq_wait(msm_host);
1925 /* Enable pwr irq interrupts */
1926 msm_host_writel(msm_host, INT_MASK, host,
1927 msm_offset->core_pwrctl_mask);
1928
1929 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1930 sdhci_msm_pwr_irq, IRQF_ONESHOT,
1931 dev_name(&pdev->dev), host);
1932 if (ret) {
1933 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1934 goto clk_disable;
1935 }
1936
1937 pm_runtime_get_noresume(&pdev->dev);
1938 pm_runtime_set_active(&pdev->dev);
1939 pm_runtime_enable(&pdev->dev);
1940 pm_runtime_set_autosuspend_delay(&pdev->dev,
1941 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1942 pm_runtime_use_autosuspend(&pdev->dev);
1943
1944 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1945 ret = sdhci_add_host(host);
1946 if (ret)
1947 goto pm_runtime_disable;
1948 sdhci_msm_set_regulator_caps(msm_host);
1949
1950 pm_runtime_mark_last_busy(&pdev->dev);
1951 pm_runtime_put_autosuspend(&pdev->dev);
1952
1953 return 0;
1954
1955 pm_runtime_disable:
1956 pm_runtime_disable(&pdev->dev);
1957 pm_runtime_set_suspended(&pdev->dev);
1958 pm_runtime_put_noidle(&pdev->dev);
1959 clk_disable:
1960 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1961 msm_host->bulk_clks);
1962 bus_clk_disable:
1963 if (!IS_ERR(msm_host->bus_clk))
1964 clk_disable_unprepare(msm_host->bus_clk);
1965 pltfm_free:
1966 sdhci_pltfm_free(pdev);
1967 return ret;
1968 }
1969
1970 static int sdhci_msm_remove(struct platform_device *pdev)
1971 {
1972 struct sdhci_host *host = platform_get_drvdata(pdev);
1973 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1974 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1975 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1976 0xffffffff);
1977
1978 sdhci_remove_host(host, dead);
1979
1980 pm_runtime_get_sync(&pdev->dev);
1981 pm_runtime_disable(&pdev->dev);
1982 pm_runtime_put_noidle(&pdev->dev);
1983
1984 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1985 msm_host->bulk_clks);
1986 if (!IS_ERR(msm_host->bus_clk))
1987 clk_disable_unprepare(msm_host->bus_clk);
1988 sdhci_pltfm_free(pdev);
1989 return 0;
1990 }
1991
1992 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
1993 {
1994 struct sdhci_host *host = dev_get_drvdata(dev);
1995 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1996 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1997
1998 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1999 msm_host->bulk_clks);
2000
2001 return 0;
2002 }
2003
2004 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2005 {
2006 struct sdhci_host *host = dev_get_drvdata(dev);
2007 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2008 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2009 int ret;
2010
2011 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2012 msm_host->bulk_clks);
2013 if (ret)
2014 return ret;
2015 /*
2016 * Whenever core-clock is gated dynamically, it's needed to
2017 * restore the SDR DLL settings when the clock is ungated.
2018 */
2019 if (msm_host->restore_dll_config && msm_host->clk_rate)
2020 return sdhci_msm_restore_sdr_dll_config(host);
2021
2022 return 0;
2023 }
2024
2025 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2026 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2027 pm_runtime_force_resume)
2028 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2029 sdhci_msm_runtime_resume,
2030 NULL)
2031 };
2032
2033 static struct platform_driver sdhci_msm_driver = {
2034 .probe = sdhci_msm_probe,
2035 .remove = sdhci_msm_remove,
2036 .driver = {
2037 .name = "sdhci_msm",
2038 .of_match_table = sdhci_msm_dt_match,
2039 .pm = &sdhci_msm_pm_ops,
2040 },
2041 };
2042
2043 module_platform_driver(sdhci_msm_driver);
2044
2045 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2046 MODULE_LICENSE("GPL v2");