]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/Kconfig
Merge branch 'fix/asoc' into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / Kconfig
1 menuconfig MTD
2 tristate "Memory Technology Device (MTD) support"
3 depends on HAS_IOMEM
4 help
5 Memory Technology Devices are flash, RAM and similar chips, often
6 used for solid state file systems on embedded devices. This option
7 will provide the generic support for MTD drivers to register
8 themselves with the kernel and for potential users of MTD devices
9 to enumerate the devices which are present and obtain a handle on
10 them. It will also allow you to select individual drivers for
11 particular hardware and users of MTD devices. If unsure, say N.
12
13 if MTD
14
15 config MTD_DEBUG
16 bool "Debugging"
17 help
18 This turns on low-level debugging for the entire MTD sub-system.
19 Normally, you should say 'N'.
20
21 config MTD_DEBUG_VERBOSE
22 int "Debugging verbosity (0 = quiet, 3 = noisy)"
23 depends on MTD_DEBUG
24 default "0"
25 help
26 Determines the verbosity level of the MTD debugging messages.
27
28 config MTD_TESTS
29 tristate "MTD tests support"
30 depends on m
31 help
32 This option includes various MTD tests into compilation. The tests
33 should normally be compiled as kernel modules. The modules perform
34 various checks and verifications when loaded.
35
36 config MTD_PARTITIONS
37 bool "MTD partitioning support"
38 help
39 If you have a device which needs to divide its flash chip(s) up
40 into multiple 'partitions', each of which appears to the user as
41 a separate MTD device, you require this option to be enabled. If
42 unsure, say 'Y'.
43
44 Note, however, that you don't need this option for the DiskOnChip
45 devices. Partitioning on NFTL 'devices' is a different - that's the
46 'normal' form of partitioning used on a block device.
47
48 if MTD_PARTITIONS
49
50 config MTD_REDBOOT_PARTS
51 tristate "RedBoot partition table parsing"
52 ---help---
53 RedBoot is a ROM monitor and bootloader which deals with multiple
54 'images' in flash devices by putting a table one of the erase
55 blocks on the device, similar to a partition table, which gives
56 the offsets, lengths and names of all the images stored in the
57 flash.
58
59 If you need code which can detect and parse this table, and register
60 MTD 'partitions' corresponding to each image in the table, enable
61 this option.
62
63 You will still need the parsing functions to be called by the driver
64 for your particular device. It won't happen automatically. The
65 SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
66 example.
67
68 if MTD_REDBOOT_PARTS
69
70 config MTD_REDBOOT_DIRECTORY_BLOCK
71 int "Location of RedBoot partition table"
72 default "-1"
73 ---help---
74 This option is the Linux counterpart to the
75 CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
76 option.
77
78 The option specifies which Flash sectors holds the RedBoot
79 partition table. A zero or positive value gives an absolute
80 erase block number. A negative value specifies a number of
81 sectors before the end of the device.
82
83 For example "2" means block number 2, "-1" means the last
84 block and "-2" means the penultimate block.
85
86 config MTD_REDBOOT_PARTS_UNALLOCATED
87 bool "Include unallocated flash regions"
88 help
89 If you need to register each unallocated flash region as a MTD
90 'partition', enable this option.
91
92 config MTD_REDBOOT_PARTS_READONLY
93 bool "Force read-only for RedBoot system images"
94 help
95 If you need to force read-only for 'RedBoot', 'RedBoot Config' and
96 'FIS directory' images, enable this option.
97
98 endif # MTD_REDBOOT_PARTS
99
100 config MTD_CMDLINE_PARTS
101 bool "Command line partition table parsing"
102 depends on MTD_PARTITIONS = "y" && MTD = "y"
103 ---help---
104 Allow generic configuration of the MTD partition tables via the kernel
105 command line. Multiple flash resources are supported for hardware where
106 different kinds of flash memory are available.
107
108 You will still need the parsing functions to be called by the driver
109 for your particular device. It won't happen automatically. The
110 SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
111 example.
112
113 The format for the command line is as follows:
114
115 mtdparts=<mtddef>[;<mtddef]
116 <mtddef> := <mtd-id>:<partdef>[,<partdef>]
117 <partdef> := <size>[@offset][<name>][ro]
118 <mtd-id> := unique id used in mapping driver/device
119 <size> := standard linux memsize OR "-" to denote all
120 remaining space
121 <name> := (NAME)
122
123 Due to the way Linux handles the command line, no spaces are
124 allowed in the partition definition, including mtd id's and partition
125 names.
126
127 Examples:
128
129 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
130 mtdparts=sa1100:-
131
132 Same flash, but 2 named partitions, the first one being read-only:
133 mtdparts=sa1100:256k(ARMboot)ro,-(root)
134
135 If unsure, say 'N'.
136
137 config MTD_AFS_PARTS
138 tristate "ARM Firmware Suite partition parsing"
139 depends on ARM
140 ---help---
141 The ARM Firmware Suite allows the user to divide flash devices into
142 multiple 'images'. Each such image has a header containing its name
143 and offset/size etc.
144
145 If you need code which can detect and parse these tables, and
146 register MTD 'partitions' corresponding to each image detected,
147 enable this option.
148
149 You will still need the parsing functions to be called by the driver
150 for your particular device. It won't happen automatically. The
151 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example.
152
153 config MTD_OF_PARTS
154 def_bool y
155 depends on OF
156 help
157 This provides a partition parsing function which derives
158 the partition map from the children of the flash node,
159 as described in Documentation/powerpc/booting-without-of.txt.
160
161 config MTD_AR7_PARTS
162 tristate "TI AR7 partitioning support"
163 ---help---
164 TI AR7 partitioning support
165
166 endif # MTD_PARTITIONS
167
168 comment "User Modules And Translation Layers"
169
170 config MTD_CHAR
171 tristate "Direct char device access to MTD devices"
172 help
173 This provides a character device for each MTD device present in
174 the system, allowing the user to read and write directly to the
175 memory chips, and also use ioctl() to obtain information about
176 the device, or to erase parts of it.
177
178 config HAVE_MTD_OTP
179 bool
180 help
181 Enable access to OTP regions using MTD_CHAR.
182
183 config MTD_BLKDEVS
184 tristate "Common interface to block layer for MTD 'translation layers'"
185 depends on BLOCK
186 default n
187
188 config MTD_BLOCK
189 tristate "Caching block device access to MTD devices"
190 depends on BLOCK
191 select MTD_BLKDEVS
192 ---help---
193 Although most flash chips have an erase size too large to be useful
194 as block devices, it is possible to use MTD devices which are based
195 on RAM chips in this manner. This block device is a user of MTD
196 devices performing that function.
197
198 At the moment, it is also required for the Journalling Flash File
199 System(s) to obtain a handle on the MTD device when it's mounted
200 (although JFFS and JFFS2 don't actually use any of the functionality
201 of the mtdblock device).
202
203 Later, it may be extended to perform read/erase/modify/write cycles
204 on flash chips to emulate a smaller block size. Needless to say,
205 this is very unsafe, but could be useful for file systems which are
206 almost never written to.
207
208 You do not need this option for use with the DiskOnChip devices. For
209 those, enable NFTL support (CONFIG_NFTL) instead.
210
211 config MTD_BLOCK_RO
212 tristate "Readonly block device access to MTD devices"
213 depends on MTD_BLOCK!=y && BLOCK
214 select MTD_BLKDEVS
215 help
216 This allows you to mount read-only file systems (such as cramfs)
217 from an MTD device, without the overhead (and danger) of the caching
218 driver.
219
220 You do not need this option for use with the DiskOnChip devices. For
221 those, enable NFTL support (CONFIG_NFTL) instead.
222
223 config FTL
224 tristate "FTL (Flash Translation Layer) support"
225 depends on BLOCK
226 select MTD_BLKDEVS
227 ---help---
228 This provides support for the original Flash Translation Layer which
229 is part of the PCMCIA specification. It uses a kind of pseudo-
230 file system on a flash device to emulate a block device with
231 512-byte sectors, on top of which you put a 'normal' file system.
232
233 You may find that the algorithms used in this code are patented
234 unless you live in the Free World where software patents aren't
235 legal - in the USA you are only permitted to use this on PCMCIA
236 hardware, although under the terms of the GPL you're obviously
237 permitted to copy, modify and distribute the code as you wish. Just
238 not use it.
239
240 config NFTL
241 tristate "NFTL (NAND Flash Translation Layer) support"
242 depends on BLOCK
243 select MTD_BLKDEVS
244 ---help---
245 This provides support for the NAND Flash Translation Layer which is
246 used on M-Systems' DiskOnChip devices. It uses a kind of pseudo-
247 file system on a flash device to emulate a block device with
248 512-byte sectors, on top of which you put a 'normal' file system.
249
250 You may find that the algorithms used in this code are patented
251 unless you live in the Free World where software patents aren't
252 legal - in the USA you are only permitted to use this on DiskOnChip
253 hardware, although under the terms of the GPL you're obviously
254 permitted to copy, modify and distribute the code as you wish. Just
255 not use it.
256
257 config NFTL_RW
258 bool "Write support for NFTL"
259 depends on NFTL
260 help
261 Support for writing to the NAND Flash Translation Layer, as used
262 on the DiskOnChip.
263
264 config INFTL
265 tristate "INFTL (Inverse NAND Flash Translation Layer) support"
266 depends on BLOCK
267 select MTD_BLKDEVS
268 ---help---
269 This provides support for the Inverse NAND Flash Translation
270 Layer which is used on M-Systems' newer DiskOnChip devices. It
271 uses a kind of pseudo-file system on a flash device to emulate
272 a block device with 512-byte sectors, on top of which you put
273 a 'normal' file system.
274
275 You may find that the algorithms used in this code are patented
276 unless you live in the Free World where software patents aren't
277 legal - in the USA you are only permitted to use this on DiskOnChip
278 hardware, although under the terms of the GPL you're obviously
279 permitted to copy, modify and distribute the code as you wish. Just
280 not use it.
281
282 config RFD_FTL
283 tristate "Resident Flash Disk (Flash Translation Layer) support"
284 depends on BLOCK
285 select MTD_BLKDEVS
286 ---help---
287 This provides support for the flash translation layer known
288 as the Resident Flash Disk (RFD), as used by the Embedded BIOS
289 of General Software. There is a blurb at:
290
291 http://www.gensw.com/pages/prod/bios/rfd.htm
292
293 config SSFDC
294 tristate "NAND SSFDC (SmartMedia) read only translation layer"
295 depends on BLOCK
296 select MTD_BLKDEVS
297 help
298 This enables read only access to SmartMedia formatted NAND
299 flash. You can mount it with FAT file system.
300
301
302 config SM_FTL
303 tristate "SmartMedia/xD new translation layer"
304 depends on EXPERIMENTAL && BLOCK
305 select MTD_BLKDEVS
306 select MTD_NAND_ECC
307 help
308 This enables EXPERIMENTAL R/W support for SmartMedia/xD
309 FTL (Flash translation layer).
310 Write support is only lightly tested, therefore this driver
311 isn't recommended to use with valuable data (anyway if you have
312 valuable data, do backups regardless of software/hardware you
313 use, because you never know what will eat your data...)
314 If you only need R/O access, you can use older R/O driver
315 (CONFIG_SSFDC)
316
317 config MTD_OOPS
318 tristate "Log panic/oops to an MTD buffer"
319 help
320 This enables panic and oops messages to be logged to a circular
321 buffer in a flash partition where it can be read back at some
322 later point.
323
324 To use, add console=ttyMTDx to the kernel command line,
325 where x is the MTD device number to use.
326
327 config MTD_SWAP
328 tristate "Swap on MTD device support"
329 depends on MTD && SWAP
330 select MTD_BLKDEVS
331 help
332 Provides volatile block device driver on top of mtd partition
333 suitable for swapping. The mapping of written blocks is not saved.
334 The driver provides wear leveling by storing erase counter into the
335 OOB.
336
337 source "drivers/mtd/chips/Kconfig"
338
339 source "drivers/mtd/maps/Kconfig"
340
341 source "drivers/mtd/devices/Kconfig"
342
343 source "drivers/mtd/nand/Kconfig"
344
345 source "drivers/mtd/onenand/Kconfig"
346
347 source "drivers/mtd/lpddr/Kconfig"
348
349 source "drivers/mtd/ubi/Kconfig"
350
351 endif # MTD