]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/chips/cfi_cmdset_0001.c
Merge remote-tracking branches 'asoc/topic/tas2552', 'asoc/topic/tegra', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 *
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
18 */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <asm/io.h>
25 #include <asm/byteorder.h>
26
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/reboot.h>
32 #include <linux/bitmap.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/cfi.h>
37
38 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
40
41 // debugging, turns off buffer write mode if set to 1
42 #define FORCE_WORD_WRITE 0
43
44 /* Intel chips */
45 #define I82802AB 0x00ad
46 #define I82802AC 0x00ac
47 #define PF38F4476 0x881c
48 /* STMicroelectronics chips */
49 #define M50LPW080 0x002F
50 #define M50FLW080A 0x0080
51 #define M50FLW080B 0x0081
52 /* Atmel chips */
53 #define AT49BV640D 0x02de
54 #define AT49BV640DT 0x02db
55 /* Sharp chips */
56 #define LH28F640BFHE_PTTL90 0x00b0
57 #define LH28F640BFHE_PBTL90 0x00b1
58 #define LH28F640BFHE_PTTL70A 0x00b2
59 #define LH28F640BFHE_PBTL70A 0x00b3
60
61 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
63 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
65 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
66 static void cfi_intelext_sync (struct mtd_info *);
67 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
68 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
69 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
70 uint64_t len);
71 #ifdef CONFIG_MTD_OTP
72 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
73 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
74 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
75 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
76 static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
77 size_t *, struct otp_info *);
78 static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
79 size_t *, struct otp_info *);
80 #endif
81 static int cfi_intelext_suspend (struct mtd_info *);
82 static void cfi_intelext_resume (struct mtd_info *);
83 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
84
85 static void cfi_intelext_destroy(struct mtd_info *);
86
87 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
88
89 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
90 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
91
92 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
93 size_t *retlen, void **virt, resource_size_t *phys);
94 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
95
96 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
97 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
99 #include "fwh_lock.h"
100
101
102
103 /*
104 * *********** SETUP AND PROBE BITS ***********
105 */
106
107 static struct mtd_chip_driver cfi_intelext_chipdrv = {
108 .probe = NULL, /* Not usable directly */
109 .destroy = cfi_intelext_destroy,
110 .name = "cfi_cmdset_0001",
111 .module = THIS_MODULE
112 };
113
114 /* #define DEBUG_LOCK_BITS */
115 /* #define DEBUG_CFI_FEATURES */
116
117 #ifdef DEBUG_CFI_FEATURES
118 static void cfi_tell_features(struct cfi_pri_intelext *extp)
119 {
120 int i;
121 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
122 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
123 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
124 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
125 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
126 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
127 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
128 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
129 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
130 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
131 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
132 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
133 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
134 for (i=11; i<32; i++) {
135 if (extp->FeatureSupport & (1<<i))
136 printk(" - Unknown Bit %X: supported\n", i);
137 }
138
139 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
140 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
141 for (i=1; i<8; i++) {
142 if (extp->SuspendCmdSupport & (1<<i))
143 printk(" - Unknown Bit %X: supported\n", i);
144 }
145
146 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
147 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
148 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
149 for (i=2; i<3; i++) {
150 if (extp->BlkStatusRegMask & (1<<i))
151 printk(" - Unknown Bit %X Active: yes\n",i);
152 }
153 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
154 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
155 for (i=6; i<16; i++) {
156 if (extp->BlkStatusRegMask & (1<<i))
157 printk(" - Unknown Bit %X Active: yes\n",i);
158 }
159
160 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
161 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
162 if (extp->VppOptimal)
163 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
164 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
165 }
166 #endif
167
168 /* Atmel chips don't use the same PRI format as Intel chips */
169 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
170 {
171 struct map_info *map = mtd->priv;
172 struct cfi_private *cfi = map->fldrv_priv;
173 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
174 struct cfi_pri_atmel atmel_pri;
175 uint32_t features = 0;
176
177 /* Reverse byteswapping */
178 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
179 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
180 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
181
182 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
183 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
184
185 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
186
187 if (atmel_pri.Features & 0x01) /* chip erase supported */
188 features |= (1<<0);
189 if (atmel_pri.Features & 0x02) /* erase suspend supported */
190 features |= (1<<1);
191 if (atmel_pri.Features & 0x04) /* program suspend supported */
192 features |= (1<<2);
193 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
194 features |= (1<<9);
195 if (atmel_pri.Features & 0x20) /* page mode read supported */
196 features |= (1<<7);
197 if (atmel_pri.Features & 0x40) /* queued erase supported */
198 features |= (1<<4);
199 if (atmel_pri.Features & 0x80) /* Protection bits supported */
200 features |= (1<<6);
201
202 extp->FeatureSupport = features;
203
204 /* burst write mode not supported */
205 cfi->cfiq->BufWriteTimeoutTyp = 0;
206 cfi->cfiq->BufWriteTimeoutMax = 0;
207 }
208
209 static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
210 {
211 struct map_info *map = mtd->priv;
212 struct cfi_private *cfi = map->fldrv_priv;
213 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
214
215 cfip->FeatureSupport |= (1 << 5);
216 mtd->flags |= MTD_POWERUP_LOCK;
217 }
218
219 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
220 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
221 static void fixup_intel_strataflash(struct mtd_info *mtd)
222 {
223 struct map_info *map = mtd->priv;
224 struct cfi_private *cfi = map->fldrv_priv;
225 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
226
227 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
228 "erase on write disabled.\n");
229 extp->SuspendCmdSupport &= ~1;
230 }
231 #endif
232
233 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
234 static void fixup_no_write_suspend(struct mtd_info *mtd)
235 {
236 struct map_info *map = mtd->priv;
237 struct cfi_private *cfi = map->fldrv_priv;
238 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
239
240 if (cfip && (cfip->FeatureSupport&4)) {
241 cfip->FeatureSupport &= ~4;
242 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
243 }
244 }
245 #endif
246
247 static void fixup_st_m28w320ct(struct mtd_info *mtd)
248 {
249 struct map_info *map = mtd->priv;
250 struct cfi_private *cfi = map->fldrv_priv;
251
252 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
253 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
254 }
255
256 static void fixup_st_m28w320cb(struct mtd_info *mtd)
257 {
258 struct map_info *map = mtd->priv;
259 struct cfi_private *cfi = map->fldrv_priv;
260
261 /* Note this is done after the region info is endian swapped */
262 cfi->cfiq->EraseRegionInfo[1] =
263 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
264 };
265
266 static int is_LH28F640BF(struct cfi_private *cfi)
267 {
268 /* Sharp LH28F640BF Family */
269 if (cfi->mfr == CFI_MFR_SHARP && (
270 cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
271 cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
272 return 1;
273 return 0;
274 }
275
276 static void fixup_LH28F640BF(struct mtd_info *mtd)
277 {
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
281
282 /* Reset the Partition Configuration Register on LH28F640BF
283 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
284 if (is_LH28F640BF(cfi)) {
285 printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
286 map_write(map, CMD(0x60), 0);
287 map_write(map, CMD(0x04), 0);
288
289 /* We have set one single partition thus
290 * Simultaneous Operations are not allowed */
291 printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
292 extp->FeatureSupport &= ~512;
293 }
294 }
295
296 static void fixup_use_point(struct mtd_info *mtd)
297 {
298 struct map_info *map = mtd->priv;
299 if (!mtd->_point && map_is_linear(map)) {
300 mtd->_point = cfi_intelext_point;
301 mtd->_unpoint = cfi_intelext_unpoint;
302 }
303 }
304
305 static void fixup_use_write_buffers(struct mtd_info *mtd)
306 {
307 struct map_info *map = mtd->priv;
308 struct cfi_private *cfi = map->fldrv_priv;
309 if (cfi->cfiq->BufWriteTimeoutTyp) {
310 printk(KERN_INFO "Using buffer write method\n" );
311 mtd->_write = cfi_intelext_write_buffers;
312 mtd->_writev = cfi_intelext_writev;
313 }
314 }
315
316 /*
317 * Some chips power-up with all sectors locked by default.
318 */
319 static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
320 {
321 struct map_info *map = mtd->priv;
322 struct cfi_private *cfi = map->fldrv_priv;
323 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
324
325 if (cfip->FeatureSupport&32) {
326 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
327 mtd->flags |= MTD_POWERUP_LOCK;
328 }
329 }
330
331 static struct cfi_fixup cfi_fixup_table[] = {
332 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
333 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
334 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
335 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
336 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
337 #endif
338 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
339 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
340 #endif
341 #if !FORCE_WORD_WRITE
342 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
343 #endif
344 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
345 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
346 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
347 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
348 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
349 { 0, 0, NULL }
350 };
351
352 static struct cfi_fixup jedec_fixup_table[] = {
353 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
354 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
355 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
356 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
357 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
358 { 0, 0, NULL }
359 };
360 static struct cfi_fixup fixup_table[] = {
361 /* The CFI vendor ids and the JEDEC vendor IDs appear
362 * to be common. It is like the devices id's are as
363 * well. This table is to pick all cases where
364 * we know that is the case.
365 */
366 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
367 { 0, 0, NULL }
368 };
369
370 static void cfi_fixup_major_minor(struct cfi_private *cfi,
371 struct cfi_pri_intelext *extp)
372 {
373 if (cfi->mfr == CFI_MFR_INTEL &&
374 cfi->id == PF38F4476 && extp->MinorVersion == '3')
375 extp->MinorVersion = '1';
376 }
377
378 static inline struct cfi_pri_intelext *
379 read_pri_intelext(struct map_info *map, __u16 adr)
380 {
381 struct cfi_private *cfi = map->fldrv_priv;
382 struct cfi_pri_intelext *extp;
383 unsigned int extra_size = 0;
384 unsigned int extp_size = sizeof(*extp);
385
386 again:
387 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
388 if (!extp)
389 return NULL;
390
391 cfi_fixup_major_minor(cfi, extp);
392
393 if (extp->MajorVersion != '1' ||
394 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
395 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
396 "version %c.%c.\n", extp->MajorVersion,
397 extp->MinorVersion);
398 kfree(extp);
399 return NULL;
400 }
401
402 /* Do some byteswapping if necessary */
403 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
404 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
405 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
406
407 if (extp->MinorVersion >= '0') {
408 extra_size = 0;
409
410 /* Protection Register info */
411 extra_size += (extp->NumProtectionFields - 1) *
412 sizeof(struct cfi_intelext_otpinfo);
413 }
414
415 if (extp->MinorVersion >= '1') {
416 /* Burst Read info */
417 extra_size += 2;
418 if (extp_size < sizeof(*extp) + extra_size)
419 goto need_more;
420 extra_size += extp->extra[extra_size - 1];
421 }
422
423 if (extp->MinorVersion >= '3') {
424 int nb_parts, i;
425
426 /* Number of hardware-partitions */
427 extra_size += 1;
428 if (extp_size < sizeof(*extp) + extra_size)
429 goto need_more;
430 nb_parts = extp->extra[extra_size - 1];
431
432 /* skip the sizeof(partregion) field in CFI 1.4 */
433 if (extp->MinorVersion >= '4')
434 extra_size += 2;
435
436 for (i = 0; i < nb_parts; i++) {
437 struct cfi_intelext_regioninfo *rinfo;
438 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
439 extra_size += sizeof(*rinfo);
440 if (extp_size < sizeof(*extp) + extra_size)
441 goto need_more;
442 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
443 extra_size += (rinfo->NumBlockTypes - 1)
444 * sizeof(struct cfi_intelext_blockinfo);
445 }
446
447 if (extp->MinorVersion >= '4')
448 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
449
450 if (extp_size < sizeof(*extp) + extra_size) {
451 need_more:
452 extp_size = sizeof(*extp) + extra_size;
453 kfree(extp);
454 if (extp_size > 4096) {
455 printk(KERN_ERR
456 "%s: cfi_pri_intelext is too fat\n",
457 __func__);
458 return NULL;
459 }
460 goto again;
461 }
462 }
463
464 return extp;
465 }
466
467 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
468 {
469 struct cfi_private *cfi = map->fldrv_priv;
470 struct mtd_info *mtd;
471 int i;
472
473 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
474 if (!mtd)
475 return NULL;
476 mtd->priv = map;
477 mtd->type = MTD_NORFLASH;
478
479 /* Fill in the default mtd operations */
480 mtd->_erase = cfi_intelext_erase_varsize;
481 mtd->_read = cfi_intelext_read;
482 mtd->_write = cfi_intelext_write_words;
483 mtd->_sync = cfi_intelext_sync;
484 mtd->_lock = cfi_intelext_lock;
485 mtd->_unlock = cfi_intelext_unlock;
486 mtd->_is_locked = cfi_intelext_is_locked;
487 mtd->_suspend = cfi_intelext_suspend;
488 mtd->_resume = cfi_intelext_resume;
489 mtd->flags = MTD_CAP_NORFLASH;
490 mtd->name = map->name;
491 mtd->writesize = 1;
492 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
493
494 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
495
496 if (cfi->cfi_mode == CFI_MODE_CFI) {
497 /*
498 * It's a real CFI chip, not one for which the probe
499 * routine faked a CFI structure. So we read the feature
500 * table from it.
501 */
502 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
503 struct cfi_pri_intelext *extp;
504
505 extp = read_pri_intelext(map, adr);
506 if (!extp) {
507 kfree(mtd);
508 return NULL;
509 }
510
511 /* Install our own private info structure */
512 cfi->cmdset_priv = extp;
513
514 cfi_fixup(mtd, cfi_fixup_table);
515
516 #ifdef DEBUG_CFI_FEATURES
517 /* Tell the user about it in lots of lovely detail */
518 cfi_tell_features(extp);
519 #endif
520
521 if(extp->SuspendCmdSupport & 1) {
522 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
523 }
524 }
525 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
526 /* Apply jedec specific fixups */
527 cfi_fixup(mtd, jedec_fixup_table);
528 }
529 /* Apply generic fixups */
530 cfi_fixup(mtd, fixup_table);
531
532 for (i=0; i< cfi->numchips; i++) {
533 if (cfi->cfiq->WordWriteTimeoutTyp)
534 cfi->chips[i].word_write_time =
535 1<<cfi->cfiq->WordWriteTimeoutTyp;
536 else
537 cfi->chips[i].word_write_time = 50000;
538
539 if (cfi->cfiq->BufWriteTimeoutTyp)
540 cfi->chips[i].buffer_write_time =
541 1<<cfi->cfiq->BufWriteTimeoutTyp;
542 /* No default; if it isn't specified, we won't use it */
543
544 if (cfi->cfiq->BlockEraseTimeoutTyp)
545 cfi->chips[i].erase_time =
546 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
547 else
548 cfi->chips[i].erase_time = 2000000;
549
550 if (cfi->cfiq->WordWriteTimeoutTyp &&
551 cfi->cfiq->WordWriteTimeoutMax)
552 cfi->chips[i].word_write_time_max =
553 1<<(cfi->cfiq->WordWriteTimeoutTyp +
554 cfi->cfiq->WordWriteTimeoutMax);
555 else
556 cfi->chips[i].word_write_time_max = 50000 * 8;
557
558 if (cfi->cfiq->BufWriteTimeoutTyp &&
559 cfi->cfiq->BufWriteTimeoutMax)
560 cfi->chips[i].buffer_write_time_max =
561 1<<(cfi->cfiq->BufWriteTimeoutTyp +
562 cfi->cfiq->BufWriteTimeoutMax);
563
564 if (cfi->cfiq->BlockEraseTimeoutTyp &&
565 cfi->cfiq->BlockEraseTimeoutMax)
566 cfi->chips[i].erase_time_max =
567 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
568 cfi->cfiq->BlockEraseTimeoutMax);
569 else
570 cfi->chips[i].erase_time_max = 2000000 * 8;
571
572 cfi->chips[i].ref_point_counter = 0;
573 init_waitqueue_head(&(cfi->chips[i].wq));
574 }
575
576 map->fldrv = &cfi_intelext_chipdrv;
577
578 return cfi_intelext_setup(mtd);
579 }
580 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
581 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
582 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
583 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
584 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
585
586 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
587 {
588 struct map_info *map = mtd->priv;
589 struct cfi_private *cfi = map->fldrv_priv;
590 unsigned long offset = 0;
591 int i,j;
592 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
593
594 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
595
596 mtd->size = devsize * cfi->numchips;
597
598 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
599 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
600 * mtd->numeraseregions, GFP_KERNEL);
601 if (!mtd->eraseregions)
602 goto setup_err;
603
604 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
605 unsigned long ernum, ersize;
606 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
607 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
608
609 if (mtd->erasesize < ersize) {
610 mtd->erasesize = ersize;
611 }
612 for (j=0; j<cfi->numchips; j++) {
613 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
614 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
615 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
616 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
617 }
618 offset += (ersize * ernum);
619 }
620
621 if (offset != devsize) {
622 /* Argh */
623 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
624 goto setup_err;
625 }
626
627 for (i=0; i<mtd->numeraseregions;i++){
628 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
629 i,(unsigned long long)mtd->eraseregions[i].offset,
630 mtd->eraseregions[i].erasesize,
631 mtd->eraseregions[i].numblocks);
632 }
633
634 #ifdef CONFIG_MTD_OTP
635 mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
636 mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
637 mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
638 mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
639 mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
640 mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
641 #endif
642
643 /* This function has the potential to distort the reality
644 a bit and therefore should be called last. */
645 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
646 goto setup_err;
647
648 __module_get(THIS_MODULE);
649 register_reboot_notifier(&mtd->reboot_notifier);
650 return mtd;
651
652 setup_err:
653 kfree(mtd->eraseregions);
654 kfree(mtd);
655 kfree(cfi->cmdset_priv);
656 return NULL;
657 }
658
659 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
660 struct cfi_private **pcfi)
661 {
662 struct map_info *map = mtd->priv;
663 struct cfi_private *cfi = *pcfi;
664 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
665
666 /*
667 * Probing of multi-partition flash chips.
668 *
669 * To support multiple partitions when available, we simply arrange
670 * for each of them to have their own flchip structure even if they
671 * are on the same physical chip. This means completely recreating
672 * a new cfi_private structure right here which is a blatent code
673 * layering violation, but this is still the least intrusive
674 * arrangement at this point. This can be rearranged in the future
675 * if someone feels motivated enough. --nico
676 */
677 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
678 && extp->FeatureSupport & (1 << 9)) {
679 struct cfi_private *newcfi;
680 struct flchip *chip;
681 struct flchip_shared *shared;
682 int offs, numregions, numparts, partshift, numvirtchips, i, j;
683
684 /* Protection Register info */
685 offs = (extp->NumProtectionFields - 1) *
686 sizeof(struct cfi_intelext_otpinfo);
687
688 /* Burst Read info */
689 offs += extp->extra[offs+1]+2;
690
691 /* Number of partition regions */
692 numregions = extp->extra[offs];
693 offs += 1;
694
695 /* skip the sizeof(partregion) field in CFI 1.4 */
696 if (extp->MinorVersion >= '4')
697 offs += 2;
698
699 /* Number of hardware partitions */
700 numparts = 0;
701 for (i = 0; i < numregions; i++) {
702 struct cfi_intelext_regioninfo *rinfo;
703 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
704 numparts += rinfo->NumIdentPartitions;
705 offs += sizeof(*rinfo)
706 + (rinfo->NumBlockTypes - 1) *
707 sizeof(struct cfi_intelext_blockinfo);
708 }
709
710 if (!numparts)
711 numparts = 1;
712
713 /* Programming Region info */
714 if (extp->MinorVersion >= '4') {
715 struct cfi_intelext_programming_regioninfo *prinfo;
716 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
717 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
718 mtd->flags &= ~MTD_BIT_WRITEABLE;
719 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
720 map->name, mtd->writesize,
721 cfi->interleave * prinfo->ControlValid,
722 cfi->interleave * prinfo->ControlInvalid);
723 }
724
725 /*
726 * All functions below currently rely on all chips having
727 * the same geometry so we'll just assume that all hardware
728 * partitions are of the same size too.
729 */
730 partshift = cfi->chipshift - __ffs(numparts);
731
732 if ((1 << partshift) < mtd->erasesize) {
733 printk( KERN_ERR
734 "%s: bad number of hw partitions (%d)\n",
735 __func__, numparts);
736 return -EINVAL;
737 }
738
739 numvirtchips = cfi->numchips * numparts;
740 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
741 if (!newcfi)
742 return -ENOMEM;
743 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
744 if (!shared) {
745 kfree(newcfi);
746 return -ENOMEM;
747 }
748 memcpy(newcfi, cfi, sizeof(struct cfi_private));
749 newcfi->numchips = numvirtchips;
750 newcfi->chipshift = partshift;
751
752 chip = &newcfi->chips[0];
753 for (i = 0; i < cfi->numchips; i++) {
754 shared[i].writing = shared[i].erasing = NULL;
755 mutex_init(&shared[i].lock);
756 for (j = 0; j < numparts; j++) {
757 *chip = cfi->chips[i];
758 chip->start += j << partshift;
759 chip->priv = &shared[i];
760 /* those should be reset too since
761 they create memory references. */
762 init_waitqueue_head(&chip->wq);
763 mutex_init(&chip->mutex);
764 chip++;
765 }
766 }
767
768 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
769 "--> %d partitions of %d KiB\n",
770 map->name, cfi->numchips, cfi->interleave,
771 newcfi->numchips, 1<<(newcfi->chipshift-10));
772
773 map->fldrv_priv = newcfi;
774 *pcfi = newcfi;
775 kfree(cfi);
776 }
777
778 return 0;
779 }
780
781 /*
782 * *********** CHIP ACCESS FUNCTIONS ***********
783 */
784 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
785 {
786 DECLARE_WAITQUEUE(wait, current);
787 struct cfi_private *cfi = map->fldrv_priv;
788 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
789 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
790 unsigned long timeo = jiffies + HZ;
791
792 /* Prevent setting state FL_SYNCING for chip in suspended state. */
793 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
794 goto sleep;
795
796 switch (chip->state) {
797
798 case FL_STATUS:
799 for (;;) {
800 status = map_read(map, adr);
801 if (map_word_andequal(map, status, status_OK, status_OK))
802 break;
803
804 /* At this point we're fine with write operations
805 in other partitions as they don't conflict. */
806 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
807 break;
808
809 mutex_unlock(&chip->mutex);
810 cfi_udelay(1);
811 mutex_lock(&chip->mutex);
812 /* Someone else might have been playing with it. */
813 return -EAGAIN;
814 }
815 /* Fall through */
816 case FL_READY:
817 case FL_CFI_QUERY:
818 case FL_JEDEC_QUERY:
819 return 0;
820
821 case FL_ERASING:
822 if (!cfip ||
823 !(cfip->FeatureSupport & 2) ||
824 !(mode == FL_READY || mode == FL_POINT ||
825 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
826 goto sleep;
827
828
829 /* Erase suspend */
830 map_write(map, CMD(0xB0), adr);
831
832 /* If the flash has finished erasing, then 'erase suspend'
833 * appears to make some (28F320) flash devices switch to
834 * 'read' mode. Make sure that we switch to 'read status'
835 * mode so we get the right data. --rmk
836 */
837 map_write(map, CMD(0x70), adr);
838 chip->oldstate = FL_ERASING;
839 chip->state = FL_ERASE_SUSPENDING;
840 chip->erase_suspended = 1;
841 for (;;) {
842 status = map_read(map, adr);
843 if (map_word_andequal(map, status, status_OK, status_OK))
844 break;
845
846 if (time_after(jiffies, timeo)) {
847 /* Urgh. Resume and pretend we weren't here.
848 * Make sure we're in 'read status' mode if it had finished */
849 put_chip(map, chip, adr);
850 printk(KERN_ERR "%s: Chip not ready after erase "
851 "suspended: status = 0x%lx\n", map->name, status.x[0]);
852 return -EIO;
853 }
854
855 mutex_unlock(&chip->mutex);
856 cfi_udelay(1);
857 mutex_lock(&chip->mutex);
858 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
859 So we can just loop here. */
860 }
861 chip->state = FL_STATUS;
862 return 0;
863
864 case FL_XIP_WHILE_ERASING:
865 if (mode != FL_READY && mode != FL_POINT &&
866 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
867 goto sleep;
868 chip->oldstate = chip->state;
869 chip->state = FL_READY;
870 return 0;
871
872 case FL_SHUTDOWN:
873 /* The machine is rebooting now,so no one can get chip anymore */
874 return -EIO;
875 case FL_POINT:
876 /* Only if there's no operation suspended... */
877 if (mode == FL_READY && chip->oldstate == FL_READY)
878 return 0;
879 /* Fall through */
880 default:
881 sleep:
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 add_wait_queue(&chip->wq, &wait);
884 mutex_unlock(&chip->mutex);
885 schedule();
886 remove_wait_queue(&chip->wq, &wait);
887 mutex_lock(&chip->mutex);
888 return -EAGAIN;
889 }
890 }
891
892 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
893 {
894 int ret;
895 DECLARE_WAITQUEUE(wait, current);
896
897 retry:
898 if (chip->priv &&
899 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
900 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
901 /*
902 * OK. We have possibility for contention on the write/erase
903 * operations which are global to the real chip and not per
904 * partition. So let's fight it over in the partition which
905 * currently has authority on the operation.
906 *
907 * The rules are as follows:
908 *
909 * - any write operation must own shared->writing.
910 *
911 * - any erase operation must own _both_ shared->writing and
912 * shared->erasing.
913 *
914 * - contention arbitration is handled in the owner's context.
915 *
916 * The 'shared' struct can be read and/or written only when
917 * its lock is taken.
918 */
919 struct flchip_shared *shared = chip->priv;
920 struct flchip *contender;
921 mutex_lock(&shared->lock);
922 contender = shared->writing;
923 if (contender && contender != chip) {
924 /*
925 * The engine to perform desired operation on this
926 * partition is already in use by someone else.
927 * Let's fight over it in the context of the chip
928 * currently using it. If it is possible to suspend,
929 * that other partition will do just that, otherwise
930 * it'll happily send us to sleep. In any case, when
931 * get_chip returns success we're clear to go ahead.
932 */
933 ret = mutex_trylock(&contender->mutex);
934 mutex_unlock(&shared->lock);
935 if (!ret)
936 goto retry;
937 mutex_unlock(&chip->mutex);
938 ret = chip_ready(map, contender, contender->start, mode);
939 mutex_lock(&chip->mutex);
940
941 if (ret == -EAGAIN) {
942 mutex_unlock(&contender->mutex);
943 goto retry;
944 }
945 if (ret) {
946 mutex_unlock(&contender->mutex);
947 return ret;
948 }
949 mutex_lock(&shared->lock);
950
951 /* We should not own chip if it is already
952 * in FL_SYNCING state. Put contender and retry. */
953 if (chip->state == FL_SYNCING) {
954 put_chip(map, contender, contender->start);
955 mutex_unlock(&contender->mutex);
956 goto retry;
957 }
958 mutex_unlock(&contender->mutex);
959 }
960
961 /* Check if we already have suspended erase
962 * on this chip. Sleep. */
963 if (mode == FL_ERASING && shared->erasing
964 && shared->erasing->oldstate == FL_ERASING) {
965 mutex_unlock(&shared->lock);
966 set_current_state(TASK_UNINTERRUPTIBLE);
967 add_wait_queue(&chip->wq, &wait);
968 mutex_unlock(&chip->mutex);
969 schedule();
970 remove_wait_queue(&chip->wq, &wait);
971 mutex_lock(&chip->mutex);
972 goto retry;
973 }
974
975 /* We now own it */
976 shared->writing = chip;
977 if (mode == FL_ERASING)
978 shared->erasing = chip;
979 mutex_unlock(&shared->lock);
980 }
981 ret = chip_ready(map, chip, adr, mode);
982 if (ret == -EAGAIN)
983 goto retry;
984
985 return ret;
986 }
987
988 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
989 {
990 struct cfi_private *cfi = map->fldrv_priv;
991
992 if (chip->priv) {
993 struct flchip_shared *shared = chip->priv;
994 mutex_lock(&shared->lock);
995 if (shared->writing == chip && chip->oldstate == FL_READY) {
996 /* We own the ability to write, but we're done */
997 shared->writing = shared->erasing;
998 if (shared->writing && shared->writing != chip) {
999 /* give back ownership to who we loaned it from */
1000 struct flchip *loaner = shared->writing;
1001 mutex_lock(&loaner->mutex);
1002 mutex_unlock(&shared->lock);
1003 mutex_unlock(&chip->mutex);
1004 put_chip(map, loaner, loaner->start);
1005 mutex_lock(&chip->mutex);
1006 mutex_unlock(&loaner->mutex);
1007 wake_up(&chip->wq);
1008 return;
1009 }
1010 shared->erasing = NULL;
1011 shared->writing = NULL;
1012 } else if (shared->erasing == chip && shared->writing != chip) {
1013 /*
1014 * We own the ability to erase without the ability
1015 * to write, which means the erase was suspended
1016 * and some other partition is currently writing.
1017 * Don't let the switch below mess things up since
1018 * we don't have ownership to resume anything.
1019 */
1020 mutex_unlock(&shared->lock);
1021 wake_up(&chip->wq);
1022 return;
1023 }
1024 mutex_unlock(&shared->lock);
1025 }
1026
1027 switch(chip->oldstate) {
1028 case FL_ERASING:
1029 /* What if one interleaved chip has finished and the
1030 other hasn't? The old code would leave the finished
1031 one in READY mode. That's bad, and caused -EROFS
1032 errors to be returned from do_erase_oneblock because
1033 that's the only bit it checked for at the time.
1034 As the state machine appears to explicitly allow
1035 sending the 0x70 (Read Status) command to an erasing
1036 chip and expecting it to be ignored, that's what we
1037 do. */
1038 map_write(map, CMD(0xd0), adr);
1039 map_write(map, CMD(0x70), adr);
1040 chip->oldstate = FL_READY;
1041 chip->state = FL_ERASING;
1042 break;
1043
1044 case FL_XIP_WHILE_ERASING:
1045 chip->state = chip->oldstate;
1046 chip->oldstate = FL_READY;
1047 break;
1048
1049 case FL_READY:
1050 case FL_STATUS:
1051 case FL_JEDEC_QUERY:
1052 break;
1053 default:
1054 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1055 }
1056 wake_up(&chip->wq);
1057 }
1058
1059 #ifdef CONFIG_MTD_XIP
1060
1061 /*
1062 * No interrupt what so ever can be serviced while the flash isn't in array
1063 * mode. This is ensured by the xip_disable() and xip_enable() functions
1064 * enclosing any code path where the flash is known not to be in array mode.
1065 * And within a XIP disabled code path, only functions marked with __xipram
1066 * may be called and nothing else (it's a good thing to inspect generated
1067 * assembly to make sure inline functions were actually inlined and that gcc
1068 * didn't emit calls to its own support functions). Also configuring MTD CFI
1069 * support to a single buswidth and a single interleave is also recommended.
1070 */
1071
1072 static void xip_disable(struct map_info *map, struct flchip *chip,
1073 unsigned long adr)
1074 {
1075 /* TODO: chips with no XIP use should ignore and return */
1076 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1077 local_irq_disable();
1078 }
1079
1080 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1081 unsigned long adr)
1082 {
1083 struct cfi_private *cfi = map->fldrv_priv;
1084 if (chip->state != FL_POINT && chip->state != FL_READY) {
1085 map_write(map, CMD(0xff), adr);
1086 chip->state = FL_READY;
1087 }
1088 (void) map_read(map, adr);
1089 xip_iprefetch();
1090 local_irq_enable();
1091 }
1092
1093 /*
1094 * When a delay is required for the flash operation to complete, the
1095 * xip_wait_for_operation() function is polling for both the given timeout
1096 * and pending (but still masked) hardware interrupts. Whenever there is an
1097 * interrupt pending then the flash erase or write operation is suspended,
1098 * array mode restored and interrupts unmasked. Task scheduling might also
1099 * happen at that point. The CPU eventually returns from the interrupt or
1100 * the call to schedule() and the suspended flash operation is resumed for
1101 * the remaining of the delay period.
1102 *
1103 * Warning: this function _will_ fool interrupt latency tracing tools.
1104 */
1105
1106 static int __xipram xip_wait_for_operation(
1107 struct map_info *map, struct flchip *chip,
1108 unsigned long adr, unsigned int chip_op_time_max)
1109 {
1110 struct cfi_private *cfi = map->fldrv_priv;
1111 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1112 map_word status, OK = CMD(0x80);
1113 unsigned long usec, suspended, start, done;
1114 flstate_t oldstate, newstate;
1115
1116 start = xip_currtime();
1117 usec = chip_op_time_max;
1118 if (usec == 0)
1119 usec = 500000;
1120 done = 0;
1121
1122 do {
1123 cpu_relax();
1124 if (xip_irqpending() && cfip &&
1125 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1126 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1127 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1128 /*
1129 * Let's suspend the erase or write operation when
1130 * supported. Note that we currently don't try to
1131 * suspend interleaved chips if there is already
1132 * another operation suspended (imagine what happens
1133 * when one chip was already done with the current
1134 * operation while another chip suspended it, then
1135 * we resume the whole thing at once). Yes, it
1136 * can happen!
1137 */
1138 usec -= done;
1139 map_write(map, CMD(0xb0), adr);
1140 map_write(map, CMD(0x70), adr);
1141 suspended = xip_currtime();
1142 do {
1143 if (xip_elapsed_since(suspended) > 100000) {
1144 /*
1145 * The chip doesn't want to suspend
1146 * after waiting for 100 msecs.
1147 * This is a critical error but there
1148 * is not much we can do here.
1149 */
1150 return -EIO;
1151 }
1152 status = map_read(map, adr);
1153 } while (!map_word_andequal(map, status, OK, OK));
1154
1155 /* Suspend succeeded */
1156 oldstate = chip->state;
1157 if (oldstate == FL_ERASING) {
1158 if (!map_word_bitsset(map, status, CMD(0x40)))
1159 break;
1160 newstate = FL_XIP_WHILE_ERASING;
1161 chip->erase_suspended = 1;
1162 } else {
1163 if (!map_word_bitsset(map, status, CMD(0x04)))
1164 break;
1165 newstate = FL_XIP_WHILE_WRITING;
1166 chip->write_suspended = 1;
1167 }
1168 chip->state = newstate;
1169 map_write(map, CMD(0xff), adr);
1170 (void) map_read(map, adr);
1171 xip_iprefetch();
1172 local_irq_enable();
1173 mutex_unlock(&chip->mutex);
1174 xip_iprefetch();
1175 cond_resched();
1176
1177 /*
1178 * We're back. However someone else might have
1179 * decided to go write to the chip if we are in
1180 * a suspended erase state. If so let's wait
1181 * until it's done.
1182 */
1183 mutex_lock(&chip->mutex);
1184 while (chip->state != newstate) {
1185 DECLARE_WAITQUEUE(wait, current);
1186 set_current_state(TASK_UNINTERRUPTIBLE);
1187 add_wait_queue(&chip->wq, &wait);
1188 mutex_unlock(&chip->mutex);
1189 schedule();
1190 remove_wait_queue(&chip->wq, &wait);
1191 mutex_lock(&chip->mutex);
1192 }
1193 /* Disallow XIP again */
1194 local_irq_disable();
1195
1196 /* Resume the write or erase operation */
1197 map_write(map, CMD(0xd0), adr);
1198 map_write(map, CMD(0x70), adr);
1199 chip->state = oldstate;
1200 start = xip_currtime();
1201 } else if (usec >= 1000000/HZ) {
1202 /*
1203 * Try to save on CPU power when waiting delay
1204 * is at least a system timer tick period.
1205 * No need to be extremely accurate here.
1206 */
1207 xip_cpu_idle();
1208 }
1209 status = map_read(map, adr);
1210 done = xip_elapsed_since(start);
1211 } while (!map_word_andequal(map, status, OK, OK)
1212 && done < usec);
1213
1214 return (done >= usec) ? -ETIME : 0;
1215 }
1216
1217 /*
1218 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1219 * the flash is actively programming or erasing since we have to poll for
1220 * the operation to complete anyway. We can't do that in a generic way with
1221 * a XIP setup so do it before the actual flash operation in this case
1222 * and stub it out from INVAL_CACHE_AND_WAIT.
1223 */
1224 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1225 INVALIDATE_CACHED_RANGE(map, from, size)
1226
1227 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1228 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1229
1230 #else
1231
1232 #define xip_disable(map, chip, adr)
1233 #define xip_enable(map, chip, adr)
1234 #define XIP_INVAL_CACHED_RANGE(x...)
1235 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1236
1237 static int inval_cache_and_wait_for_operation(
1238 struct map_info *map, struct flchip *chip,
1239 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1240 unsigned int chip_op_time, unsigned int chip_op_time_max)
1241 {
1242 struct cfi_private *cfi = map->fldrv_priv;
1243 map_word status, status_OK = CMD(0x80);
1244 int chip_state = chip->state;
1245 unsigned int timeo, sleep_time, reset_timeo;
1246
1247 mutex_unlock(&chip->mutex);
1248 if (inval_len)
1249 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1250 mutex_lock(&chip->mutex);
1251
1252 timeo = chip_op_time_max;
1253 if (!timeo)
1254 timeo = 500000;
1255 reset_timeo = timeo;
1256 sleep_time = chip_op_time / 2;
1257
1258 for (;;) {
1259 if (chip->state != chip_state) {
1260 /* Someone's suspended the operation: sleep */
1261 DECLARE_WAITQUEUE(wait, current);
1262 set_current_state(TASK_UNINTERRUPTIBLE);
1263 add_wait_queue(&chip->wq, &wait);
1264 mutex_unlock(&chip->mutex);
1265 schedule();
1266 remove_wait_queue(&chip->wq, &wait);
1267 mutex_lock(&chip->mutex);
1268 continue;
1269 }
1270
1271 status = map_read(map, cmd_adr);
1272 if (map_word_andequal(map, status, status_OK, status_OK))
1273 break;
1274
1275 if (chip->erase_suspended && chip_state == FL_ERASING) {
1276 /* Erase suspend occurred while sleep: reset timeout */
1277 timeo = reset_timeo;
1278 chip->erase_suspended = 0;
1279 }
1280 if (chip->write_suspended && chip_state == FL_WRITING) {
1281 /* Write suspend occurred while sleep: reset timeout */
1282 timeo = reset_timeo;
1283 chip->write_suspended = 0;
1284 }
1285 if (!timeo) {
1286 map_write(map, CMD(0x70), cmd_adr);
1287 chip->state = FL_STATUS;
1288 return -ETIME;
1289 }
1290
1291 /* OK Still waiting. Drop the lock, wait a while and retry. */
1292 mutex_unlock(&chip->mutex);
1293 if (sleep_time >= 1000000/HZ) {
1294 /*
1295 * Half of the normal delay still remaining
1296 * can be performed with a sleeping delay instead
1297 * of busy waiting.
1298 */
1299 msleep(sleep_time/1000);
1300 timeo -= sleep_time;
1301 sleep_time = 1000000/HZ;
1302 } else {
1303 udelay(1);
1304 cond_resched();
1305 timeo--;
1306 }
1307 mutex_lock(&chip->mutex);
1308 }
1309
1310 /* Done and happy. */
1311 chip->state = FL_STATUS;
1312 return 0;
1313 }
1314
1315 #endif
1316
1317 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1318 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1319
1320
1321 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1322 {
1323 unsigned long cmd_addr;
1324 struct cfi_private *cfi = map->fldrv_priv;
1325 int ret = 0;
1326
1327 adr += chip->start;
1328
1329 /* Ensure cmd read/writes are aligned. */
1330 cmd_addr = adr & ~(map_bankwidth(map)-1);
1331
1332 mutex_lock(&chip->mutex);
1333
1334 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1335
1336 if (!ret) {
1337 if (chip->state != FL_POINT && chip->state != FL_READY)
1338 map_write(map, CMD(0xff), cmd_addr);
1339
1340 chip->state = FL_POINT;
1341 chip->ref_point_counter++;
1342 }
1343 mutex_unlock(&chip->mutex);
1344
1345 return ret;
1346 }
1347
1348 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1349 size_t *retlen, void **virt, resource_size_t *phys)
1350 {
1351 struct map_info *map = mtd->priv;
1352 struct cfi_private *cfi = map->fldrv_priv;
1353 unsigned long ofs, last_end = 0;
1354 int chipnum;
1355 int ret = 0;
1356
1357 if (!map->virt)
1358 return -EINVAL;
1359
1360 /* Now lock the chip(s) to POINT state */
1361
1362 /* ofs: offset within the first chip that the first read should start */
1363 chipnum = (from >> cfi->chipshift);
1364 ofs = from - (chipnum << cfi->chipshift);
1365
1366 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1367 if (phys)
1368 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1369
1370 while (len) {
1371 unsigned long thislen;
1372
1373 if (chipnum >= cfi->numchips)
1374 break;
1375
1376 /* We cannot point across chips that are virtually disjoint */
1377 if (!last_end)
1378 last_end = cfi->chips[chipnum].start;
1379 else if (cfi->chips[chipnum].start != last_end)
1380 break;
1381
1382 if ((len + ofs -1) >> cfi->chipshift)
1383 thislen = (1<<cfi->chipshift) - ofs;
1384 else
1385 thislen = len;
1386
1387 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1388 if (ret)
1389 break;
1390
1391 *retlen += thislen;
1392 len -= thislen;
1393
1394 ofs = 0;
1395 last_end += 1 << cfi->chipshift;
1396 chipnum++;
1397 }
1398 return 0;
1399 }
1400
1401 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1402 {
1403 struct map_info *map = mtd->priv;
1404 struct cfi_private *cfi = map->fldrv_priv;
1405 unsigned long ofs;
1406 int chipnum, err = 0;
1407
1408 /* Now unlock the chip(s) POINT state */
1409
1410 /* ofs: offset within the first chip that the first read should start */
1411 chipnum = (from >> cfi->chipshift);
1412 ofs = from - (chipnum << cfi->chipshift);
1413
1414 while (len && !err) {
1415 unsigned long thislen;
1416 struct flchip *chip;
1417
1418 chip = &cfi->chips[chipnum];
1419 if (chipnum >= cfi->numchips)
1420 break;
1421
1422 if ((len + ofs -1) >> cfi->chipshift)
1423 thislen = (1<<cfi->chipshift) - ofs;
1424 else
1425 thislen = len;
1426
1427 mutex_lock(&chip->mutex);
1428 if (chip->state == FL_POINT) {
1429 chip->ref_point_counter--;
1430 if(chip->ref_point_counter == 0)
1431 chip->state = FL_READY;
1432 } else {
1433 printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1434 err = -EINVAL;
1435 }
1436
1437 put_chip(map, chip, chip->start);
1438 mutex_unlock(&chip->mutex);
1439
1440 len -= thislen;
1441 ofs = 0;
1442 chipnum++;
1443 }
1444
1445 return err;
1446 }
1447
1448 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1449 {
1450 unsigned long cmd_addr;
1451 struct cfi_private *cfi = map->fldrv_priv;
1452 int ret;
1453
1454 adr += chip->start;
1455
1456 /* Ensure cmd read/writes are aligned. */
1457 cmd_addr = adr & ~(map_bankwidth(map)-1);
1458
1459 mutex_lock(&chip->mutex);
1460 ret = get_chip(map, chip, cmd_addr, FL_READY);
1461 if (ret) {
1462 mutex_unlock(&chip->mutex);
1463 return ret;
1464 }
1465
1466 if (chip->state != FL_POINT && chip->state != FL_READY) {
1467 map_write(map, CMD(0xff), cmd_addr);
1468
1469 chip->state = FL_READY;
1470 }
1471
1472 map_copy_from(map, buf, adr, len);
1473
1474 put_chip(map, chip, cmd_addr);
1475
1476 mutex_unlock(&chip->mutex);
1477 return 0;
1478 }
1479
1480 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1481 {
1482 struct map_info *map = mtd->priv;
1483 struct cfi_private *cfi = map->fldrv_priv;
1484 unsigned long ofs;
1485 int chipnum;
1486 int ret = 0;
1487
1488 /* ofs: offset within the first chip that the first read should start */
1489 chipnum = (from >> cfi->chipshift);
1490 ofs = from - (chipnum << cfi->chipshift);
1491
1492 while (len) {
1493 unsigned long thislen;
1494
1495 if (chipnum >= cfi->numchips)
1496 break;
1497
1498 if ((len + ofs -1) >> cfi->chipshift)
1499 thislen = (1<<cfi->chipshift) - ofs;
1500 else
1501 thislen = len;
1502
1503 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1504 if (ret)
1505 break;
1506
1507 *retlen += thislen;
1508 len -= thislen;
1509 buf += thislen;
1510
1511 ofs = 0;
1512 chipnum++;
1513 }
1514 return ret;
1515 }
1516
1517 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1518 unsigned long adr, map_word datum, int mode)
1519 {
1520 struct cfi_private *cfi = map->fldrv_priv;
1521 map_word status, write_cmd;
1522 int ret=0;
1523
1524 adr += chip->start;
1525
1526 switch (mode) {
1527 case FL_WRITING:
1528 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1529 break;
1530 case FL_OTP_WRITE:
1531 write_cmd = CMD(0xc0);
1532 break;
1533 default:
1534 return -EINVAL;
1535 }
1536
1537 mutex_lock(&chip->mutex);
1538 ret = get_chip(map, chip, adr, mode);
1539 if (ret) {
1540 mutex_unlock(&chip->mutex);
1541 return ret;
1542 }
1543
1544 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1545 ENABLE_VPP(map);
1546 xip_disable(map, chip, adr);
1547 map_write(map, write_cmd, adr);
1548 map_write(map, datum, adr);
1549 chip->state = mode;
1550
1551 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1552 adr, map_bankwidth(map),
1553 chip->word_write_time,
1554 chip->word_write_time_max);
1555 if (ret) {
1556 xip_enable(map, chip, adr);
1557 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1558 goto out;
1559 }
1560
1561 /* check for errors */
1562 status = map_read(map, adr);
1563 if (map_word_bitsset(map, status, CMD(0x1a))) {
1564 unsigned long chipstatus = MERGESTATUS(status);
1565
1566 /* reset status */
1567 map_write(map, CMD(0x50), adr);
1568 map_write(map, CMD(0x70), adr);
1569 xip_enable(map, chip, adr);
1570
1571 if (chipstatus & 0x02) {
1572 ret = -EROFS;
1573 } else if (chipstatus & 0x08) {
1574 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1575 ret = -EIO;
1576 } else {
1577 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1578 ret = -EINVAL;
1579 }
1580
1581 goto out;
1582 }
1583
1584 xip_enable(map, chip, adr);
1585 out: DISABLE_VPP(map);
1586 put_chip(map, chip, adr);
1587 mutex_unlock(&chip->mutex);
1588 return ret;
1589 }
1590
1591
1592 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1593 {
1594 struct map_info *map = mtd->priv;
1595 struct cfi_private *cfi = map->fldrv_priv;
1596 int ret = 0;
1597 int chipnum;
1598 unsigned long ofs;
1599
1600 chipnum = to >> cfi->chipshift;
1601 ofs = to - (chipnum << cfi->chipshift);
1602
1603 /* If it's not bus-aligned, do the first byte write */
1604 if (ofs & (map_bankwidth(map)-1)) {
1605 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1606 int gap = ofs - bus_ofs;
1607 int n;
1608 map_word datum;
1609
1610 n = min_t(int, len, map_bankwidth(map)-gap);
1611 datum = map_word_ff(map);
1612 datum = map_word_load_partial(map, datum, buf, gap, n);
1613
1614 ret = do_write_oneword(map, &cfi->chips[chipnum],
1615 bus_ofs, datum, FL_WRITING);
1616 if (ret)
1617 return ret;
1618
1619 len -= n;
1620 ofs += n;
1621 buf += n;
1622 (*retlen) += n;
1623
1624 if (ofs >> cfi->chipshift) {
1625 chipnum ++;
1626 ofs = 0;
1627 if (chipnum == cfi->numchips)
1628 return 0;
1629 }
1630 }
1631
1632 while(len >= map_bankwidth(map)) {
1633 map_word datum = map_word_load(map, buf);
1634
1635 ret = do_write_oneword(map, &cfi->chips[chipnum],
1636 ofs, datum, FL_WRITING);
1637 if (ret)
1638 return ret;
1639
1640 ofs += map_bankwidth(map);
1641 buf += map_bankwidth(map);
1642 (*retlen) += map_bankwidth(map);
1643 len -= map_bankwidth(map);
1644
1645 if (ofs >> cfi->chipshift) {
1646 chipnum ++;
1647 ofs = 0;
1648 if (chipnum == cfi->numchips)
1649 return 0;
1650 }
1651 }
1652
1653 if (len & (map_bankwidth(map)-1)) {
1654 map_word datum;
1655
1656 datum = map_word_ff(map);
1657 datum = map_word_load_partial(map, datum, buf, 0, len);
1658
1659 ret = do_write_oneword(map, &cfi->chips[chipnum],
1660 ofs, datum, FL_WRITING);
1661 if (ret)
1662 return ret;
1663
1664 (*retlen) += len;
1665 }
1666
1667 return 0;
1668 }
1669
1670
1671 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1672 unsigned long adr, const struct kvec **pvec,
1673 unsigned long *pvec_seek, int len)
1674 {
1675 struct cfi_private *cfi = map->fldrv_priv;
1676 map_word status, write_cmd, datum;
1677 unsigned long cmd_adr;
1678 int ret, wbufsize, word_gap, words;
1679 const struct kvec *vec;
1680 unsigned long vec_seek;
1681 unsigned long initial_adr;
1682 int initial_len = len;
1683
1684 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1685 adr += chip->start;
1686 initial_adr = adr;
1687 cmd_adr = adr & ~(wbufsize-1);
1688
1689 /* Sharp LH28F640BF chips need the first address for the
1690 * Page Buffer Program command. See Table 5 of
1691 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1692 if (is_LH28F640BF(cfi))
1693 cmd_adr = adr;
1694
1695 /* Let's determine this according to the interleave only once */
1696 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1697
1698 mutex_lock(&chip->mutex);
1699 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1700 if (ret) {
1701 mutex_unlock(&chip->mutex);
1702 return ret;
1703 }
1704
1705 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1706 ENABLE_VPP(map);
1707 xip_disable(map, chip, cmd_adr);
1708
1709 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1710 [...], the device will not accept any more Write to Buffer commands".
1711 So we must check here and reset those bits if they're set. Otherwise
1712 we're just pissing in the wind */
1713 if (chip->state != FL_STATUS) {
1714 map_write(map, CMD(0x70), cmd_adr);
1715 chip->state = FL_STATUS;
1716 }
1717 status = map_read(map, cmd_adr);
1718 if (map_word_bitsset(map, status, CMD(0x30))) {
1719 xip_enable(map, chip, cmd_adr);
1720 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1721 xip_disable(map, chip, cmd_adr);
1722 map_write(map, CMD(0x50), cmd_adr);
1723 map_write(map, CMD(0x70), cmd_adr);
1724 }
1725
1726 chip->state = FL_WRITING_TO_BUFFER;
1727 map_write(map, write_cmd, cmd_adr);
1728 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1729 if (ret) {
1730 /* Argh. Not ready for write to buffer */
1731 map_word Xstatus = map_read(map, cmd_adr);
1732 map_write(map, CMD(0x70), cmd_adr);
1733 chip->state = FL_STATUS;
1734 status = map_read(map, cmd_adr);
1735 map_write(map, CMD(0x50), cmd_adr);
1736 map_write(map, CMD(0x70), cmd_adr);
1737 xip_enable(map, chip, cmd_adr);
1738 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1739 map->name, Xstatus.x[0], status.x[0]);
1740 goto out;
1741 }
1742
1743 /* Figure out the number of words to write */
1744 word_gap = (-adr & (map_bankwidth(map)-1));
1745 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1746 if (!word_gap) {
1747 words--;
1748 } else {
1749 word_gap = map_bankwidth(map) - word_gap;
1750 adr -= word_gap;
1751 datum = map_word_ff(map);
1752 }
1753
1754 /* Write length of data to come */
1755 map_write(map, CMD(words), cmd_adr );
1756
1757 /* Write data */
1758 vec = *pvec;
1759 vec_seek = *pvec_seek;
1760 do {
1761 int n = map_bankwidth(map) - word_gap;
1762 if (n > vec->iov_len - vec_seek)
1763 n = vec->iov_len - vec_seek;
1764 if (n > len)
1765 n = len;
1766
1767 if (!word_gap && len < map_bankwidth(map))
1768 datum = map_word_ff(map);
1769
1770 datum = map_word_load_partial(map, datum,
1771 vec->iov_base + vec_seek,
1772 word_gap, n);
1773
1774 len -= n;
1775 word_gap += n;
1776 if (!len || word_gap == map_bankwidth(map)) {
1777 map_write(map, datum, adr);
1778 adr += map_bankwidth(map);
1779 word_gap = 0;
1780 }
1781
1782 vec_seek += n;
1783 if (vec_seek == vec->iov_len) {
1784 vec++;
1785 vec_seek = 0;
1786 }
1787 } while (len);
1788 *pvec = vec;
1789 *pvec_seek = vec_seek;
1790
1791 /* GO GO GO */
1792 map_write(map, CMD(0xd0), cmd_adr);
1793 chip->state = FL_WRITING;
1794
1795 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1796 initial_adr, initial_len,
1797 chip->buffer_write_time,
1798 chip->buffer_write_time_max);
1799 if (ret) {
1800 map_write(map, CMD(0x70), cmd_adr);
1801 chip->state = FL_STATUS;
1802 xip_enable(map, chip, cmd_adr);
1803 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1804 goto out;
1805 }
1806
1807 /* check for errors */
1808 status = map_read(map, cmd_adr);
1809 if (map_word_bitsset(map, status, CMD(0x1a))) {
1810 unsigned long chipstatus = MERGESTATUS(status);
1811
1812 /* reset status */
1813 map_write(map, CMD(0x50), cmd_adr);
1814 map_write(map, CMD(0x70), cmd_adr);
1815 xip_enable(map, chip, cmd_adr);
1816
1817 if (chipstatus & 0x02) {
1818 ret = -EROFS;
1819 } else if (chipstatus & 0x08) {
1820 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1821 ret = -EIO;
1822 } else {
1823 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1824 ret = -EINVAL;
1825 }
1826
1827 goto out;
1828 }
1829
1830 xip_enable(map, chip, cmd_adr);
1831 out: DISABLE_VPP(map);
1832 put_chip(map, chip, cmd_adr);
1833 mutex_unlock(&chip->mutex);
1834 return ret;
1835 }
1836
1837 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1838 unsigned long count, loff_t to, size_t *retlen)
1839 {
1840 struct map_info *map = mtd->priv;
1841 struct cfi_private *cfi = map->fldrv_priv;
1842 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1843 int ret = 0;
1844 int chipnum;
1845 unsigned long ofs, vec_seek, i;
1846 size_t len = 0;
1847
1848 for (i = 0; i < count; i++)
1849 len += vecs[i].iov_len;
1850
1851 if (!len)
1852 return 0;
1853
1854 chipnum = to >> cfi->chipshift;
1855 ofs = to - (chipnum << cfi->chipshift);
1856 vec_seek = 0;
1857
1858 do {
1859 /* We must not cross write block boundaries */
1860 int size = wbufsize - (ofs & (wbufsize-1));
1861
1862 if (size > len)
1863 size = len;
1864 ret = do_write_buffer(map, &cfi->chips[chipnum],
1865 ofs, &vecs, &vec_seek, size);
1866 if (ret)
1867 return ret;
1868
1869 ofs += size;
1870 (*retlen) += size;
1871 len -= size;
1872
1873 if (ofs >> cfi->chipshift) {
1874 chipnum ++;
1875 ofs = 0;
1876 if (chipnum == cfi->numchips)
1877 return 0;
1878 }
1879
1880 /* Be nice and reschedule with the chip in a usable state for other
1881 processes. */
1882 cond_resched();
1883
1884 } while (len);
1885
1886 return 0;
1887 }
1888
1889 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1890 size_t len, size_t *retlen, const u_char *buf)
1891 {
1892 struct kvec vec;
1893
1894 vec.iov_base = (void *) buf;
1895 vec.iov_len = len;
1896
1897 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1898 }
1899
1900 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1901 unsigned long adr, int len, void *thunk)
1902 {
1903 struct cfi_private *cfi = map->fldrv_priv;
1904 map_word status;
1905 int retries = 3;
1906 int ret;
1907
1908 adr += chip->start;
1909
1910 retry:
1911 mutex_lock(&chip->mutex);
1912 ret = get_chip(map, chip, adr, FL_ERASING);
1913 if (ret) {
1914 mutex_unlock(&chip->mutex);
1915 return ret;
1916 }
1917
1918 XIP_INVAL_CACHED_RANGE(map, adr, len);
1919 ENABLE_VPP(map);
1920 xip_disable(map, chip, adr);
1921
1922 /* Clear the status register first */
1923 map_write(map, CMD(0x50), adr);
1924
1925 /* Now erase */
1926 map_write(map, CMD(0x20), adr);
1927 map_write(map, CMD(0xD0), adr);
1928 chip->state = FL_ERASING;
1929 chip->erase_suspended = 0;
1930
1931 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1932 adr, len,
1933 chip->erase_time,
1934 chip->erase_time_max);
1935 if (ret) {
1936 map_write(map, CMD(0x70), adr);
1937 chip->state = FL_STATUS;
1938 xip_enable(map, chip, adr);
1939 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1940 goto out;
1941 }
1942
1943 /* We've broken this before. It doesn't hurt to be safe */
1944 map_write(map, CMD(0x70), adr);
1945 chip->state = FL_STATUS;
1946 status = map_read(map, adr);
1947
1948 /* check for errors */
1949 if (map_word_bitsset(map, status, CMD(0x3a))) {
1950 unsigned long chipstatus = MERGESTATUS(status);
1951
1952 /* Reset the error bits */
1953 map_write(map, CMD(0x50), adr);
1954 map_write(map, CMD(0x70), adr);
1955 xip_enable(map, chip, adr);
1956
1957 if ((chipstatus & 0x30) == 0x30) {
1958 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1959 ret = -EINVAL;
1960 } else if (chipstatus & 0x02) {
1961 /* Protection bit set */
1962 ret = -EROFS;
1963 } else if (chipstatus & 0x8) {
1964 /* Voltage */
1965 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1966 ret = -EIO;
1967 } else if (chipstatus & 0x20 && retries--) {
1968 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1969 DISABLE_VPP(map);
1970 put_chip(map, chip, adr);
1971 mutex_unlock(&chip->mutex);
1972 goto retry;
1973 } else {
1974 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1975 ret = -EIO;
1976 }
1977
1978 goto out;
1979 }
1980
1981 xip_enable(map, chip, adr);
1982 out: DISABLE_VPP(map);
1983 put_chip(map, chip, adr);
1984 mutex_unlock(&chip->mutex);
1985 return ret;
1986 }
1987
1988 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1989 {
1990 unsigned long ofs, len;
1991 int ret;
1992
1993 ofs = instr->addr;
1994 len = instr->len;
1995
1996 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1997 if (ret)
1998 return ret;
1999
2000 instr->state = MTD_ERASE_DONE;
2001 mtd_erase_callback(instr);
2002
2003 return 0;
2004 }
2005
2006 static void cfi_intelext_sync (struct mtd_info *mtd)
2007 {
2008 struct map_info *map = mtd->priv;
2009 struct cfi_private *cfi = map->fldrv_priv;
2010 int i;
2011 struct flchip *chip;
2012 int ret = 0;
2013
2014 for (i=0; !ret && i<cfi->numchips; i++) {
2015 chip = &cfi->chips[i];
2016
2017 mutex_lock(&chip->mutex);
2018 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2019
2020 if (!ret) {
2021 chip->oldstate = chip->state;
2022 chip->state = FL_SYNCING;
2023 /* No need to wake_up() on this state change -
2024 * as the whole point is that nobody can do anything
2025 * with the chip now anyway.
2026 */
2027 }
2028 mutex_unlock(&chip->mutex);
2029 }
2030
2031 /* Unlock the chips again */
2032
2033 for (i--; i >=0; i--) {
2034 chip = &cfi->chips[i];
2035
2036 mutex_lock(&chip->mutex);
2037
2038 if (chip->state == FL_SYNCING) {
2039 chip->state = chip->oldstate;
2040 chip->oldstate = FL_READY;
2041 wake_up(&chip->wq);
2042 }
2043 mutex_unlock(&chip->mutex);
2044 }
2045 }
2046
2047 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2048 struct flchip *chip,
2049 unsigned long adr,
2050 int len, void *thunk)
2051 {
2052 struct cfi_private *cfi = map->fldrv_priv;
2053 int status, ofs_factor = cfi->interleave * cfi->device_type;
2054
2055 adr += chip->start;
2056 xip_disable(map, chip, adr+(2*ofs_factor));
2057 map_write(map, CMD(0x90), adr+(2*ofs_factor));
2058 chip->state = FL_JEDEC_QUERY;
2059 status = cfi_read_query(map, adr+(2*ofs_factor));
2060 xip_enable(map, chip, 0);
2061 return status;
2062 }
2063
2064 #ifdef DEBUG_LOCK_BITS
2065 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2066 struct flchip *chip,
2067 unsigned long adr,
2068 int len, void *thunk)
2069 {
2070 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2071 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2072 return 0;
2073 }
2074 #endif
2075
2076 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2077 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2078
2079 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2080 unsigned long adr, int len, void *thunk)
2081 {
2082 struct cfi_private *cfi = map->fldrv_priv;
2083 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2084 int mdelay;
2085 int ret;
2086
2087 adr += chip->start;
2088
2089 mutex_lock(&chip->mutex);
2090 ret = get_chip(map, chip, adr, FL_LOCKING);
2091 if (ret) {
2092 mutex_unlock(&chip->mutex);
2093 return ret;
2094 }
2095
2096 ENABLE_VPP(map);
2097 xip_disable(map, chip, adr);
2098
2099 map_write(map, CMD(0x60), adr);
2100 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2101 map_write(map, CMD(0x01), adr);
2102 chip->state = FL_LOCKING;
2103 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2104 map_write(map, CMD(0xD0), adr);
2105 chip->state = FL_UNLOCKING;
2106 } else
2107 BUG();
2108
2109 /*
2110 * If Instant Individual Block Locking supported then no need
2111 * to delay.
2112 */
2113 /*
2114 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2115 * lets use a max of 1.5 seconds (1500ms) as timeout.
2116 *
2117 * See "Clear Block Lock-Bits Time" on page 40 in
2118 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2119 * from February 2003
2120 */
2121 mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
2122
2123 ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
2124 if (ret) {
2125 map_write(map, CMD(0x70), adr);
2126 chip->state = FL_STATUS;
2127 xip_enable(map, chip, adr);
2128 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2129 goto out;
2130 }
2131
2132 xip_enable(map, chip, adr);
2133 out: DISABLE_VPP(map);
2134 put_chip(map, chip, adr);
2135 mutex_unlock(&chip->mutex);
2136 return ret;
2137 }
2138
2139 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2140 {
2141 int ret;
2142
2143 #ifdef DEBUG_LOCK_BITS
2144 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2145 __func__, ofs, len);
2146 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2147 ofs, len, NULL);
2148 #endif
2149
2150 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2151 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2152
2153 #ifdef DEBUG_LOCK_BITS
2154 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2155 __func__, ret);
2156 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2157 ofs, len, NULL);
2158 #endif
2159
2160 return ret;
2161 }
2162
2163 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2164 {
2165 int ret;
2166
2167 #ifdef DEBUG_LOCK_BITS
2168 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2169 __func__, ofs, len);
2170 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2171 ofs, len, NULL);
2172 #endif
2173
2174 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2175 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2176
2177 #ifdef DEBUG_LOCK_BITS
2178 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2179 __func__, ret);
2180 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2181 ofs, len, NULL);
2182 #endif
2183
2184 return ret;
2185 }
2186
2187 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2188 uint64_t len)
2189 {
2190 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2191 ofs, len, NULL) ? 1 : 0;
2192 }
2193
2194 #ifdef CONFIG_MTD_OTP
2195
2196 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2197 u_long data_offset, u_char *buf, u_int size,
2198 u_long prot_offset, u_int groupno, u_int groupsize);
2199
2200 static int __xipram
2201 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2202 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2203 {
2204 struct cfi_private *cfi = map->fldrv_priv;
2205 int ret;
2206
2207 mutex_lock(&chip->mutex);
2208 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2209 if (ret) {
2210 mutex_unlock(&chip->mutex);
2211 return ret;
2212 }
2213
2214 /* let's ensure we're not reading back cached data from array mode */
2215 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2216
2217 xip_disable(map, chip, chip->start);
2218 if (chip->state != FL_JEDEC_QUERY) {
2219 map_write(map, CMD(0x90), chip->start);
2220 chip->state = FL_JEDEC_QUERY;
2221 }
2222 map_copy_from(map, buf, chip->start + offset, size);
2223 xip_enable(map, chip, chip->start);
2224
2225 /* then ensure we don't keep OTP data in the cache */
2226 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2227
2228 put_chip(map, chip, chip->start);
2229 mutex_unlock(&chip->mutex);
2230 return 0;
2231 }
2232
2233 static int
2234 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2235 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2236 {
2237 int ret;
2238
2239 while (size) {
2240 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2241 int gap = offset - bus_ofs;
2242 int n = min_t(int, size, map_bankwidth(map)-gap);
2243 map_word datum = map_word_ff(map);
2244
2245 datum = map_word_load_partial(map, datum, buf, gap, n);
2246 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2247 if (ret)
2248 return ret;
2249
2250 offset += n;
2251 buf += n;
2252 size -= n;
2253 }
2254
2255 return 0;
2256 }
2257
2258 static int
2259 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2260 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2261 {
2262 struct cfi_private *cfi = map->fldrv_priv;
2263 map_word datum;
2264
2265 /* make sure area matches group boundaries */
2266 if (size != grpsz)
2267 return -EXDEV;
2268
2269 datum = map_word_ff(map);
2270 datum = map_word_clr(map, datum, CMD(1 << grpno));
2271 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2272 }
2273
2274 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2275 size_t *retlen, u_char *buf,
2276 otp_op_t action, int user_regs)
2277 {
2278 struct map_info *map = mtd->priv;
2279 struct cfi_private *cfi = map->fldrv_priv;
2280 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2281 struct flchip *chip;
2282 struct cfi_intelext_otpinfo *otp;
2283 u_long devsize, reg_prot_offset, data_offset;
2284 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2285 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2286 int ret;
2287
2288 *retlen = 0;
2289
2290 /* Check that we actually have some OTP registers */
2291 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2292 return -ENODATA;
2293
2294 /* we need real chips here not virtual ones */
2295 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2296 chip_step = devsize >> cfi->chipshift;
2297 chip_num = 0;
2298
2299 /* Some chips have OTP located in the _top_ partition only.
2300 For example: Intel 28F256L18T (T means top-parameter device) */
2301 if (cfi->mfr == CFI_MFR_INTEL) {
2302 switch (cfi->id) {
2303 case 0x880b:
2304 case 0x880c:
2305 case 0x880d:
2306 chip_num = chip_step - 1;
2307 }
2308 }
2309
2310 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2311 chip = &cfi->chips[chip_num];
2312 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2313
2314 /* first OTP region */
2315 field = 0;
2316 reg_prot_offset = extp->ProtRegAddr;
2317 reg_fact_groups = 1;
2318 reg_fact_size = 1 << extp->FactProtRegSize;
2319 reg_user_groups = 1;
2320 reg_user_size = 1 << extp->UserProtRegSize;
2321
2322 while (len > 0) {
2323 /* flash geometry fixup */
2324 data_offset = reg_prot_offset + 1;
2325 data_offset *= cfi->interleave * cfi->device_type;
2326 reg_prot_offset *= cfi->interleave * cfi->device_type;
2327 reg_fact_size *= cfi->interleave;
2328 reg_user_size *= cfi->interleave;
2329
2330 if (user_regs) {
2331 groups = reg_user_groups;
2332 groupsize = reg_user_size;
2333 /* skip over factory reg area */
2334 groupno = reg_fact_groups;
2335 data_offset += reg_fact_groups * reg_fact_size;
2336 } else {
2337 groups = reg_fact_groups;
2338 groupsize = reg_fact_size;
2339 groupno = 0;
2340 }
2341
2342 while (len > 0 && groups > 0) {
2343 if (!action) {
2344 /*
2345 * Special case: if action is NULL
2346 * we fill buf with otp_info records.
2347 */
2348 struct otp_info *otpinfo;
2349 map_word lockword;
2350 len -= sizeof(struct otp_info);
2351 if (len <= 0)
2352 return -ENOSPC;
2353 ret = do_otp_read(map, chip,
2354 reg_prot_offset,
2355 (u_char *)&lockword,
2356 map_bankwidth(map),
2357 0, 0, 0);
2358 if (ret)
2359 return ret;
2360 otpinfo = (struct otp_info *)buf;
2361 otpinfo->start = from;
2362 otpinfo->length = groupsize;
2363 otpinfo->locked =
2364 !map_word_bitsset(map, lockword,
2365 CMD(1 << groupno));
2366 from += groupsize;
2367 buf += sizeof(*otpinfo);
2368 *retlen += sizeof(*otpinfo);
2369 } else if (from >= groupsize) {
2370 from -= groupsize;
2371 data_offset += groupsize;
2372 } else {
2373 int size = groupsize;
2374 data_offset += from;
2375 size -= from;
2376 from = 0;
2377 if (size > len)
2378 size = len;
2379 ret = action(map, chip, data_offset,
2380 buf, size, reg_prot_offset,
2381 groupno, groupsize);
2382 if (ret < 0)
2383 return ret;
2384 buf += size;
2385 len -= size;
2386 *retlen += size;
2387 data_offset += size;
2388 }
2389 groupno++;
2390 groups--;
2391 }
2392
2393 /* next OTP region */
2394 if (++field == extp->NumProtectionFields)
2395 break;
2396 reg_prot_offset = otp->ProtRegAddr;
2397 reg_fact_groups = otp->FactGroups;
2398 reg_fact_size = 1 << otp->FactProtRegSize;
2399 reg_user_groups = otp->UserGroups;
2400 reg_user_size = 1 << otp->UserProtRegSize;
2401 otp++;
2402 }
2403 }
2404
2405 return 0;
2406 }
2407
2408 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2409 size_t len, size_t *retlen,
2410 u_char *buf)
2411 {
2412 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2413 buf, do_otp_read, 0);
2414 }
2415
2416 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2417 size_t len, size_t *retlen,
2418 u_char *buf)
2419 {
2420 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2421 buf, do_otp_read, 1);
2422 }
2423
2424 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2425 size_t len, size_t *retlen,
2426 u_char *buf)
2427 {
2428 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2429 buf, do_otp_write, 1);
2430 }
2431
2432 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2433 loff_t from, size_t len)
2434 {
2435 size_t retlen;
2436 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2437 NULL, do_otp_lock, 1);
2438 }
2439
2440 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
2441 size_t *retlen, struct otp_info *buf)
2442
2443 {
2444 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2445 NULL, 0);
2446 }
2447
2448 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
2449 size_t *retlen, struct otp_info *buf)
2450 {
2451 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2452 NULL, 1);
2453 }
2454
2455 #endif
2456
2457 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2458 {
2459 struct mtd_erase_region_info *region;
2460 int block, status, i;
2461 unsigned long adr;
2462 size_t len;
2463
2464 for (i = 0; i < mtd->numeraseregions; i++) {
2465 region = &mtd->eraseregions[i];
2466 if (!region->lockmap)
2467 continue;
2468
2469 for (block = 0; block < region->numblocks; block++){
2470 len = region->erasesize;
2471 adr = region->offset + block * len;
2472
2473 status = cfi_varsize_frob(mtd,
2474 do_getlockstatus_oneblock, adr, len, NULL);
2475 if (status)
2476 set_bit(block, region->lockmap);
2477 else
2478 clear_bit(block, region->lockmap);
2479 }
2480 }
2481 }
2482
2483 static int cfi_intelext_suspend(struct mtd_info *mtd)
2484 {
2485 struct map_info *map = mtd->priv;
2486 struct cfi_private *cfi = map->fldrv_priv;
2487 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2488 int i;
2489 struct flchip *chip;
2490 int ret = 0;
2491
2492 if ((mtd->flags & MTD_POWERUP_LOCK)
2493 && extp && (extp->FeatureSupport & (1 << 5)))
2494 cfi_intelext_save_locks(mtd);
2495
2496 for (i=0; !ret && i<cfi->numchips; i++) {
2497 chip = &cfi->chips[i];
2498
2499 mutex_lock(&chip->mutex);
2500
2501 switch (chip->state) {
2502 case FL_READY:
2503 case FL_STATUS:
2504 case FL_CFI_QUERY:
2505 case FL_JEDEC_QUERY:
2506 if (chip->oldstate == FL_READY) {
2507 /* place the chip in a known state before suspend */
2508 map_write(map, CMD(0xFF), cfi->chips[i].start);
2509 chip->oldstate = chip->state;
2510 chip->state = FL_PM_SUSPENDED;
2511 /* No need to wake_up() on this state change -
2512 * as the whole point is that nobody can do anything
2513 * with the chip now anyway.
2514 */
2515 } else {
2516 /* There seems to be an operation pending. We must wait for it. */
2517 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2518 ret = -EAGAIN;
2519 }
2520 break;
2521 default:
2522 /* Should we actually wait? Once upon a time these routines weren't
2523 allowed to. Or should we return -EAGAIN, because the upper layers
2524 ought to have already shut down anything which was using the device
2525 anyway? The latter for now. */
2526 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
2527 ret = -EAGAIN;
2528 case FL_PM_SUSPENDED:
2529 break;
2530 }
2531 mutex_unlock(&chip->mutex);
2532 }
2533
2534 /* Unlock the chips again */
2535
2536 if (ret) {
2537 for (i--; i >=0; i--) {
2538 chip = &cfi->chips[i];
2539
2540 mutex_lock(&chip->mutex);
2541
2542 if (chip->state == FL_PM_SUSPENDED) {
2543 /* No need to force it into a known state here,
2544 because we're returning failure, and it didn't
2545 get power cycled */
2546 chip->state = chip->oldstate;
2547 chip->oldstate = FL_READY;
2548 wake_up(&chip->wq);
2549 }
2550 mutex_unlock(&chip->mutex);
2551 }
2552 }
2553
2554 return ret;
2555 }
2556
2557 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2558 {
2559 struct mtd_erase_region_info *region;
2560 int block, i;
2561 unsigned long adr;
2562 size_t len;
2563
2564 for (i = 0; i < mtd->numeraseregions; i++) {
2565 region = &mtd->eraseregions[i];
2566 if (!region->lockmap)
2567 continue;
2568
2569 for_each_clear_bit(block, region->lockmap, region->numblocks) {
2570 len = region->erasesize;
2571 adr = region->offset + block * len;
2572 cfi_intelext_unlock(mtd, adr, len);
2573 }
2574 }
2575 }
2576
2577 static void cfi_intelext_resume(struct mtd_info *mtd)
2578 {
2579 struct map_info *map = mtd->priv;
2580 struct cfi_private *cfi = map->fldrv_priv;
2581 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2582 int i;
2583 struct flchip *chip;
2584
2585 for (i=0; i<cfi->numchips; i++) {
2586
2587 chip = &cfi->chips[i];
2588
2589 mutex_lock(&chip->mutex);
2590
2591 /* Go to known state. Chip may have been power cycled */
2592 if (chip->state == FL_PM_SUSPENDED) {
2593 /* Refresh LH28F640BF Partition Config. Register */
2594 fixup_LH28F640BF(mtd);
2595 map_write(map, CMD(0xFF), cfi->chips[i].start);
2596 chip->oldstate = chip->state = FL_READY;
2597 wake_up(&chip->wq);
2598 }
2599
2600 mutex_unlock(&chip->mutex);
2601 }
2602
2603 if ((mtd->flags & MTD_POWERUP_LOCK)
2604 && extp && (extp->FeatureSupport & (1 << 5)))
2605 cfi_intelext_restore_locks(mtd);
2606 }
2607
2608 static int cfi_intelext_reset(struct mtd_info *mtd)
2609 {
2610 struct map_info *map = mtd->priv;
2611 struct cfi_private *cfi = map->fldrv_priv;
2612 int i, ret;
2613
2614 for (i=0; i < cfi->numchips; i++) {
2615 struct flchip *chip = &cfi->chips[i];
2616
2617 /* force the completion of any ongoing operation
2618 and switch to array mode so any bootloader in
2619 flash is accessible for soft reboot. */
2620 mutex_lock(&chip->mutex);
2621 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2622 if (!ret) {
2623 map_write(map, CMD(0xff), chip->start);
2624 chip->state = FL_SHUTDOWN;
2625 put_chip(map, chip, chip->start);
2626 }
2627 mutex_unlock(&chip->mutex);
2628 }
2629
2630 return 0;
2631 }
2632
2633 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2634 void *v)
2635 {
2636 struct mtd_info *mtd;
2637
2638 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2639 cfi_intelext_reset(mtd);
2640 return NOTIFY_DONE;
2641 }
2642
2643 static void cfi_intelext_destroy(struct mtd_info *mtd)
2644 {
2645 struct map_info *map = mtd->priv;
2646 struct cfi_private *cfi = map->fldrv_priv;
2647 struct mtd_erase_region_info *region;
2648 int i;
2649 cfi_intelext_reset(mtd);
2650 unregister_reboot_notifier(&mtd->reboot_notifier);
2651 kfree(cfi->cmdset_priv);
2652 kfree(cfi->cfiq);
2653 kfree(cfi->chips[0].priv);
2654 kfree(cfi);
2655 for (i = 0; i < mtd->numeraseregions; i++) {
2656 region = &mtd->eraseregions[i];
2657 if (region->lockmap)
2658 kfree(region->lockmap);
2659 }
2660 kfree(mtd->eraseregions);
2661 }
2662
2663 MODULE_LICENSE("GPL");
2664 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2665 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2666 MODULE_ALIAS("cfi_cmdset_0003");
2667 MODULE_ALIAS("cfi_cmdset_0200");