]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/host/sh_mmcif.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67
68 #define DRIVER_NAME "sh_mmcif"
69 #define DRIVER_VERSION "2010-04-28"
70
71 /* CE_CMD_SET */
72 #define CMD_MASK 0x3f000000
73 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN (1 << 20)
78 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH (1 << 5)
93 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
97
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK (1 << 0)
100
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK 0x0000ffff
103
104 /* CE_INT */
105 #define INT_CCSDE (1 << 29)
106 #define INT_CMD12DRE (1 << 26)
107 #define INT_CMD12RBE (1 << 25)
108 #define INT_CMD12CRE (1 << 24)
109 #define INT_DTRANE (1 << 23)
110 #define INT_BUFRE (1 << 22)
111 #define INT_BUFWEN (1 << 21)
112 #define INT_BUFREN (1 << 20)
113 #define INT_CCSRCV (1 << 19)
114 #define INT_RBSYE (1 << 17)
115 #define INT_CRSPE (1 << 16)
116 #define INT_CMDVIO (1 << 15)
117 #define INT_BUFVIO (1 << 14)
118 #define INT_WDATERR (1 << 11)
119 #define INT_RDATERR (1 << 10)
120 #define INT_RIDXERR (1 << 9)
121 #define INT_RSPERR (1 << 8)
122 #define INT_CCSTO (1 << 5)
123 #define INT_CRCSTO (1 << 4)
124 #define INT_WDATTO (1 << 3)
125 #define INT_RDATTO (1 << 2)
126 #define INT_RBSYTO (1 << 1)
127 #define INT_RSPTO (1 << 0)
128 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
131 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138
139 /* CE_INT_MASK */
140 #define MASK_ALL 0x00000000
141 #define MASK_MCCSDE (1 << 29)
142 #define MASK_MCMD12DRE (1 << 26)
143 #define MASK_MCMD12RBE (1 << 25)
144 #define MASK_MCMD12CRE (1 << 24)
145 #define MASK_MDTRANE (1 << 23)
146 #define MASK_MBUFRE (1 << 22)
147 #define MASK_MBUFWEN (1 << 21)
148 #define MASK_MBUFREN (1 << 20)
149 #define MASK_MCCSRCV (1 << 19)
150 #define MASK_MRBSYE (1 << 17)
151 #define MASK_MCRSPE (1 << 16)
152 #define MASK_MCMDVIO (1 << 15)
153 #define MASK_MBUFVIO (1 << 14)
154 #define MASK_MWDATERR (1 << 11)
155 #define MASK_MRDATERR (1 << 10)
156 #define MASK_MRIDXERR (1 << 9)
157 #define MASK_MRSPERR (1 << 8)
158 #define MASK_MCCSTO (1 << 5)
159 #define MASK_MCRCSTO (1 << 4)
160 #define MASK_MWDATTO (1 << 3)
161 #define MASK_MRDATTO (1 << 2)
162 #define MASK_MRBSYTO (1 << 1)
163 #define MASK_MRSPTO (1 << 0)
164
165 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 MASK_MCRCSTO | MASK_MWDATTO | \
168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169
170 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
171 MASK_MBUFREN | MASK_MBUFWEN | \
172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
173 MASK_MCMD12RBE | MASK_MCMD12CRE)
174
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ (1 << 31)
177
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE (1 << 31)
180 #define STS2_CRC16E (1 << 30)
181 #define STS2_AC12CRCE (1 << 29)
182 #define STS2_RSPCRC7E (1 << 28)
183 #define STS2_CRCSTEBE (1 << 27)
184 #define STS2_RDATEBE (1 << 26)
185 #define STS2_AC12REBE (1 << 25)
186 #define STS2_RSPEBE (1 << 24)
187 #define STS2_AC12IDXE (1 << 23)
188 #define STS2_RSPIDXE (1 << 22)
189 #define STS2_CCSTO (1 << 15)
190 #define STS2_RDATTO (1 << 14)
191 #define STS2_DATBSYTO (1 << 13)
192 #define STS2_CRCSTTO (1 << 12)
193 #define STS2_AC12BSYTO (1 << 11)
194 #define STS2_RSPBSYTO (1 << 10)
195 #define STS2_AC12RSPTO (1 << 9)
196 #define STS2_RSPTO (1 << 8)
197 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
200 STS2_DATBSYTO | STS2_CRCSTTO | \
201 STS2_AC12BSYTO | STS2_RSPBSYTO | \
202 STS2_AC12RSPTO | STS2_RSPTO)
203
204 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
206 #define CLKDEV_INIT 400000 /* 400 KHz */
207
208 enum mmcif_state {
209 STATE_IDLE,
210 STATE_REQUEST,
211 STATE_IOS,
212 STATE_TIMEOUT,
213 };
214
215 enum mmcif_wait_for {
216 MMCIF_WAIT_FOR_REQUEST,
217 MMCIF_WAIT_FOR_CMD,
218 MMCIF_WAIT_FOR_MREAD,
219 MMCIF_WAIT_FOR_MWRITE,
220 MMCIF_WAIT_FOR_READ,
221 MMCIF_WAIT_FOR_WRITE,
222 MMCIF_WAIT_FOR_READ_END,
223 MMCIF_WAIT_FOR_WRITE_END,
224 MMCIF_WAIT_FOR_STOP,
225 };
226
227 struct sh_mmcif_host {
228 struct mmc_host *mmc;
229 struct mmc_request *mrq;
230 struct platform_device *pd;
231 struct clk *hclk;
232 unsigned int clk;
233 int bus_width;
234 unsigned char timing;
235 bool sd_error;
236 bool dying;
237 long timeout;
238 void __iomem *addr;
239 u32 *pio_ptr;
240 spinlock_t lock; /* protect sh_mmcif_host::state */
241 enum mmcif_state state;
242 enum mmcif_wait_for wait_for;
243 struct delayed_work timeout_work;
244 size_t blocksize;
245 int sg_idx;
246 int sg_blkidx;
247 bool power;
248 bool card_present;
249 bool ccs_enable; /* Command Completion Signal support */
250 bool clk_ctrl2_enable;
251 struct mutex thread_lock;
252
253 /* DMA support */
254 struct dma_chan *chan_rx;
255 struct dma_chan *chan_tx;
256 struct completion dma_complete;
257 bool dma_active;
258 };
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
262 {
263 writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
268 {
269 writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void mmcif_dma_complete(void *arg)
273 {
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276
277 dev_dbg(&host->pd->dev, "Command completed\n");
278
279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 dev_name(&host->pd->dev)))
281 return;
282
283 complete(&host->dma_complete);
284 }
285
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 struct mmc_data *data = host->mrq->data;
289 struct scatterlist *sg = data->sg;
290 struct dma_async_tx_descriptor *desc = NULL;
291 struct dma_chan *chan = host->chan_rx;
292 dma_cookie_t cookie = -EINVAL;
293 int ret;
294
295 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 DMA_FROM_DEVICE);
297 if (ret > 0) {
298 host->dma_active = true;
299 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 }
302
303 if (desc) {
304 desc->callback = mmcif_dma_complete;
305 desc->callback_param = host;
306 cookie = dmaengine_submit(desc);
307 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 dma_async_issue_pending(chan);
309 }
310 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 __func__, data->sg_len, ret, cookie);
312
313 if (!desc) {
314 /* DMA failed, fall back to PIO */
315 if (ret >= 0)
316 ret = -EIO;
317 host->chan_rx = NULL;
318 host->dma_active = false;
319 dma_release_channel(chan);
320 /* Free the Tx channel too */
321 chan = host->chan_tx;
322 if (chan) {
323 host->chan_tx = NULL;
324 dma_release_channel(chan);
325 }
326 dev_warn(&host->pd->dev,
327 "DMA failed: %d, falling back to PIO\n", ret);
328 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 }
330
331 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 desc, cookie, data->sg_len);
333 }
334
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 struct mmc_data *data = host->mrq->data;
338 struct scatterlist *sg = data->sg;
339 struct dma_async_tx_descriptor *desc = NULL;
340 struct dma_chan *chan = host->chan_tx;
341 dma_cookie_t cookie = -EINVAL;
342 int ret;
343
344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 DMA_TO_DEVICE);
346 if (ret > 0) {
347 host->dma_active = true;
348 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 }
351
352 if (desc) {
353 desc->callback = mmcif_dma_complete;
354 desc->callback_param = host;
355 cookie = dmaengine_submit(desc);
356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 dma_async_issue_pending(chan);
358 }
359 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__, data->sg_len, ret, cookie);
361
362 if (!desc) {
363 /* DMA failed, fall back to PIO */
364 if (ret >= 0)
365 ret = -EIO;
366 host->chan_tx = NULL;
367 host->dma_active = false;
368 dma_release_channel(chan);
369 /* Free the Rx channel too */
370 chan = host->chan_rx;
371 if (chan) {
372 host->chan_rx = NULL;
373 dma_release_channel(chan);
374 }
375 dev_warn(&host->pd->dev,
376 "DMA failed: %d, falling back to PIO\n", ret);
377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 }
379
380 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 desc, cookie);
382 }
383
384 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
385 struct sh_mmcif_plat_data *pdata)
386 {
387 struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
388 struct dma_slave_config cfg;
389 dma_cap_mask_t mask;
390 int ret;
391
392 host->dma_active = false;
393
394 if (pdata) {
395 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
396 return;
397 } else if (!host->pd->dev.of_node) {
398 return;
399 }
400
401 /* We can only either use DMA for both Tx and Rx or not use it at all */
402 dma_cap_zero(mask);
403 dma_cap_set(DMA_SLAVE, mask);
404
405 host->chan_tx = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 pdata ? (void *)pdata->slave_id_tx : NULL,
407 &host->pd->dev, "tx");
408 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
409 host->chan_tx);
410
411 if (!host->chan_tx)
412 return;
413
414 /* In the OF case the driver will get the slave ID from the DT */
415 if (pdata)
416 cfg.slave_id = pdata->slave_id_tx;
417 cfg.direction = DMA_MEM_TO_DEV;
418 cfg.dst_addr = res->start + MMCIF_CE_DATA;
419 cfg.src_addr = 0;
420 ret = dmaengine_slave_config(host->chan_tx, &cfg);
421 if (ret < 0)
422 goto ecfgtx;
423
424 host->chan_rx = dma_request_slave_channel_compat(mask, shdma_chan_filter,
425 pdata ? (void *)pdata->slave_id_rx : NULL,
426 &host->pd->dev, "rx");
427 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
428 host->chan_rx);
429
430 if (!host->chan_rx)
431 goto erqrx;
432
433 if (pdata)
434 cfg.slave_id = pdata->slave_id_rx;
435 cfg.direction = DMA_DEV_TO_MEM;
436 cfg.dst_addr = 0;
437 cfg.src_addr = res->start + MMCIF_CE_DATA;
438 ret = dmaengine_slave_config(host->chan_rx, &cfg);
439 if (ret < 0)
440 goto ecfgrx;
441
442 return;
443
444 ecfgrx:
445 dma_release_channel(host->chan_rx);
446 host->chan_rx = NULL;
447 erqrx:
448 ecfgtx:
449 dma_release_channel(host->chan_tx);
450 host->chan_tx = NULL;
451 }
452
453 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
454 {
455 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
456 /* Descriptors are freed automatically */
457 if (host->chan_tx) {
458 struct dma_chan *chan = host->chan_tx;
459 host->chan_tx = NULL;
460 dma_release_channel(chan);
461 }
462 if (host->chan_rx) {
463 struct dma_chan *chan = host->chan_rx;
464 host->chan_rx = NULL;
465 dma_release_channel(chan);
466 }
467
468 host->dma_active = false;
469 }
470
471 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
472 {
473 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
474 bool sup_pclk = p ? p->sup_pclk : false;
475
476 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
477 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
478
479 if (!clk)
480 return;
481 if (sup_pclk && clk == host->clk)
482 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
483 else
484 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
485 ((fls(DIV_ROUND_UP(host->clk,
486 clk) - 1) - 1) << 16));
487
488 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489 }
490
491 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
492 {
493 u32 tmp;
494
495 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
496
497 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
498 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
499 if (host->ccs_enable)
500 tmp |= SCCSTO_29;
501 if (host->clk_ctrl2_enable)
502 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
503 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
504 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
505 /* byte swap on */
506 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
507 }
508
509 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
510 {
511 u32 state1, state2;
512 int ret, timeout;
513
514 host->sd_error = false;
515
516 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
517 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
518 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
519 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
520
521 if (state1 & STS1_CMDSEQ) {
522 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
523 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
524 for (timeout = 10000000; timeout; timeout--) {
525 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
526 & STS1_CMDSEQ))
527 break;
528 mdelay(1);
529 }
530 if (!timeout) {
531 dev_err(&host->pd->dev,
532 "Forced end of command sequence timeout err\n");
533 return -EIO;
534 }
535 sh_mmcif_sync_reset(host);
536 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
537 return -EIO;
538 }
539
540 if (state2 & STS2_CRC_ERR) {
541 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
542 host->state, host->wait_for);
543 ret = -EIO;
544 } else if (state2 & STS2_TIMEOUT_ERR) {
545 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
546 host->state, host->wait_for);
547 ret = -ETIMEDOUT;
548 } else {
549 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
550 host->state, host->wait_for);
551 ret = -EIO;
552 }
553 return ret;
554 }
555
556 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
557 {
558 struct mmc_data *data = host->mrq->data;
559
560 host->sg_blkidx += host->blocksize;
561
562 /* data->sg->length must be a multiple of host->blocksize? */
563 BUG_ON(host->sg_blkidx > data->sg->length);
564
565 if (host->sg_blkidx == data->sg->length) {
566 host->sg_blkidx = 0;
567 if (++host->sg_idx < data->sg_len)
568 host->pio_ptr = sg_virt(++data->sg);
569 } else {
570 host->pio_ptr = p;
571 }
572
573 return host->sg_idx != data->sg_len;
574 }
575
576 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
577 struct mmc_request *mrq)
578 {
579 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
580 BLOCK_SIZE_MASK) + 3;
581
582 host->wait_for = MMCIF_WAIT_FOR_READ;
583
584 /* buf read enable */
585 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
586 }
587
588 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
589 {
590 struct mmc_data *data = host->mrq->data;
591 u32 *p = sg_virt(data->sg);
592 int i;
593
594 if (host->sd_error) {
595 data->error = sh_mmcif_error_manage(host);
596 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
597 return false;
598 }
599
600 for (i = 0; i < host->blocksize / 4; i++)
601 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
602
603 /* buffer read end */
604 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
605 host->wait_for = MMCIF_WAIT_FOR_READ_END;
606
607 return true;
608 }
609
610 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
611 struct mmc_request *mrq)
612 {
613 struct mmc_data *data = mrq->data;
614
615 if (!data->sg_len || !data->sg->length)
616 return;
617
618 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
619 BLOCK_SIZE_MASK;
620
621 host->wait_for = MMCIF_WAIT_FOR_MREAD;
622 host->sg_idx = 0;
623 host->sg_blkidx = 0;
624 host->pio_ptr = sg_virt(data->sg);
625
626 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
627 }
628
629 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
630 {
631 struct mmc_data *data = host->mrq->data;
632 u32 *p = host->pio_ptr;
633 int i;
634
635 if (host->sd_error) {
636 data->error = sh_mmcif_error_manage(host);
637 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
638 return false;
639 }
640
641 BUG_ON(!data->sg->length);
642
643 for (i = 0; i < host->blocksize / 4; i++)
644 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645
646 if (!sh_mmcif_next_block(host, p))
647 return false;
648
649 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
650
651 return true;
652 }
653
654 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
655 struct mmc_request *mrq)
656 {
657 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
658 BLOCK_SIZE_MASK) + 3;
659
660 host->wait_for = MMCIF_WAIT_FOR_WRITE;
661
662 /* buf write enable */
663 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
664 }
665
666 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
667 {
668 struct mmc_data *data = host->mrq->data;
669 u32 *p = sg_virt(data->sg);
670 int i;
671
672 if (host->sd_error) {
673 data->error = sh_mmcif_error_manage(host);
674 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
675 return false;
676 }
677
678 for (i = 0; i < host->blocksize / 4; i++)
679 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
680
681 /* buffer write end */
682 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
683 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
684
685 return true;
686 }
687
688 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
689 struct mmc_request *mrq)
690 {
691 struct mmc_data *data = mrq->data;
692
693 if (!data->sg_len || !data->sg->length)
694 return;
695
696 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
697 BLOCK_SIZE_MASK;
698
699 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
700 host->sg_idx = 0;
701 host->sg_blkidx = 0;
702 host->pio_ptr = sg_virt(data->sg);
703
704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
705 }
706
707 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
708 {
709 struct mmc_data *data = host->mrq->data;
710 u32 *p = host->pio_ptr;
711 int i;
712
713 if (host->sd_error) {
714 data->error = sh_mmcif_error_manage(host);
715 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
716 return false;
717 }
718
719 BUG_ON(!data->sg->length);
720
721 for (i = 0; i < host->blocksize / 4; i++)
722 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
723
724 if (!sh_mmcif_next_block(host, p))
725 return false;
726
727 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
728
729 return true;
730 }
731
732 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
733 struct mmc_command *cmd)
734 {
735 if (cmd->flags & MMC_RSP_136) {
736 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
737 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
738 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
739 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
740 } else
741 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 }
743
744 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
745 struct mmc_command *cmd)
746 {
747 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
748 }
749
750 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
751 struct mmc_request *mrq)
752 {
753 struct mmc_data *data = mrq->data;
754 struct mmc_command *cmd = mrq->cmd;
755 u32 opc = cmd->opcode;
756 u32 tmp = 0;
757
758 /* Response Type check */
759 switch (mmc_resp_type(cmd)) {
760 case MMC_RSP_NONE:
761 tmp |= CMD_SET_RTYP_NO;
762 break;
763 case MMC_RSP_R1:
764 case MMC_RSP_R1B:
765 case MMC_RSP_R3:
766 tmp |= CMD_SET_RTYP_6B;
767 break;
768 case MMC_RSP_R2:
769 tmp |= CMD_SET_RTYP_17B;
770 break;
771 default:
772 dev_err(&host->pd->dev, "Unsupported response type.\n");
773 break;
774 }
775 switch (opc) {
776 /* RBSY */
777 case MMC_SLEEP_AWAKE:
778 case MMC_SWITCH:
779 case MMC_STOP_TRANSMISSION:
780 case MMC_SET_WRITE_PROT:
781 case MMC_CLR_WRITE_PROT:
782 case MMC_ERASE:
783 tmp |= CMD_SET_RBSY;
784 break;
785 }
786 /* WDAT / DATW */
787 if (data) {
788 tmp |= CMD_SET_WDAT;
789 switch (host->bus_width) {
790 case MMC_BUS_WIDTH_1:
791 tmp |= CMD_SET_DATW_1;
792 break;
793 case MMC_BUS_WIDTH_4:
794 tmp |= CMD_SET_DATW_4;
795 break;
796 case MMC_BUS_WIDTH_8:
797 tmp |= CMD_SET_DATW_8;
798 break;
799 default:
800 dev_err(&host->pd->dev, "Unsupported bus width.\n");
801 break;
802 }
803 switch (host->timing) {
804 case MMC_TIMING_UHS_DDR50:
805 /*
806 * MMC core will only set this timing, if the host
807 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
808 * implementations with this capability, e.g. sh73a0,
809 * will have to set it in their platform data.
810 */
811 tmp |= CMD_SET_DARS;
812 break;
813 }
814 }
815 /* DWEN */
816 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
817 tmp |= CMD_SET_DWEN;
818 /* CMLTE/CMD12EN */
819 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
820 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
821 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
822 data->blocks << 16);
823 }
824 /* RIDXC[1:0] check bits */
825 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
826 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
827 tmp |= CMD_SET_RIDXC_BITS;
828 /* RCRC7C[1:0] check bits */
829 if (opc == MMC_SEND_OP_COND)
830 tmp |= CMD_SET_CRC7C_BITS;
831 /* RCRC7C[1:0] internal CRC7 */
832 if (opc == MMC_ALL_SEND_CID ||
833 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
834 tmp |= CMD_SET_CRC7C_INTERNAL;
835
836 return (opc << 24) | tmp;
837 }
838
839 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
840 struct mmc_request *mrq, u32 opc)
841 {
842 switch (opc) {
843 case MMC_READ_MULTIPLE_BLOCK:
844 sh_mmcif_multi_read(host, mrq);
845 return 0;
846 case MMC_WRITE_MULTIPLE_BLOCK:
847 sh_mmcif_multi_write(host, mrq);
848 return 0;
849 case MMC_WRITE_BLOCK:
850 sh_mmcif_single_write(host, mrq);
851 return 0;
852 case MMC_READ_SINGLE_BLOCK:
853 case MMC_SEND_EXT_CSD:
854 sh_mmcif_single_read(host, mrq);
855 return 0;
856 default:
857 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
858 return -EINVAL;
859 }
860 }
861
862 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
863 struct mmc_request *mrq)
864 {
865 struct mmc_command *cmd = mrq->cmd;
866 u32 opc = cmd->opcode;
867 u32 mask;
868
869 switch (opc) {
870 /* response busy check */
871 case MMC_SLEEP_AWAKE:
872 case MMC_SWITCH:
873 case MMC_STOP_TRANSMISSION:
874 case MMC_SET_WRITE_PROT:
875 case MMC_CLR_WRITE_PROT:
876 case MMC_ERASE:
877 mask = MASK_START_CMD | MASK_MRBSYE;
878 break;
879 default:
880 mask = MASK_START_CMD | MASK_MCRSPE;
881 break;
882 }
883
884 if (host->ccs_enable)
885 mask |= MASK_MCCSTO;
886
887 if (mrq->data) {
888 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
889 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
890 mrq->data->blksz);
891 }
892 opc = sh_mmcif_set_cmd(host, mrq);
893
894 if (host->ccs_enable)
895 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
896 else
897 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
898 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
899 /* set arg */
900 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
901 /* set cmd */
902 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
903
904 host->wait_for = MMCIF_WAIT_FOR_CMD;
905 schedule_delayed_work(&host->timeout_work, host->timeout);
906 }
907
908 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
909 struct mmc_request *mrq)
910 {
911 switch (mrq->cmd->opcode) {
912 case MMC_READ_MULTIPLE_BLOCK:
913 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
914 break;
915 case MMC_WRITE_MULTIPLE_BLOCK:
916 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
917 break;
918 default:
919 dev_err(&host->pd->dev, "unsupported stop cmd\n");
920 mrq->stop->error = sh_mmcif_error_manage(host);
921 return;
922 }
923
924 host->wait_for = MMCIF_WAIT_FOR_STOP;
925 }
926
927 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
928 {
929 struct sh_mmcif_host *host = mmc_priv(mmc);
930 unsigned long flags;
931
932 spin_lock_irqsave(&host->lock, flags);
933 if (host->state != STATE_IDLE) {
934 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
935 spin_unlock_irqrestore(&host->lock, flags);
936 mrq->cmd->error = -EAGAIN;
937 mmc_request_done(mmc, mrq);
938 return;
939 }
940
941 host->state = STATE_REQUEST;
942 spin_unlock_irqrestore(&host->lock, flags);
943
944 switch (mrq->cmd->opcode) {
945 /* MMCIF does not support SD/SDIO command */
946 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
947 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
948 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
949 break;
950 case MMC_APP_CMD:
951 case SD_IO_RW_DIRECT:
952 host->state = STATE_IDLE;
953 mrq->cmd->error = -ETIMEDOUT;
954 mmc_request_done(mmc, mrq);
955 return;
956 default:
957 break;
958 }
959
960 host->mrq = mrq;
961
962 sh_mmcif_start_cmd(host, mrq);
963 }
964
965 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
966 {
967 int ret = clk_enable(host->hclk);
968
969 if (!ret) {
970 host->clk = clk_get_rate(host->hclk);
971 host->mmc->f_max = host->clk / 2;
972 host->mmc->f_min = host->clk / 512;
973 }
974
975 return ret;
976 }
977
978 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
979 {
980 struct mmc_host *mmc = host->mmc;
981
982 if (!IS_ERR(mmc->supply.vmmc))
983 /* Errors ignored... */
984 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
985 ios->power_mode ? ios->vdd : 0);
986 }
987
988 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
989 {
990 struct sh_mmcif_host *host = mmc_priv(mmc);
991 unsigned long flags;
992
993 spin_lock_irqsave(&host->lock, flags);
994 if (host->state != STATE_IDLE) {
995 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
996 spin_unlock_irqrestore(&host->lock, flags);
997 return;
998 }
999
1000 host->state = STATE_IOS;
1001 spin_unlock_irqrestore(&host->lock, flags);
1002
1003 if (ios->power_mode == MMC_POWER_UP) {
1004 if (!host->card_present) {
1005 /* See if we also get DMA */
1006 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1007 host->card_present = true;
1008 }
1009 sh_mmcif_set_power(host, ios);
1010 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1011 /* clock stop */
1012 sh_mmcif_clock_control(host, 0);
1013 if (ios->power_mode == MMC_POWER_OFF) {
1014 if (host->card_present) {
1015 sh_mmcif_release_dma(host);
1016 host->card_present = false;
1017 }
1018 }
1019 if (host->power) {
1020 pm_runtime_put_sync(&host->pd->dev);
1021 clk_disable(host->hclk);
1022 host->power = false;
1023 if (ios->power_mode == MMC_POWER_OFF)
1024 sh_mmcif_set_power(host, ios);
1025 }
1026 host->state = STATE_IDLE;
1027 return;
1028 }
1029
1030 if (ios->clock) {
1031 if (!host->power) {
1032 sh_mmcif_clk_update(host);
1033 pm_runtime_get_sync(&host->pd->dev);
1034 host->power = true;
1035 sh_mmcif_sync_reset(host);
1036 }
1037 sh_mmcif_clock_control(host, ios->clock);
1038 }
1039
1040 host->timing = ios->timing;
1041 host->bus_width = ios->bus_width;
1042 host->state = STATE_IDLE;
1043 }
1044
1045 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1046 {
1047 struct sh_mmcif_host *host = mmc_priv(mmc);
1048 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1049 int ret = mmc_gpio_get_cd(mmc);
1050
1051 if (ret >= 0)
1052 return ret;
1053
1054 if (!p || !p->get_cd)
1055 return -ENOSYS;
1056 else
1057 return p->get_cd(host->pd);
1058 }
1059
1060 static struct mmc_host_ops sh_mmcif_ops = {
1061 .request = sh_mmcif_request,
1062 .set_ios = sh_mmcif_set_ios,
1063 .get_cd = sh_mmcif_get_cd,
1064 };
1065
1066 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1067 {
1068 struct mmc_command *cmd = host->mrq->cmd;
1069 struct mmc_data *data = host->mrq->data;
1070 long time;
1071
1072 if (host->sd_error) {
1073 switch (cmd->opcode) {
1074 case MMC_ALL_SEND_CID:
1075 case MMC_SELECT_CARD:
1076 case MMC_APP_CMD:
1077 cmd->error = -ETIMEDOUT;
1078 break;
1079 default:
1080 cmd->error = sh_mmcif_error_manage(host);
1081 break;
1082 }
1083 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1084 cmd->opcode, cmd->error);
1085 host->sd_error = false;
1086 return false;
1087 }
1088 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1089 cmd->error = 0;
1090 return false;
1091 }
1092
1093 sh_mmcif_get_response(host, cmd);
1094
1095 if (!data)
1096 return false;
1097
1098 /*
1099 * Completion can be signalled from DMA callback and error, so, have to
1100 * reset here, before setting .dma_active
1101 */
1102 init_completion(&host->dma_complete);
1103
1104 if (data->flags & MMC_DATA_READ) {
1105 if (host->chan_rx)
1106 sh_mmcif_start_dma_rx(host);
1107 } else {
1108 if (host->chan_tx)
1109 sh_mmcif_start_dma_tx(host);
1110 }
1111
1112 if (!host->dma_active) {
1113 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1114 return !data->error;
1115 }
1116
1117 /* Running in the IRQ thread, can sleep */
1118 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1119 host->timeout);
1120
1121 if (data->flags & MMC_DATA_READ)
1122 dma_unmap_sg(host->chan_rx->device->dev,
1123 data->sg, data->sg_len,
1124 DMA_FROM_DEVICE);
1125 else
1126 dma_unmap_sg(host->chan_tx->device->dev,
1127 data->sg, data->sg_len,
1128 DMA_TO_DEVICE);
1129
1130 if (host->sd_error) {
1131 dev_err(host->mmc->parent,
1132 "Error IRQ while waiting for DMA completion!\n");
1133 /* Woken up by an error IRQ: abort DMA */
1134 data->error = sh_mmcif_error_manage(host);
1135 } else if (!time) {
1136 dev_err(host->mmc->parent, "DMA timeout!\n");
1137 data->error = -ETIMEDOUT;
1138 } else if (time < 0) {
1139 dev_err(host->mmc->parent,
1140 "wait_for_completion_...() error %ld!\n", time);
1141 data->error = time;
1142 }
1143 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1144 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1145 host->dma_active = false;
1146
1147 if (data->error) {
1148 data->bytes_xfered = 0;
1149 /* Abort DMA */
1150 if (data->flags & MMC_DATA_READ)
1151 dmaengine_terminate_all(host->chan_rx);
1152 else
1153 dmaengine_terminate_all(host->chan_tx);
1154 }
1155
1156 return false;
1157 }
1158
1159 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1160 {
1161 struct sh_mmcif_host *host = dev_id;
1162 struct mmc_request *mrq;
1163 bool wait = false;
1164
1165 cancel_delayed_work_sync(&host->timeout_work);
1166
1167 mutex_lock(&host->thread_lock);
1168
1169 mrq = host->mrq;
1170 if (!mrq) {
1171 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1172 host->state, host->wait_for);
1173 mutex_unlock(&host->thread_lock);
1174 return IRQ_HANDLED;
1175 }
1176
1177 /*
1178 * All handlers return true, if processing continues, and false, if the
1179 * request has to be completed - successfully or not
1180 */
1181 switch (host->wait_for) {
1182 case MMCIF_WAIT_FOR_REQUEST:
1183 /* We're too late, the timeout has already kicked in */
1184 mutex_unlock(&host->thread_lock);
1185 return IRQ_HANDLED;
1186 case MMCIF_WAIT_FOR_CMD:
1187 /* Wait for data? */
1188 wait = sh_mmcif_end_cmd(host);
1189 break;
1190 case MMCIF_WAIT_FOR_MREAD:
1191 /* Wait for more data? */
1192 wait = sh_mmcif_mread_block(host);
1193 break;
1194 case MMCIF_WAIT_FOR_READ:
1195 /* Wait for data end? */
1196 wait = sh_mmcif_read_block(host);
1197 break;
1198 case MMCIF_WAIT_FOR_MWRITE:
1199 /* Wait data to write? */
1200 wait = sh_mmcif_mwrite_block(host);
1201 break;
1202 case MMCIF_WAIT_FOR_WRITE:
1203 /* Wait for data end? */
1204 wait = sh_mmcif_write_block(host);
1205 break;
1206 case MMCIF_WAIT_FOR_STOP:
1207 if (host->sd_error) {
1208 mrq->stop->error = sh_mmcif_error_manage(host);
1209 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1210 break;
1211 }
1212 sh_mmcif_get_cmd12response(host, mrq->stop);
1213 mrq->stop->error = 0;
1214 break;
1215 case MMCIF_WAIT_FOR_READ_END:
1216 case MMCIF_WAIT_FOR_WRITE_END:
1217 if (host->sd_error) {
1218 mrq->data->error = sh_mmcif_error_manage(host);
1219 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1220 }
1221 break;
1222 default:
1223 BUG();
1224 }
1225
1226 if (wait) {
1227 schedule_delayed_work(&host->timeout_work, host->timeout);
1228 /* Wait for more data */
1229 mutex_unlock(&host->thread_lock);
1230 return IRQ_HANDLED;
1231 }
1232
1233 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1234 struct mmc_data *data = mrq->data;
1235 if (!mrq->cmd->error && data && !data->error)
1236 data->bytes_xfered =
1237 data->blocks * data->blksz;
1238
1239 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1240 sh_mmcif_stop_cmd(host, mrq);
1241 if (!mrq->stop->error) {
1242 schedule_delayed_work(&host->timeout_work, host->timeout);
1243 mutex_unlock(&host->thread_lock);
1244 return IRQ_HANDLED;
1245 }
1246 }
1247 }
1248
1249 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1250 host->state = STATE_IDLE;
1251 host->mrq = NULL;
1252 mmc_request_done(host->mmc, mrq);
1253
1254 mutex_unlock(&host->thread_lock);
1255
1256 return IRQ_HANDLED;
1257 }
1258
1259 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1260 {
1261 struct sh_mmcif_host *host = dev_id;
1262 u32 state, mask;
1263
1264 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1265 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1266 if (host->ccs_enable)
1267 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1268 else
1269 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1270 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1271
1272 if (state & ~MASK_CLEAN)
1273 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1274 state);
1275
1276 if (state & INT_ERR_STS || state & ~INT_ALL) {
1277 host->sd_error = true;
1278 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1279 }
1280 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1281 if (!host->mrq)
1282 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1283 if (!host->dma_active)
1284 return IRQ_WAKE_THREAD;
1285 else if (host->sd_error)
1286 mmcif_dma_complete(host);
1287 } else {
1288 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1289 }
1290
1291 return IRQ_HANDLED;
1292 }
1293
1294 static void mmcif_timeout_work(struct work_struct *work)
1295 {
1296 struct delayed_work *d = container_of(work, struct delayed_work, work);
1297 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1298 struct mmc_request *mrq = host->mrq;
1299 unsigned long flags;
1300
1301 if (host->dying)
1302 /* Don't run after mmc_remove_host() */
1303 return;
1304
1305 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1306 host->wait_for, mrq->cmd->opcode);
1307
1308 spin_lock_irqsave(&host->lock, flags);
1309 if (host->state == STATE_IDLE) {
1310 spin_unlock_irqrestore(&host->lock, flags);
1311 return;
1312 }
1313
1314 host->state = STATE_TIMEOUT;
1315 spin_unlock_irqrestore(&host->lock, flags);
1316
1317 /*
1318 * Handle races with cancel_delayed_work(), unless
1319 * cancel_delayed_work_sync() is used
1320 */
1321 switch (host->wait_for) {
1322 case MMCIF_WAIT_FOR_CMD:
1323 mrq->cmd->error = sh_mmcif_error_manage(host);
1324 break;
1325 case MMCIF_WAIT_FOR_STOP:
1326 mrq->stop->error = sh_mmcif_error_manage(host);
1327 break;
1328 case MMCIF_WAIT_FOR_MREAD:
1329 case MMCIF_WAIT_FOR_MWRITE:
1330 case MMCIF_WAIT_FOR_READ:
1331 case MMCIF_WAIT_FOR_WRITE:
1332 case MMCIF_WAIT_FOR_READ_END:
1333 case MMCIF_WAIT_FOR_WRITE_END:
1334 mrq->data->error = sh_mmcif_error_manage(host);
1335 break;
1336 default:
1337 BUG();
1338 }
1339
1340 host->state = STATE_IDLE;
1341 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1342 host->mrq = NULL;
1343 mmc_request_done(host->mmc, mrq);
1344 }
1345
1346 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1347 {
1348 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1349 struct mmc_host *mmc = host->mmc;
1350
1351 mmc_regulator_get_supply(mmc);
1352
1353 if (!pd)
1354 return;
1355
1356 if (!mmc->ocr_avail)
1357 mmc->ocr_avail = pd->ocr;
1358 else if (pd->ocr)
1359 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1360 }
1361
1362 static int sh_mmcif_probe(struct platform_device *pdev)
1363 {
1364 int ret = 0, irq[2];
1365 struct mmc_host *mmc;
1366 struct sh_mmcif_host *host;
1367 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1368 struct resource *res;
1369 void __iomem *reg;
1370 const char *name;
1371
1372 irq[0] = platform_get_irq(pdev, 0);
1373 irq[1] = platform_get_irq(pdev, 1);
1374 if (irq[0] < 0) {
1375 dev_err(&pdev->dev, "Get irq error\n");
1376 return -ENXIO;
1377 }
1378 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1379 if (!res) {
1380 dev_err(&pdev->dev, "platform_get_resource error.\n");
1381 return -ENXIO;
1382 }
1383 reg = ioremap(res->start, resource_size(res));
1384 if (!reg) {
1385 dev_err(&pdev->dev, "ioremap error.\n");
1386 return -ENOMEM;
1387 }
1388
1389 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1390 if (!mmc) {
1391 ret = -ENOMEM;
1392 goto ealloch;
1393 }
1394
1395 ret = mmc_of_parse(mmc);
1396 if (ret < 0)
1397 goto eofparse;
1398
1399 host = mmc_priv(mmc);
1400 host->mmc = mmc;
1401 host->addr = reg;
1402 host->timeout = msecs_to_jiffies(1000);
1403 host->ccs_enable = !pd || !pd->ccs_unsupported;
1404 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1405
1406 host->pd = pdev;
1407
1408 spin_lock_init(&host->lock);
1409
1410 mmc->ops = &sh_mmcif_ops;
1411 sh_mmcif_init_ocr(host);
1412
1413 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1414 if (pd && pd->caps)
1415 mmc->caps |= pd->caps;
1416 mmc->max_segs = 32;
1417 mmc->max_blk_size = 512;
1418 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1419 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1420 mmc->max_seg_size = mmc->max_req_size;
1421
1422 platform_set_drvdata(pdev, host);
1423
1424 pm_runtime_enable(&pdev->dev);
1425 host->power = false;
1426
1427 host->hclk = clk_get(&pdev->dev, NULL);
1428 if (IS_ERR(host->hclk)) {
1429 ret = PTR_ERR(host->hclk);
1430 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1431 goto eclkget;
1432 }
1433 ret = sh_mmcif_clk_update(host);
1434 if (ret < 0)
1435 goto eclkupdate;
1436
1437 ret = pm_runtime_resume(&pdev->dev);
1438 if (ret < 0)
1439 goto eresume;
1440
1441 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1442
1443 sh_mmcif_sync_reset(host);
1444 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1445
1446 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1447 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1448 if (ret) {
1449 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1450 goto ereqirq0;
1451 }
1452 if (irq[1] >= 0) {
1453 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1454 0, "sh_mmc:int", host);
1455 if (ret) {
1456 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1457 goto ereqirq1;
1458 }
1459 }
1460
1461 if (pd && pd->use_cd_gpio) {
1462 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1463 if (ret < 0)
1464 goto erqcd;
1465 }
1466
1467 mutex_init(&host->thread_lock);
1468
1469 clk_disable(host->hclk);
1470 ret = mmc_add_host(mmc);
1471 if (ret < 0)
1472 goto emmcaddh;
1473
1474 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1475
1476 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1477 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1478 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1479 return ret;
1480
1481 emmcaddh:
1482 erqcd:
1483 if (irq[1] >= 0)
1484 free_irq(irq[1], host);
1485 ereqirq1:
1486 free_irq(irq[0], host);
1487 ereqirq0:
1488 pm_runtime_suspend(&pdev->dev);
1489 eresume:
1490 clk_disable(host->hclk);
1491 eclkupdate:
1492 clk_put(host->hclk);
1493 eclkget:
1494 pm_runtime_disable(&pdev->dev);
1495 eofparse:
1496 mmc_free_host(mmc);
1497 ealloch:
1498 iounmap(reg);
1499 return ret;
1500 }
1501
1502 static int sh_mmcif_remove(struct platform_device *pdev)
1503 {
1504 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1505 int irq[2];
1506
1507 host->dying = true;
1508 clk_enable(host->hclk);
1509 pm_runtime_get_sync(&pdev->dev);
1510
1511 dev_pm_qos_hide_latency_limit(&pdev->dev);
1512
1513 mmc_remove_host(host->mmc);
1514 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1515
1516 /*
1517 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1518 * mmc_remove_host() call above. But swapping order doesn't help either
1519 * (a query on the linux-mmc mailing list didn't bring any replies).
1520 */
1521 cancel_delayed_work_sync(&host->timeout_work);
1522
1523 if (host->addr)
1524 iounmap(host->addr);
1525
1526 irq[0] = platform_get_irq(pdev, 0);
1527 irq[1] = platform_get_irq(pdev, 1);
1528
1529 free_irq(irq[0], host);
1530 if (irq[1] >= 0)
1531 free_irq(irq[1], host);
1532
1533 clk_disable(host->hclk);
1534 mmc_free_host(host->mmc);
1535 pm_runtime_put_sync(&pdev->dev);
1536 pm_runtime_disable(&pdev->dev);
1537
1538 return 0;
1539 }
1540
1541 #ifdef CONFIG_PM
1542 static int sh_mmcif_suspend(struct device *dev)
1543 {
1544 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545 int ret = mmc_suspend_host(host->mmc);
1546
1547 if (!ret)
1548 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1549
1550 return ret;
1551 }
1552
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1556
1557 return mmc_resume_host(host->mmc);
1558 }
1559 #else
1560 #define sh_mmcif_suspend NULL
1561 #define sh_mmcif_resume NULL
1562 #endif /* CONFIG_PM */
1563
1564 static const struct of_device_id mmcif_of_match[] = {
1565 { .compatible = "renesas,sh-mmcif" },
1566 { }
1567 };
1568 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1569
1570 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1571 .suspend = sh_mmcif_suspend,
1572 .resume = sh_mmcif_resume,
1573 };
1574
1575 static struct platform_driver sh_mmcif_driver = {
1576 .probe = sh_mmcif_probe,
1577 .remove = sh_mmcif_remove,
1578 .driver = {
1579 .name = DRIVER_NAME,
1580 .pm = &sh_mmcif_dev_pm_ops,
1581 .owner = THIS_MODULE,
1582 .of_match_table = mmcif_of_match,
1583 },
1584 };
1585
1586 module_platform_driver(sh_mmcif_driver);
1587
1588 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1589 MODULE_LICENSE("GPL");
1590 MODULE_ALIAS("platform:" DRIVER_NAME);
1591 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");