]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/host/sh_mmcif.c
Merge branch 'pm-qos'
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63
64 #define DRIVER_NAME "sh_mmcif"
65 #define DRIVER_VERSION "2010-04-28"
66
67 /* CE_CMD_SET */
68 #define CMD_MASK 0x3f000000
69 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY (1 << 21) /* R1b */
73 #define CMD_SET_CCSEN (1 << 20)
74 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH (1 << 5)
89 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
92
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK (1 << 0)
95
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK 0x0000ffff
98
99 /* CE_INT */
100 #define INT_CCSDE (1 << 29)
101 #define INT_CMD12DRE (1 << 26)
102 #define INT_CMD12RBE (1 << 25)
103 #define INT_CMD12CRE (1 << 24)
104 #define INT_DTRANE (1 << 23)
105 #define INT_BUFRE (1 << 22)
106 #define INT_BUFWEN (1 << 21)
107 #define INT_BUFREN (1 << 20)
108 #define INT_CCSRCV (1 << 19)
109 #define INT_RBSYE (1 << 17)
110 #define INT_CRSPE (1 << 16)
111 #define INT_CMDVIO (1 << 15)
112 #define INT_BUFVIO (1 << 14)
113 #define INT_WDATERR (1 << 11)
114 #define INT_RDATERR (1 << 10)
115 #define INT_RIDXERR (1 << 9)
116 #define INT_RSPERR (1 << 8)
117 #define INT_CCSTO (1 << 5)
118 #define INT_CRCSTO (1 << 4)
119 #define INT_WDATTO (1 << 3)
120 #define INT_RDATTO (1 << 2)
121 #define INT_RBSYTO (1 << 1)
122 #define INT_RSPTO (1 << 0)
123 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
124 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
126 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL 0x00000000
130 #define MASK_MCCSDE (1 << 29)
131 #define MASK_MCMD12DRE (1 << 26)
132 #define MASK_MCMD12RBE (1 << 25)
133 #define MASK_MCMD12CRE (1 << 24)
134 #define MASK_MDTRANE (1 << 23)
135 #define MASK_MBUFRE (1 << 22)
136 #define MASK_MBUFWEN (1 << 21)
137 #define MASK_MBUFREN (1 << 20)
138 #define MASK_MCCSRCV (1 << 19)
139 #define MASK_MRBSYE (1 << 17)
140 #define MASK_MCRSPE (1 << 16)
141 #define MASK_MCMDVIO (1 << 15)
142 #define MASK_MBUFVIO (1 << 14)
143 #define MASK_MWDATERR (1 << 11)
144 #define MASK_MRDATERR (1 << 10)
145 #define MASK_MRIDXERR (1 << 9)
146 #define MASK_MRSPERR (1 << 8)
147 #define MASK_MCCSTO (1 << 5)
148 #define MASK_MCRCSTO (1 << 4)
149 #define MASK_MWDATTO (1 << 3)
150 #define MASK_MRDATTO (1 << 2)
151 #define MASK_MRBSYTO (1 << 1)
152 #define MASK_MRSPTO (1 << 0)
153
154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ (1 << 31)
161
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE (1 << 31)
164 #define STS2_CRC16E (1 << 30)
165 #define STS2_AC12CRCE (1 << 29)
166 #define STS2_RSPCRC7E (1 << 28)
167 #define STS2_CRCSTEBE (1 << 27)
168 #define STS2_RDATEBE (1 << 26)
169 #define STS2_AC12REBE (1 << 25)
170 #define STS2_RSPEBE (1 << 24)
171 #define STS2_AC12IDXE (1 << 23)
172 #define STS2_RSPIDXE (1 << 22)
173 #define STS2_CCSTO (1 << 15)
174 #define STS2_RDATTO (1 << 14)
175 #define STS2_DATBSYTO (1 << 13)
176 #define STS2_CRCSTTO (1 << 12)
177 #define STS2_AC12BSYTO (1 << 11)
178 #define STS2_RSPBSYTO (1 << 10)
179 #define STS2_AC12RSPTO (1 << 9)
180 #define STS2_RSPTO (1 << 8)
181 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
182 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
184 STS2_DATBSYTO | STS2_CRCSTTO | \
185 STS2_AC12BSYTO | STS2_RSPBSYTO | \
186 STS2_AC12RSPTO | STS2_RSPTO)
187
188 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
190 #define CLKDEV_INIT 400000 /* 400 KHz */
191
192 enum mmcif_state {
193 STATE_IDLE,
194 STATE_REQUEST,
195 STATE_IOS,
196 };
197
198 enum mmcif_wait_for {
199 MMCIF_WAIT_FOR_REQUEST,
200 MMCIF_WAIT_FOR_CMD,
201 MMCIF_WAIT_FOR_MREAD,
202 MMCIF_WAIT_FOR_MWRITE,
203 MMCIF_WAIT_FOR_READ,
204 MMCIF_WAIT_FOR_WRITE,
205 MMCIF_WAIT_FOR_READ_END,
206 MMCIF_WAIT_FOR_WRITE_END,
207 MMCIF_WAIT_FOR_STOP,
208 };
209
210 struct sh_mmcif_host {
211 struct mmc_host *mmc;
212 struct mmc_request *mrq;
213 struct platform_device *pd;
214 struct sh_dmae_slave dma_slave_tx;
215 struct sh_dmae_slave dma_slave_rx;
216 struct clk *hclk;
217 unsigned int clk;
218 int bus_width;
219 bool sd_error;
220 bool dying;
221 long timeout;
222 void __iomem *addr;
223 u32 *pio_ptr;
224 spinlock_t lock; /* protect sh_mmcif_host::state */
225 enum mmcif_state state;
226 enum mmcif_wait_for wait_for;
227 struct delayed_work timeout_work;
228 size_t blocksize;
229 int sg_idx;
230 int sg_blkidx;
231 bool power;
232 bool card_present;
233
234 /* DMA support */
235 struct dma_chan *chan_rx;
236 struct dma_chan *chan_tx;
237 struct completion dma_complete;
238 bool dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 unsigned int reg, u32 val)
243 {
244 writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 unsigned int reg, u32 val)
249 {
250 writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255 struct sh_mmcif_host *host = arg;
256 struct mmc_data *data = host->mrq->data;
257
258 dev_dbg(&host->pd->dev, "Command completed\n");
259
260 if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 dev_name(&host->pd->dev)))
262 return;
263
264 if (data->flags & MMC_DATA_READ)
265 dma_unmap_sg(host->chan_rx->device->dev,
266 data->sg, data->sg_len,
267 DMA_FROM_DEVICE);
268 else
269 dma_unmap_sg(host->chan_tx->device->dev,
270 data->sg, data->sg_len,
271 DMA_TO_DEVICE);
272
273 complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 struct mmc_data *data = host->mrq->data;
279 struct scatterlist *sg = data->sg;
280 struct dma_async_tx_descriptor *desc = NULL;
281 struct dma_chan *chan = host->chan_rx;
282 dma_cookie_t cookie = -EINVAL;
283 int ret;
284
285 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 DMA_FROM_DEVICE);
287 if (ret > 0) {
288 host->dma_active = true;
289 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
290 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 }
292
293 if (desc) {
294 desc->callback = mmcif_dma_complete;
295 desc->callback_param = host;
296 cookie = dmaengine_submit(desc);
297 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 dma_async_issue_pending(chan);
299 }
300 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 __func__, data->sg_len, ret, cookie);
302
303 if (!desc) {
304 /* DMA failed, fall back to PIO */
305 if (ret >= 0)
306 ret = -EIO;
307 host->chan_rx = NULL;
308 host->dma_active = false;
309 dma_release_channel(chan);
310 /* Free the Tx channel too */
311 chan = host->chan_tx;
312 if (chan) {
313 host->chan_tx = NULL;
314 dma_release_channel(chan);
315 }
316 dev_warn(&host->pd->dev,
317 "DMA failed: %d, falling back to PIO\n", ret);
318 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 }
320
321 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 struct mmc_data *data = host->mrq->data;
328 struct scatterlist *sg = data->sg;
329 struct dma_async_tx_descriptor *desc = NULL;
330 struct dma_chan *chan = host->chan_tx;
331 dma_cookie_t cookie = -EINVAL;
332 int ret;
333
334 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 DMA_TO_DEVICE);
336 if (ret > 0) {
337 host->dma_active = true;
338 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
339 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 }
341
342 if (desc) {
343 desc->callback = mmcif_dma_complete;
344 desc->callback_param = host;
345 cookie = dmaengine_submit(desc);
346 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 dma_async_issue_pending(chan);
348 }
349 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 __func__, data->sg_len, ret, cookie);
351
352 if (!desc) {
353 /* DMA failed, fall back to PIO */
354 if (ret >= 0)
355 ret = -EIO;
356 host->chan_tx = NULL;
357 host->dma_active = false;
358 dma_release_channel(chan);
359 /* Free the Rx channel too */
360 chan = host->chan_rx;
361 if (chan) {
362 host->chan_rx = NULL;
363 dma_release_channel(chan);
364 }
365 dev_warn(&host->pd->dev,
366 "DMA failed: %d, falling back to PIO\n", ret);
367 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 }
369
370 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 desc, cookie);
372 }
373
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377 chan->private = arg;
378 return true;
379 }
380
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382 struct sh_mmcif_plat_data *pdata)
383 {
384 struct sh_dmae_slave *tx, *rx;
385 host->dma_active = false;
386
387 /* We can only either use DMA for both Tx and Rx or not use it at all */
388 if (pdata->dma) {
389 dev_warn(&host->pd->dev,
390 "Update your platform to use embedded DMA slave IDs\n");
391 tx = &pdata->dma->chan_priv_tx;
392 rx = &pdata->dma->chan_priv_rx;
393 } else {
394 tx = &host->dma_slave_tx;
395 tx->slave_id = pdata->slave_id_tx;
396 rx = &host->dma_slave_rx;
397 rx->slave_id = pdata->slave_id_rx;
398 }
399 if (tx->slave_id > 0 && rx->slave_id > 0) {
400 dma_cap_mask_t mask;
401
402 dma_cap_zero(mask);
403 dma_cap_set(DMA_SLAVE, mask);
404
405 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407 host->chan_tx);
408
409 if (!host->chan_tx)
410 return;
411
412 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414 host->chan_rx);
415
416 if (!host->chan_rx) {
417 dma_release_channel(host->chan_tx);
418 host->chan_tx = NULL;
419 return;
420 }
421
422 init_completion(&host->dma_complete);
423 }
424 }
425
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429 /* Descriptors are freed automatically */
430 if (host->chan_tx) {
431 struct dma_chan *chan = host->chan_tx;
432 host->chan_tx = NULL;
433 dma_release_channel(chan);
434 }
435 if (host->chan_rx) {
436 struct dma_chan *chan = host->chan_rx;
437 host->chan_rx = NULL;
438 dma_release_channel(chan);
439 }
440
441 host->dma_active = false;
442 }
443
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447
448 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450
451 if (!clk)
452 return;
453 if (p->sup_pclk && clk == host->clk)
454 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455 else
456 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457 ((fls(host->clk / clk) - 1) << 16));
458
459 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
460 }
461
462 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
463 {
464 u32 tmp;
465
466 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
467
468 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
469 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
470 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
471 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
472 /* byte swap on */
473 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
474 }
475
476 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
477 {
478 u32 state1, state2;
479 int ret, timeout;
480
481 host->sd_error = false;
482
483 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
484 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
485 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
486 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
487
488 if (state1 & STS1_CMDSEQ) {
489 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
490 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
491 for (timeout = 10000000; timeout; timeout--) {
492 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
493 & STS1_CMDSEQ))
494 break;
495 mdelay(1);
496 }
497 if (!timeout) {
498 dev_err(&host->pd->dev,
499 "Forced end of command sequence timeout err\n");
500 return -EIO;
501 }
502 sh_mmcif_sync_reset(host);
503 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
504 return -EIO;
505 }
506
507 if (state2 & STS2_CRC_ERR) {
508 dev_dbg(&host->pd->dev, ": CRC error\n");
509 ret = -EIO;
510 } else if (state2 & STS2_TIMEOUT_ERR) {
511 dev_dbg(&host->pd->dev, ": Timeout\n");
512 ret = -ETIMEDOUT;
513 } else {
514 dev_dbg(&host->pd->dev, ": End/Index error\n");
515 ret = -EIO;
516 }
517 return ret;
518 }
519
520 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
521 {
522 struct mmc_data *data = host->mrq->data;
523
524 host->sg_blkidx += host->blocksize;
525
526 /* data->sg->length must be a multiple of host->blocksize? */
527 BUG_ON(host->sg_blkidx > data->sg->length);
528
529 if (host->sg_blkidx == data->sg->length) {
530 host->sg_blkidx = 0;
531 if (++host->sg_idx < data->sg_len)
532 host->pio_ptr = sg_virt(++data->sg);
533 } else {
534 host->pio_ptr = p;
535 }
536
537 if (host->sg_idx == data->sg_len)
538 return false;
539
540 return true;
541 }
542
543 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
544 struct mmc_request *mrq)
545 {
546 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
547 BLOCK_SIZE_MASK) + 3;
548
549 host->wait_for = MMCIF_WAIT_FOR_READ;
550 schedule_delayed_work(&host->timeout_work, host->timeout);
551
552 /* buf read enable */
553 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
554 }
555
556 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
557 {
558 struct mmc_data *data = host->mrq->data;
559 u32 *p = sg_virt(data->sg);
560 int i;
561
562 if (host->sd_error) {
563 data->error = sh_mmcif_error_manage(host);
564 return false;
565 }
566
567 for (i = 0; i < host->blocksize / 4; i++)
568 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
569
570 /* buffer read end */
571 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
572 host->wait_for = MMCIF_WAIT_FOR_READ_END;
573
574 return true;
575 }
576
577 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
578 struct mmc_request *mrq)
579 {
580 struct mmc_data *data = mrq->data;
581
582 if (!data->sg_len || !data->sg->length)
583 return;
584
585 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586 BLOCK_SIZE_MASK;
587
588 host->wait_for = MMCIF_WAIT_FOR_MREAD;
589 host->sg_idx = 0;
590 host->sg_blkidx = 0;
591 host->pio_ptr = sg_virt(data->sg);
592 schedule_delayed_work(&host->timeout_work, host->timeout);
593 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
594 }
595
596 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
597 {
598 struct mmc_data *data = host->mrq->data;
599 u32 *p = host->pio_ptr;
600 int i;
601
602 if (host->sd_error) {
603 data->error = sh_mmcif_error_manage(host);
604 return false;
605 }
606
607 BUG_ON(!data->sg->length);
608
609 for (i = 0; i < host->blocksize / 4; i++)
610 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
611
612 if (!sh_mmcif_next_block(host, p))
613 return false;
614
615 schedule_delayed_work(&host->timeout_work, host->timeout);
616 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
617
618 return true;
619 }
620
621 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
622 struct mmc_request *mrq)
623 {
624 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 BLOCK_SIZE_MASK) + 3;
626
627 host->wait_for = MMCIF_WAIT_FOR_WRITE;
628 schedule_delayed_work(&host->timeout_work, host->timeout);
629
630 /* buf write enable */
631 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
632 }
633
634 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
635 {
636 struct mmc_data *data = host->mrq->data;
637 u32 *p = sg_virt(data->sg);
638 int i;
639
640 if (host->sd_error) {
641 data->error = sh_mmcif_error_manage(host);
642 return false;
643 }
644
645 for (i = 0; i < host->blocksize / 4; i++)
646 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
647
648 /* buffer write end */
649 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
650 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
651
652 return true;
653 }
654
655 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
656 struct mmc_request *mrq)
657 {
658 struct mmc_data *data = mrq->data;
659
660 if (!data->sg_len || !data->sg->length)
661 return;
662
663 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664 BLOCK_SIZE_MASK;
665
666 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
667 host->sg_idx = 0;
668 host->sg_blkidx = 0;
669 host->pio_ptr = sg_virt(data->sg);
670 schedule_delayed_work(&host->timeout_work, host->timeout);
671 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
672 }
673
674 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
675 {
676 struct mmc_data *data = host->mrq->data;
677 u32 *p = host->pio_ptr;
678 int i;
679
680 if (host->sd_error) {
681 data->error = sh_mmcif_error_manage(host);
682 return false;
683 }
684
685 BUG_ON(!data->sg->length);
686
687 for (i = 0; i < host->blocksize / 4; i++)
688 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
689
690 if (!sh_mmcif_next_block(host, p))
691 return false;
692
693 schedule_delayed_work(&host->timeout_work, host->timeout);
694 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
695
696 return true;
697 }
698
699 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
700 struct mmc_command *cmd)
701 {
702 if (cmd->flags & MMC_RSP_136) {
703 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
704 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
705 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
706 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
707 } else
708 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
709 }
710
711 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
712 struct mmc_command *cmd)
713 {
714 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
715 }
716
717 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
718 struct mmc_request *mrq)
719 {
720 struct mmc_data *data = mrq->data;
721 struct mmc_command *cmd = mrq->cmd;
722 u32 opc = cmd->opcode;
723 u32 tmp = 0;
724
725 /* Response Type check */
726 switch (mmc_resp_type(cmd)) {
727 case MMC_RSP_NONE:
728 tmp |= CMD_SET_RTYP_NO;
729 break;
730 case MMC_RSP_R1:
731 case MMC_RSP_R1B:
732 case MMC_RSP_R3:
733 tmp |= CMD_SET_RTYP_6B;
734 break;
735 case MMC_RSP_R2:
736 tmp |= CMD_SET_RTYP_17B;
737 break;
738 default:
739 dev_err(&host->pd->dev, "Unsupported response type.\n");
740 break;
741 }
742 switch (opc) {
743 /* RBSY */
744 case MMC_SWITCH:
745 case MMC_STOP_TRANSMISSION:
746 case MMC_SET_WRITE_PROT:
747 case MMC_CLR_WRITE_PROT:
748 case MMC_ERASE:
749 case MMC_GEN_CMD:
750 tmp |= CMD_SET_RBSY;
751 break;
752 }
753 /* WDAT / DATW */
754 if (data) {
755 tmp |= CMD_SET_WDAT;
756 switch (host->bus_width) {
757 case MMC_BUS_WIDTH_1:
758 tmp |= CMD_SET_DATW_1;
759 break;
760 case MMC_BUS_WIDTH_4:
761 tmp |= CMD_SET_DATW_4;
762 break;
763 case MMC_BUS_WIDTH_8:
764 tmp |= CMD_SET_DATW_8;
765 break;
766 default:
767 dev_err(&host->pd->dev, "Unsupported bus width.\n");
768 break;
769 }
770 }
771 /* DWEN */
772 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
773 tmp |= CMD_SET_DWEN;
774 /* CMLTE/CMD12EN */
775 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
776 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
777 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
778 data->blocks << 16);
779 }
780 /* RIDXC[1:0] check bits */
781 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
782 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
783 tmp |= CMD_SET_RIDXC_BITS;
784 /* RCRC7C[1:0] check bits */
785 if (opc == MMC_SEND_OP_COND)
786 tmp |= CMD_SET_CRC7C_BITS;
787 /* RCRC7C[1:0] internal CRC7 */
788 if (opc == MMC_ALL_SEND_CID ||
789 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
790 tmp |= CMD_SET_CRC7C_INTERNAL;
791
792 return (opc << 24) | tmp;
793 }
794
795 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
796 struct mmc_request *mrq, u32 opc)
797 {
798 switch (opc) {
799 case MMC_READ_MULTIPLE_BLOCK:
800 sh_mmcif_multi_read(host, mrq);
801 return 0;
802 case MMC_WRITE_MULTIPLE_BLOCK:
803 sh_mmcif_multi_write(host, mrq);
804 return 0;
805 case MMC_WRITE_BLOCK:
806 sh_mmcif_single_write(host, mrq);
807 return 0;
808 case MMC_READ_SINGLE_BLOCK:
809 case MMC_SEND_EXT_CSD:
810 sh_mmcif_single_read(host, mrq);
811 return 0;
812 default:
813 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
814 return -EINVAL;
815 }
816 }
817
818 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
819 struct mmc_request *mrq)
820 {
821 struct mmc_command *cmd = mrq->cmd;
822 u32 opc = cmd->opcode;
823 u32 mask;
824
825 switch (opc) {
826 /* response busy check */
827 case MMC_SWITCH:
828 case MMC_STOP_TRANSMISSION:
829 case MMC_SET_WRITE_PROT:
830 case MMC_CLR_WRITE_PROT:
831 case MMC_ERASE:
832 case MMC_GEN_CMD:
833 mask = MASK_START_CMD | MASK_MRBSYE;
834 break;
835 default:
836 mask = MASK_START_CMD | MASK_MCRSPE;
837 break;
838 }
839
840 if (mrq->data) {
841 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
842 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
843 mrq->data->blksz);
844 }
845 opc = sh_mmcif_set_cmd(host, mrq);
846
847 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
848 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
849 /* set arg */
850 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
851 /* set cmd */
852 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
853
854 host->wait_for = MMCIF_WAIT_FOR_CMD;
855 schedule_delayed_work(&host->timeout_work, host->timeout);
856 }
857
858 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
859 struct mmc_request *mrq)
860 {
861 switch (mrq->cmd->opcode) {
862 case MMC_READ_MULTIPLE_BLOCK:
863 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
864 break;
865 case MMC_WRITE_MULTIPLE_BLOCK:
866 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
867 break;
868 default:
869 dev_err(&host->pd->dev, "unsupported stop cmd\n");
870 mrq->stop->error = sh_mmcif_error_manage(host);
871 return;
872 }
873
874 host->wait_for = MMCIF_WAIT_FOR_STOP;
875 schedule_delayed_work(&host->timeout_work, host->timeout);
876 }
877
878 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
879 {
880 struct sh_mmcif_host *host = mmc_priv(mmc);
881 unsigned long flags;
882
883 spin_lock_irqsave(&host->lock, flags);
884 if (host->state != STATE_IDLE) {
885 spin_unlock_irqrestore(&host->lock, flags);
886 mrq->cmd->error = -EAGAIN;
887 mmc_request_done(mmc, mrq);
888 return;
889 }
890
891 host->state = STATE_REQUEST;
892 spin_unlock_irqrestore(&host->lock, flags);
893
894 switch (mrq->cmd->opcode) {
895 /* MMCIF does not support SD/SDIO command */
896 case SD_IO_SEND_OP_COND:
897 case MMC_APP_CMD:
898 host->state = STATE_IDLE;
899 mrq->cmd->error = -ETIMEDOUT;
900 mmc_request_done(mmc, mrq);
901 return;
902 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
903 if (!mrq->data) {
904 /* send_if_cond cmd (not support) */
905 host->state = STATE_IDLE;
906 mrq->cmd->error = -ETIMEDOUT;
907 mmc_request_done(mmc, mrq);
908 return;
909 }
910 break;
911 default:
912 break;
913 }
914
915 host->mrq = mrq;
916
917 sh_mmcif_start_cmd(host, mrq);
918 }
919
920 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
921 {
922 struct sh_mmcif_host *host = mmc_priv(mmc);
923 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
924 unsigned long flags;
925
926 spin_lock_irqsave(&host->lock, flags);
927 if (host->state != STATE_IDLE) {
928 spin_unlock_irqrestore(&host->lock, flags);
929 return;
930 }
931
932 host->state = STATE_IOS;
933 spin_unlock_irqrestore(&host->lock, flags);
934
935 if (ios->power_mode == MMC_POWER_UP) {
936 if (!host->card_present) {
937 /* See if we also get DMA */
938 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
939 host->card_present = true;
940 }
941 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
942 /* clock stop */
943 sh_mmcif_clock_control(host, 0);
944 if (ios->power_mode == MMC_POWER_OFF) {
945 if (host->card_present) {
946 sh_mmcif_release_dma(host);
947 host->card_present = false;
948 }
949 }
950 if (host->power) {
951 pm_runtime_put(&host->pd->dev);
952 host->power = false;
953 if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
954 p->down_pwr(host->pd);
955 }
956 host->state = STATE_IDLE;
957 return;
958 }
959
960 if (ios->clock) {
961 if (!host->power) {
962 if (p->set_pwr)
963 p->set_pwr(host->pd, ios->power_mode);
964 pm_runtime_get_sync(&host->pd->dev);
965 host->power = true;
966 sh_mmcif_sync_reset(host);
967 }
968 sh_mmcif_clock_control(host, ios->clock);
969 }
970
971 host->bus_width = ios->bus_width;
972 host->state = STATE_IDLE;
973 }
974
975 static int sh_mmcif_get_cd(struct mmc_host *mmc)
976 {
977 struct sh_mmcif_host *host = mmc_priv(mmc);
978 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
979
980 if (!p->get_cd)
981 return -ENOSYS;
982 else
983 return p->get_cd(host->pd);
984 }
985
986 static struct mmc_host_ops sh_mmcif_ops = {
987 .request = sh_mmcif_request,
988 .set_ios = sh_mmcif_set_ios,
989 .get_cd = sh_mmcif_get_cd,
990 };
991
992 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
993 {
994 struct mmc_command *cmd = host->mrq->cmd;
995 struct mmc_data *data = host->mrq->data;
996 long time;
997
998 if (host->sd_error) {
999 switch (cmd->opcode) {
1000 case MMC_ALL_SEND_CID:
1001 case MMC_SELECT_CARD:
1002 case MMC_APP_CMD:
1003 cmd->error = -ETIMEDOUT;
1004 host->sd_error = false;
1005 break;
1006 default:
1007 cmd->error = sh_mmcif_error_manage(host);
1008 dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1009 cmd->opcode, cmd->error);
1010 break;
1011 }
1012 return false;
1013 }
1014 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1015 cmd->error = 0;
1016 return false;
1017 }
1018
1019 sh_mmcif_get_response(host, cmd);
1020
1021 if (!data)
1022 return false;
1023
1024 if (data->flags & MMC_DATA_READ) {
1025 if (host->chan_rx)
1026 sh_mmcif_start_dma_rx(host);
1027 } else {
1028 if (host->chan_tx)
1029 sh_mmcif_start_dma_tx(host);
1030 }
1031
1032 if (!host->dma_active) {
1033 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1034 if (!data->error)
1035 return true;
1036 return false;
1037 }
1038
1039 /* Running in the IRQ thread, can sleep */
1040 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1041 host->timeout);
1042 if (host->sd_error) {
1043 dev_err(host->mmc->parent,
1044 "Error IRQ while waiting for DMA completion!\n");
1045 /* Woken up by an error IRQ: abort DMA */
1046 if (data->flags & MMC_DATA_READ)
1047 dmaengine_terminate_all(host->chan_rx);
1048 else
1049 dmaengine_terminate_all(host->chan_tx);
1050 data->error = sh_mmcif_error_manage(host);
1051 } else if (!time) {
1052 data->error = -ETIMEDOUT;
1053 } else if (time < 0) {
1054 data->error = time;
1055 }
1056 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1057 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1058 host->dma_active = false;
1059
1060 if (data->error)
1061 data->bytes_xfered = 0;
1062
1063 return false;
1064 }
1065
1066 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1067 {
1068 struct sh_mmcif_host *host = dev_id;
1069 struct mmc_request *mrq = host->mrq;
1070 struct mmc_data *data = mrq->data;
1071
1072 cancel_delayed_work_sync(&host->timeout_work);
1073
1074 /*
1075 * All handlers return true, if processing continues, and false, if the
1076 * request has to be completed - successfully or not
1077 */
1078 switch (host->wait_for) {
1079 case MMCIF_WAIT_FOR_REQUEST:
1080 /* We're too late, the timeout has already kicked in */
1081 return IRQ_HANDLED;
1082 case MMCIF_WAIT_FOR_CMD:
1083 if (sh_mmcif_end_cmd(host))
1084 /* Wait for data */
1085 return IRQ_HANDLED;
1086 break;
1087 case MMCIF_WAIT_FOR_MREAD:
1088 if (sh_mmcif_mread_block(host))
1089 /* Wait for more data */
1090 return IRQ_HANDLED;
1091 break;
1092 case MMCIF_WAIT_FOR_READ:
1093 if (sh_mmcif_read_block(host))
1094 /* Wait for data end */
1095 return IRQ_HANDLED;
1096 break;
1097 case MMCIF_WAIT_FOR_MWRITE:
1098 if (sh_mmcif_mwrite_block(host))
1099 /* Wait data to write */
1100 return IRQ_HANDLED;
1101 break;
1102 case MMCIF_WAIT_FOR_WRITE:
1103 if (sh_mmcif_write_block(host))
1104 /* Wait for data end */
1105 return IRQ_HANDLED;
1106 break;
1107 case MMCIF_WAIT_FOR_STOP:
1108 if (host->sd_error) {
1109 mrq->stop->error = sh_mmcif_error_manage(host);
1110 break;
1111 }
1112 sh_mmcif_get_cmd12response(host, mrq->stop);
1113 mrq->stop->error = 0;
1114 break;
1115 case MMCIF_WAIT_FOR_READ_END:
1116 case MMCIF_WAIT_FOR_WRITE_END:
1117 if (host->sd_error)
1118 data->error = sh_mmcif_error_manage(host);
1119 break;
1120 default:
1121 BUG();
1122 }
1123
1124 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1125 if (!mrq->cmd->error && data && !data->error)
1126 data->bytes_xfered =
1127 data->blocks * data->blksz;
1128
1129 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1130 sh_mmcif_stop_cmd(host, mrq);
1131 if (!mrq->stop->error)
1132 return IRQ_HANDLED;
1133 }
1134 }
1135
1136 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1137 host->state = STATE_IDLE;
1138 host->mrq = NULL;
1139 mmc_request_done(host->mmc, mrq);
1140
1141 return IRQ_HANDLED;
1142 }
1143
1144 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1145 {
1146 struct sh_mmcif_host *host = dev_id;
1147 u32 state;
1148 int err = 0;
1149
1150 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1151
1152 if (state & INT_ERR_STS) {
1153 /* error interrupts - process first */
1154 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1155 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1156 err = 1;
1157 } else if (state & INT_RBSYE) {
1158 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1159 ~(INT_RBSYE | INT_CRSPE));
1160 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1161 } else if (state & INT_CRSPE) {
1162 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1163 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1164 } else if (state & INT_BUFREN) {
1165 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1166 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1167 } else if (state & INT_BUFWEN) {
1168 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1169 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1170 } else if (state & INT_CMD12DRE) {
1171 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1172 ~(INT_CMD12DRE | INT_CMD12RBE |
1173 INT_CMD12CRE | INT_BUFRE));
1174 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1175 } else if (state & INT_BUFRE) {
1176 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1177 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1178 } else if (state & INT_DTRANE) {
1179 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1180 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1181 } else if (state & INT_CMD12RBE) {
1182 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1183 ~(INT_CMD12RBE | INT_CMD12CRE));
1184 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1185 } else {
1186 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1187 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1188 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1189 err = 1;
1190 }
1191 if (err) {
1192 host->sd_error = true;
1193 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1194 }
1195 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1196 if (!host->dma_active)
1197 return IRQ_WAKE_THREAD;
1198 else if (host->sd_error)
1199 mmcif_dma_complete(host);
1200 } else {
1201 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1202 }
1203
1204 return IRQ_HANDLED;
1205 }
1206
1207 static void mmcif_timeout_work(struct work_struct *work)
1208 {
1209 struct delayed_work *d = container_of(work, struct delayed_work, work);
1210 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1211 struct mmc_request *mrq = host->mrq;
1212
1213 if (host->dying)
1214 /* Don't run after mmc_remove_host() */
1215 return;
1216
1217 /*
1218 * Handle races with cancel_delayed_work(), unless
1219 * cancel_delayed_work_sync() is used
1220 */
1221 switch (host->wait_for) {
1222 case MMCIF_WAIT_FOR_CMD:
1223 mrq->cmd->error = sh_mmcif_error_manage(host);
1224 break;
1225 case MMCIF_WAIT_FOR_STOP:
1226 mrq->stop->error = sh_mmcif_error_manage(host);
1227 break;
1228 case MMCIF_WAIT_FOR_MREAD:
1229 case MMCIF_WAIT_FOR_MWRITE:
1230 case MMCIF_WAIT_FOR_READ:
1231 case MMCIF_WAIT_FOR_WRITE:
1232 case MMCIF_WAIT_FOR_READ_END:
1233 case MMCIF_WAIT_FOR_WRITE_END:
1234 mrq->data->error = sh_mmcif_error_manage(host);
1235 break;
1236 default:
1237 BUG();
1238 }
1239
1240 host->state = STATE_IDLE;
1241 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1242 host->mrq = NULL;
1243 mmc_request_done(host->mmc, mrq);
1244 }
1245
1246 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1247 {
1248 int ret = 0, irq[2];
1249 struct mmc_host *mmc;
1250 struct sh_mmcif_host *host;
1251 struct sh_mmcif_plat_data *pd;
1252 struct resource *res;
1253 void __iomem *reg;
1254 char clk_name[8];
1255
1256 irq[0] = platform_get_irq(pdev, 0);
1257 irq[1] = platform_get_irq(pdev, 1);
1258 if (irq[0] < 0 || irq[1] < 0) {
1259 dev_err(&pdev->dev, "Get irq error\n");
1260 return -ENXIO;
1261 }
1262 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263 if (!res) {
1264 dev_err(&pdev->dev, "platform_get_resource error.\n");
1265 return -ENXIO;
1266 }
1267 reg = ioremap(res->start, resource_size(res));
1268 if (!reg) {
1269 dev_err(&pdev->dev, "ioremap error.\n");
1270 return -ENOMEM;
1271 }
1272 pd = pdev->dev.platform_data;
1273 if (!pd) {
1274 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1275 ret = -ENXIO;
1276 goto clean_up;
1277 }
1278 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1279 if (!mmc) {
1280 ret = -ENOMEM;
1281 goto clean_up;
1282 }
1283 host = mmc_priv(mmc);
1284 host->mmc = mmc;
1285 host->addr = reg;
1286 host->timeout = 1000;
1287
1288 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1289 host->hclk = clk_get(&pdev->dev, clk_name);
1290 if (IS_ERR(host->hclk)) {
1291 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1292 ret = PTR_ERR(host->hclk);
1293 goto clean_up1;
1294 }
1295 clk_enable(host->hclk);
1296 host->clk = clk_get_rate(host->hclk);
1297 host->pd = pdev;
1298
1299 spin_lock_init(&host->lock);
1300
1301 mmc->ops = &sh_mmcif_ops;
1302 mmc->f_max = host->clk;
1303 /* close to 400KHz */
1304 if (mmc->f_max < 51200000)
1305 mmc->f_min = mmc->f_max / 128;
1306 else if (mmc->f_max < 102400000)
1307 mmc->f_min = mmc->f_max / 256;
1308 else
1309 mmc->f_min = mmc->f_max / 512;
1310 if (pd->ocr)
1311 mmc->ocr_avail = pd->ocr;
1312 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1313 if (pd->caps)
1314 mmc->caps |= pd->caps;
1315 mmc->max_segs = 32;
1316 mmc->max_blk_size = 512;
1317 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1318 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1319 mmc->max_seg_size = mmc->max_req_size;
1320
1321 sh_mmcif_sync_reset(host);
1322 platform_set_drvdata(pdev, host);
1323
1324 pm_runtime_enable(&pdev->dev);
1325 host->power = false;
1326
1327 ret = pm_runtime_resume(&pdev->dev);
1328 if (ret < 0)
1329 goto clean_up2;
1330
1331 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1332
1333 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1334
1335 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1336 if (ret) {
1337 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1338 goto clean_up3;
1339 }
1340 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1341 if (ret) {
1342 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1343 goto clean_up4;
1344 }
1345
1346 ret = mmc_add_host(mmc);
1347 if (ret < 0)
1348 goto clean_up5;
1349
1350 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1351
1352 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1353 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1354 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1355 return ret;
1356
1357 clean_up5:
1358 free_irq(irq[1], host);
1359 clean_up4:
1360 free_irq(irq[0], host);
1361 clean_up3:
1362 pm_runtime_suspend(&pdev->dev);
1363 clean_up2:
1364 pm_runtime_disable(&pdev->dev);
1365 clk_disable(host->hclk);
1366 clean_up1:
1367 mmc_free_host(mmc);
1368 clean_up:
1369 if (reg)
1370 iounmap(reg);
1371 return ret;
1372 }
1373
1374 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1375 {
1376 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1377 int irq[2];
1378
1379 host->dying = true;
1380 pm_runtime_get_sync(&pdev->dev);
1381
1382 dev_pm_qos_hide_latency_limit(&pdev->dev);
1383
1384 mmc_remove_host(host->mmc);
1385 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1386
1387 /*
1388 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1389 * mmc_remove_host() call above. But swapping order doesn't help either
1390 * (a query on the linux-mmc mailing list didn't bring any replies).
1391 */
1392 cancel_delayed_work_sync(&host->timeout_work);
1393
1394 if (host->addr)
1395 iounmap(host->addr);
1396
1397 irq[0] = platform_get_irq(pdev, 0);
1398 irq[1] = platform_get_irq(pdev, 1);
1399
1400 free_irq(irq[0], host);
1401 free_irq(irq[1], host);
1402
1403 platform_set_drvdata(pdev, NULL);
1404
1405 clk_disable(host->hclk);
1406 mmc_free_host(host->mmc);
1407 pm_runtime_put_sync(&pdev->dev);
1408 pm_runtime_disable(&pdev->dev);
1409
1410 return 0;
1411 }
1412
1413 #ifdef CONFIG_PM
1414 static int sh_mmcif_suspend(struct device *dev)
1415 {
1416 struct platform_device *pdev = to_platform_device(dev);
1417 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1418 int ret = mmc_suspend_host(host->mmc);
1419
1420 if (!ret) {
1421 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1422 clk_disable(host->hclk);
1423 }
1424
1425 return ret;
1426 }
1427
1428 static int sh_mmcif_resume(struct device *dev)
1429 {
1430 struct platform_device *pdev = to_platform_device(dev);
1431 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1432
1433 clk_enable(host->hclk);
1434
1435 return mmc_resume_host(host->mmc);
1436 }
1437 #else
1438 #define sh_mmcif_suspend NULL
1439 #define sh_mmcif_resume NULL
1440 #endif /* CONFIG_PM */
1441
1442 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1443 .suspend = sh_mmcif_suspend,
1444 .resume = sh_mmcif_resume,
1445 };
1446
1447 static struct platform_driver sh_mmcif_driver = {
1448 .probe = sh_mmcif_probe,
1449 .remove = sh_mmcif_remove,
1450 .driver = {
1451 .name = DRIVER_NAME,
1452 .pm = &sh_mmcif_dev_pm_ops,
1453 },
1454 };
1455
1456 module_platform_driver(sh_mmcif_driver);
1457
1458 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1459 MODULE_LICENSE("GPL");
1460 MODULE_ALIAS("platform:" DRIVER_NAME);
1461 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");