]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/chips/cfi_cmdset_0002.c
mtd: cfi_cmdset_0002: dynamically determine the max sectors
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_RETRIES 3
46
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
51
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
76
77 static void cfi_amdstd_destroy(struct mtd_info *);
78
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
85
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
97 .module = THIS_MODULE
98 };
99
100
101 /* #define DEBUG_CFI_FEATURES */
102
103
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106 {
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
109 };
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
114 };
115
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
119
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 else
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
127 else
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
129
130
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
139 else
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
141
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppMin >> 4, extp->VppMin & 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp->VppMax >> 4, extp->VppMax & 0xf);
146
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 else
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151 }
152 #endif
153
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
157 {
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
163
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
166
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map->name, cfi->mfr, cfi->id);
169
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
174 */
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 * has CFI.
181 *
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
185 */
186 (cfi->mfr == CFI_MFR_MACRONIX)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
190 } else
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
194 } else {
195 extp->TopBottom = 2; /* bottom boot */
196 }
197
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
201 }
202 }
203 #endif
204
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
206 {
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
210 pr_debug("Using buffer write method\n");
211 mtd->_write = cfi_amdstd_write_buffers;
212 }
213 }
214
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217 {
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
222
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
228
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
232 extp->TopBottom = 3;
233 else
234 extp->TopBottom = 2;
235 } else {
236 if (atmel_pri.BottomBoot)
237 extp->TopBottom = 2;
238 else
239 extp->TopBottom = 3;
240 }
241
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
245 }
246
247 static void fixup_use_secsi(struct mtd_info *mtd)
248 {
249 /* Setup for chips with a secsi area */
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252 }
253
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
255 {
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 mtd->_erase = cfi_amdstd_erase_chip;
261 }
262
263 }
264
265 /*
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
268 */
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
270 {
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
273 mtd->flags |= MTD_POWERUP_LOCK;
274 }
275
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277 {
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280
281 /*
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
285 * sector_erase-size.
286 */
287 cfi->cfiq->NumEraseRegions = 1;
288 }
289
290 static void fixup_sst39vf(struct mtd_info *mtd)
291 {
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
294
295 fixup_old_sst_eraseregion(mtd);
296
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
299 }
300
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302 {
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
305
306 fixup_old_sst_eraseregion(mtd);
307
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
310
311 cfi->sector_erase_cmd = CMD(0x50);
312 }
313
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315 {
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
318
319 fixup_sst39vf_rev_b(mtd);
320
321 /*
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
324 */
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
327 mtd->name);
328 }
329
330 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
331 {
332 struct map_info *map = mtd->priv;
333 struct cfi_private *cfi = map->fldrv_priv;
334
335 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
336 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
337 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
338 mtd->name);
339 }
340 }
341
342 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
343 {
344 struct map_info *map = mtd->priv;
345 struct cfi_private *cfi = map->fldrv_priv;
346
347 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
348 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
349 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
350 mtd->name);
351 }
352 }
353
354 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
355 {
356 struct map_info *map = mtd->priv;
357 struct cfi_private *cfi = map->fldrv_priv;
358
359 /*
360 * S29NS512P flash uses more than 8bits to report number of sectors,
361 * which is not permitted by CFI.
362 */
363 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
364 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
365 mtd->name);
366 }
367
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table[] = {
370 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
371 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
372 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
373 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
374 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
375 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
376 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
377 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
378 { 0, 0, NULL }
379 };
380
381 static struct cfi_fixup cfi_fixup_table[] = {
382 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
383 #ifdef AMD_BOOTLOC_BUG
384 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
385 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
386 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
387 #endif
388 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
391 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
392 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
393 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
394 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
395 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
396 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
397 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
398 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
399 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
400 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
401 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
402 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
405 #endif
406 { 0, 0, NULL }
407 };
408 static struct cfi_fixup jedec_fixup_table[] = {
409 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
410 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
411 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
412 { 0, 0, NULL }
413 };
414
415 static struct cfi_fixup fixup_table[] = {
416 /* The CFI vendor ids and the JEDEC vendor IDs appear
417 * to be common. It is like the devices id's are as
418 * well. This table is to pick all cases where
419 * we know that is the case.
420 */
421 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
422 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
423 { 0, 0, NULL }
424 };
425
426
427 static void cfi_fixup_major_minor(struct cfi_private *cfi,
428 struct cfi_pri_amdstd *extp)
429 {
430 if (cfi->mfr == CFI_MFR_SAMSUNG) {
431 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
432 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
433 /*
434 * Samsung K8P2815UQB and K8D6x16UxM chips
435 * report major=0 / minor=0.
436 * K8D3x16UxC chips report major=3 / minor=3.
437 */
438 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
439 " Extended Query version to 1.%c\n",
440 extp->MinorVersion);
441 extp->MajorVersion = '1';
442 }
443 }
444
445 /*
446 * SST 38VF640x chips report major=0xFF / minor=0xFF.
447 */
448 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
449 extp->MajorVersion = '1';
450 extp->MinorVersion = '0';
451 }
452 }
453
454 static int is_m29ew(struct cfi_private *cfi)
455 {
456 if (cfi->mfr == CFI_MFR_INTEL &&
457 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
458 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
459 return 1;
460 return 0;
461 }
462
463 /*
464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
466 * particular, it can occur when the sequence
467 * Erase Confirm -> Suspend -> Program -> Resume
468 * causes a lockup due to internal timing issues. The consequence is that the
469 * erase cannot be resumed without inserting a dummy command after programming
470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471 * that writes an F0 command code before the RESUME command.
472 */
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
474 unsigned long adr)
475 {
476 struct cfi_private *cfi = map->fldrv_priv;
477 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
478 if (is_m29ew(cfi))
479 map_write(map, CMD(0xF0), adr);
480 }
481
482 /*
483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
484 *
485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487 * command is issued after an ERASE RESUME operation without waiting for a
488 * minimum delay. The result is that once the ERASE seems to be completed
489 * (no bits are toggling), the contents of the Flash memory block on which
490 * the erase was ongoing could be inconsistent with the expected values
491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492 * values), causing a consequent failure of the ERASE operation.
493 * The occurrence of this issue could be high, especially when file system
494 * operations on the Flash are intensive. As a result, it is recommended
495 * that a patch be applied. Intensive file system operations can cause many
496 * calls to the garbage routine to free Flash space (also by erasing physical
497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498 * commands can occur. The problem disappears when a delay is inserted after
499 * the RESUME command by using the udelay() function available in Linux.
500 * The DELAY value must be tuned based on the customer's platform.
501 * The maximum value that fixes the problem in all cases is 500us.
502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
503 * in most cases.
504 * We have chosen 500µs because this latency is acceptable.
505 */
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
507 {
508 /*
509 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 * Worst case delay must be 500µs but 30-50µs should be ok as well
511 */
512 if (is_m29ew(cfi))
513 cfi_udelay(500);
514 }
515
516 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
517 {
518 struct cfi_private *cfi = map->fldrv_priv;
519 struct device_node __maybe_unused *np = map->device_node;
520 struct mtd_info *mtd;
521 int i;
522
523 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
524 if (!mtd)
525 return NULL;
526 mtd->priv = map;
527 mtd->type = MTD_NORFLASH;
528
529 /* Fill in the default mtd operations */
530 mtd->_erase = cfi_amdstd_erase_varsize;
531 mtd->_write = cfi_amdstd_write_words;
532 mtd->_read = cfi_amdstd_read;
533 mtd->_sync = cfi_amdstd_sync;
534 mtd->_suspend = cfi_amdstd_suspend;
535 mtd->_resume = cfi_amdstd_resume;
536 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
537 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
538 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
539 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
540 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
541 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
542 mtd->flags = MTD_CAP_NORFLASH;
543 mtd->name = map->name;
544 mtd->writesize = 1;
545 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
546
547 pr_debug("MTD %s(): write buffer size %d\n", __func__,
548 mtd->writebufsize);
549
550 mtd->_panic_write = cfi_amdstd_panic_write;
551 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
552
553 if (cfi->cfi_mode==CFI_MODE_CFI){
554 unsigned char bootloc;
555 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
556 struct cfi_pri_amdstd *extp;
557
558 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
559 if (extp) {
560 /*
561 * It's a real CFI chip, not one for which the probe
562 * routine faked a CFI structure.
563 */
564 cfi_fixup_major_minor(cfi, extp);
565
566 /*
567 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
572 */
573 if (extp->MajorVersion != '1' ||
574 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
575 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
576 "version %c.%c (%#02x/%#02x).\n",
577 extp->MajorVersion, extp->MinorVersion,
578 extp->MajorVersion, extp->MinorVersion);
579 kfree(extp);
580 kfree(mtd);
581 return NULL;
582 }
583
584 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
585 extp->MajorVersion, extp->MinorVersion);
586
587 /* Install our own private info structure */
588 cfi->cmdset_priv = extp;
589
590 /* Apply cfi device specific fixups */
591 cfi_fixup(mtd, cfi_fixup_table);
592
593 #ifdef DEBUG_CFI_FEATURES
594 /* Tell the user about it in lots of lovely detail */
595 cfi_tell_features(extp);
596 #endif
597
598 #ifdef CONFIG_OF
599 if (np && of_property_read_bool(
600 np, "use-advanced-sector-protection")
601 && extp->BlkProtUnprot == 8) {
602 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
603 mtd->_lock = cfi_ppb_lock;
604 mtd->_unlock = cfi_ppb_unlock;
605 mtd->_is_locked = cfi_ppb_is_locked;
606 }
607 #endif
608
609 bootloc = extp->TopBottom;
610 if ((bootloc < 2) || (bootloc > 5)) {
611 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
612 "bank location (%d). Assuming bottom.\n",
613 map->name, bootloc);
614 bootloc = 2;
615 }
616
617 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
618 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
619
620 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
621 int j = (cfi->cfiq->NumEraseRegions-1)-i;
622
623 swap(cfi->cfiq->EraseRegionInfo[i],
624 cfi->cfiq->EraseRegionInfo[j]);
625 }
626 }
627 /* Set the default CFI lock/unlock addresses */
628 cfi->addr_unlock1 = 0x555;
629 cfi->addr_unlock2 = 0x2aa;
630 }
631 cfi_fixup(mtd, cfi_nopri_fixup_table);
632
633 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
634 kfree(mtd);
635 return NULL;
636 }
637
638 } /* CFI mode */
639 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
640 /* Apply jedec specific fixups */
641 cfi_fixup(mtd, jedec_fixup_table);
642 }
643 /* Apply generic fixups */
644 cfi_fixup(mtd, fixup_table);
645
646 for (i=0; i< cfi->numchips; i++) {
647 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
648 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
649 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
650 /*
651 * First calculate the timeout max according to timeout field
652 * of struct cfi_ident that probed from chip's CFI aera, if
653 * available. Specify a minimum of 2000us, in case the CFI data
654 * is wrong.
655 */
656 if (cfi->cfiq->BufWriteTimeoutTyp &&
657 cfi->cfiq->BufWriteTimeoutMax)
658 cfi->chips[i].buffer_write_time_max =
659 1 << (cfi->cfiq->BufWriteTimeoutTyp +
660 cfi->cfiq->BufWriteTimeoutMax);
661 else
662 cfi->chips[i].buffer_write_time_max = 0;
663
664 cfi->chips[i].buffer_write_time_max =
665 max(cfi->chips[i].buffer_write_time_max, 2000);
666
667 cfi->chips[i].ref_point_counter = 0;
668 init_waitqueue_head(&(cfi->chips[i].wq));
669 }
670
671 map->fldrv = &cfi_amdstd_chipdrv;
672
673 return cfi_amdstd_setup(mtd);
674 }
675 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
680
681 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
682 {
683 struct map_info *map = mtd->priv;
684 struct cfi_private *cfi = map->fldrv_priv;
685 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
686 unsigned long offset = 0;
687 int i,j;
688
689 printk(KERN_NOTICE "number of %s chips: %d\n",
690 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
691 /* Select the correct geometry setup */
692 mtd->size = devsize * cfi->numchips;
693
694 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
695 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
696 sizeof(struct mtd_erase_region_info),
697 GFP_KERNEL);
698 if (!mtd->eraseregions)
699 goto setup_err;
700
701 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
702 unsigned long ernum, ersize;
703 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
704 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
705
706 if (mtd->erasesize < ersize) {
707 mtd->erasesize = ersize;
708 }
709 for (j=0; j<cfi->numchips; j++) {
710 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
711 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
712 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
713 }
714 offset += (ersize * ernum);
715 }
716 if (offset != devsize) {
717 /* Argh */
718 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
719 goto setup_err;
720 }
721
722 __module_get(THIS_MODULE);
723 register_reboot_notifier(&mtd->reboot_notifier);
724 return mtd;
725
726 setup_err:
727 kfree(mtd->eraseregions);
728 kfree(mtd);
729 kfree(cfi->cmdset_priv);
730 kfree(cfi->cfiq);
731 return NULL;
732 }
733
734 /*
735 * Return true if the chip is ready.
736 *
737 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
738 * non-suspended sector) and is indicated by no toggle bits toggling.
739 *
740 * Note that anything more complicated than checking if no bits are toggling
741 * (including checking DQ5 for an error status) is tricky to get working
742 * correctly and is therefore not done (particularly with interleaved chips
743 * as each chip must be checked independently of the others).
744 */
745 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
746 {
747 map_word d, t;
748
749 d = map_read(map, addr);
750 t = map_read(map, addr);
751
752 return map_word_equal(map, d, t);
753 }
754
755 /*
756 * Return true if the chip is ready and has the correct value.
757 *
758 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
759 * non-suspended sector) and it is indicated by no bits toggling.
760 *
761 * Error are indicated by toggling bits or bits held with the wrong value,
762 * or with bits toggling.
763 *
764 * Note that anything more complicated than checking if no bits are toggling
765 * (including checking DQ5 for an error status) is tricky to get working
766 * correctly and is therefore not done (particularly with interleaved chips
767 * as each chip must be checked independently of the others).
768 *
769 */
770 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
771 {
772 map_word oldd, curd;
773
774 oldd = map_read(map, addr);
775 curd = map_read(map, addr);
776
777 return map_word_equal(map, oldd, curd) &&
778 map_word_equal(map, curd, expected);
779 }
780
781 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
782 {
783 DECLARE_WAITQUEUE(wait, current);
784 struct cfi_private *cfi = map->fldrv_priv;
785 unsigned long timeo;
786 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
787
788 resettime:
789 timeo = jiffies + HZ;
790 retry:
791 switch (chip->state) {
792
793 case FL_STATUS:
794 for (;;) {
795 if (chip_ready(map, adr))
796 break;
797
798 if (time_after(jiffies, timeo)) {
799 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
800 return -EIO;
801 }
802 mutex_unlock(&chip->mutex);
803 cfi_udelay(1);
804 mutex_lock(&chip->mutex);
805 /* Someone else might have been playing with it. */
806 goto retry;
807 }
808
809 case FL_READY:
810 case FL_CFI_QUERY:
811 case FL_JEDEC_QUERY:
812 return 0;
813
814 case FL_ERASING:
815 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
816 !(mode == FL_READY || mode == FL_POINT ||
817 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
818 goto sleep;
819
820 /* Do not allow suspend iff read/write to EB address */
821 if ((adr & chip->in_progress_block_mask) ==
822 chip->in_progress_block_addr)
823 goto sleep;
824
825 /* Erase suspend */
826 /* It's harmless to issue the Erase-Suspend and Erase-Resume
827 * commands when the erase algorithm isn't in progress. */
828 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
829 chip->oldstate = FL_ERASING;
830 chip->state = FL_ERASE_SUSPENDING;
831 chip->erase_suspended = 1;
832 for (;;) {
833 if (chip_ready(map, adr))
834 break;
835
836 if (time_after(jiffies, timeo)) {
837 /* Should have suspended the erase by now.
838 * Send an Erase-Resume command as either
839 * there was an error (so leave the erase
840 * routine to recover from it) or we trying to
841 * use the erase-in-progress sector. */
842 put_chip(map, chip, adr);
843 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
844 return -EIO;
845 }
846
847 mutex_unlock(&chip->mutex);
848 cfi_udelay(1);
849 mutex_lock(&chip->mutex);
850 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
851 So we can just loop here. */
852 }
853 chip->state = FL_READY;
854 return 0;
855
856 case FL_XIP_WHILE_ERASING:
857 if (mode != FL_READY && mode != FL_POINT &&
858 (!cfip || !(cfip->EraseSuspend&2)))
859 goto sleep;
860 chip->oldstate = chip->state;
861 chip->state = FL_READY;
862 return 0;
863
864 case FL_SHUTDOWN:
865 /* The machine is rebooting */
866 return -EIO;
867
868 case FL_POINT:
869 /* Only if there's no operation suspended... */
870 if (mode == FL_READY && chip->oldstate == FL_READY)
871 return 0;
872 /* fall through */
873
874 default:
875 sleep:
876 set_current_state(TASK_UNINTERRUPTIBLE);
877 add_wait_queue(&chip->wq, &wait);
878 mutex_unlock(&chip->mutex);
879 schedule();
880 remove_wait_queue(&chip->wq, &wait);
881 mutex_lock(&chip->mutex);
882 goto resettime;
883 }
884 }
885
886
887 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
888 {
889 struct cfi_private *cfi = map->fldrv_priv;
890
891 switch(chip->oldstate) {
892 case FL_ERASING:
893 cfi_fixup_m29ew_erase_suspend(map,
894 chip->in_progress_block_addr);
895 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
896 cfi_fixup_m29ew_delay_after_resume(cfi);
897 chip->oldstate = FL_READY;
898 chip->state = FL_ERASING;
899 break;
900
901 case FL_XIP_WHILE_ERASING:
902 chip->state = chip->oldstate;
903 chip->oldstate = FL_READY;
904 break;
905
906 case FL_READY:
907 case FL_STATUS:
908 break;
909 default:
910 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
911 }
912 wake_up(&chip->wq);
913 }
914
915 #ifdef CONFIG_MTD_XIP
916
917 /*
918 * No interrupt what so ever can be serviced while the flash isn't in array
919 * mode. This is ensured by the xip_disable() and xip_enable() functions
920 * enclosing any code path where the flash is known not to be in array mode.
921 * And within a XIP disabled code path, only functions marked with __xipram
922 * may be called and nothing else (it's a good thing to inspect generated
923 * assembly to make sure inline functions were actually inlined and that gcc
924 * didn't emit calls to its own support functions). Also configuring MTD CFI
925 * support to a single buswidth and a single interleave is also recommended.
926 */
927
928 static void xip_disable(struct map_info *map, struct flchip *chip,
929 unsigned long adr)
930 {
931 /* TODO: chips with no XIP use should ignore and return */
932 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
933 local_irq_disable();
934 }
935
936 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
937 unsigned long adr)
938 {
939 struct cfi_private *cfi = map->fldrv_priv;
940
941 if (chip->state != FL_POINT && chip->state != FL_READY) {
942 map_write(map, CMD(0xf0), adr);
943 chip->state = FL_READY;
944 }
945 (void) map_read(map, adr);
946 xip_iprefetch();
947 local_irq_enable();
948 }
949
950 /*
951 * When a delay is required for the flash operation to complete, the
952 * xip_udelay() function is polling for both the given timeout and pending
953 * (but still masked) hardware interrupts. Whenever there is an interrupt
954 * pending then the flash erase operation is suspended, array mode restored
955 * and interrupts unmasked. Task scheduling might also happen at that
956 * point. The CPU eventually returns from the interrupt or the call to
957 * schedule() and the suspended flash operation is resumed for the remaining
958 * of the delay period.
959 *
960 * Warning: this function _will_ fool interrupt latency tracing tools.
961 */
962
963 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
964 unsigned long adr, int usec)
965 {
966 struct cfi_private *cfi = map->fldrv_priv;
967 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
968 map_word status, OK = CMD(0x80);
969 unsigned long suspended, start = xip_currtime();
970 flstate_t oldstate;
971
972 do {
973 cpu_relax();
974 if (xip_irqpending() && extp &&
975 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
976 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
977 /*
978 * Let's suspend the erase operation when supported.
979 * Note that we currently don't try to suspend
980 * interleaved chips if there is already another
981 * operation suspended (imagine what happens
982 * when one chip was already done with the current
983 * operation while another chip suspended it, then
984 * we resume the whole thing at once). Yes, it
985 * can happen!
986 */
987 map_write(map, CMD(0xb0), adr);
988 usec -= xip_elapsed_since(start);
989 suspended = xip_currtime();
990 do {
991 if (xip_elapsed_since(suspended) > 100000) {
992 /*
993 * The chip doesn't want to suspend
994 * after waiting for 100 msecs.
995 * This is a critical error but there
996 * is not much we can do here.
997 */
998 return;
999 }
1000 status = map_read(map, adr);
1001 } while (!map_word_andequal(map, status, OK, OK));
1002
1003 /* Suspend succeeded */
1004 oldstate = chip->state;
1005 if (!map_word_bitsset(map, status, CMD(0x40)))
1006 break;
1007 chip->state = FL_XIP_WHILE_ERASING;
1008 chip->erase_suspended = 1;
1009 map_write(map, CMD(0xf0), adr);
1010 (void) map_read(map, adr);
1011 xip_iprefetch();
1012 local_irq_enable();
1013 mutex_unlock(&chip->mutex);
1014 xip_iprefetch();
1015 cond_resched();
1016
1017 /*
1018 * We're back. However someone else might have
1019 * decided to go write to the chip if we are in
1020 * a suspended erase state. If so let's wait
1021 * until it's done.
1022 */
1023 mutex_lock(&chip->mutex);
1024 while (chip->state != FL_XIP_WHILE_ERASING) {
1025 DECLARE_WAITQUEUE(wait, current);
1026 set_current_state(TASK_UNINTERRUPTIBLE);
1027 add_wait_queue(&chip->wq, &wait);
1028 mutex_unlock(&chip->mutex);
1029 schedule();
1030 remove_wait_queue(&chip->wq, &wait);
1031 mutex_lock(&chip->mutex);
1032 }
1033 /* Disallow XIP again */
1034 local_irq_disable();
1035
1036 /* Correct Erase Suspend Hangups for M29EW */
1037 cfi_fixup_m29ew_erase_suspend(map, adr);
1038 /* Resume the write or erase operation */
1039 map_write(map, cfi->sector_erase_cmd, adr);
1040 chip->state = oldstate;
1041 start = xip_currtime();
1042 } else if (usec >= 1000000/HZ) {
1043 /*
1044 * Try to save on CPU power when waiting delay
1045 * is at least a system timer tick period.
1046 * No need to be extremely accurate here.
1047 */
1048 xip_cpu_idle();
1049 }
1050 status = map_read(map, adr);
1051 } while (!map_word_andequal(map, status, OK, OK)
1052 && xip_elapsed_since(start) < usec);
1053 }
1054
1055 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1056
1057 /*
1058 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1059 * the flash is actively programming or erasing since we have to poll for
1060 * the operation to complete anyway. We can't do that in a generic way with
1061 * a XIP setup so do it before the actual flash operation in this case
1062 * and stub it out from INVALIDATE_CACHE_UDELAY.
1063 */
1064 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1065 INVALIDATE_CACHED_RANGE(map, from, size)
1066
1067 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1068 UDELAY(map, chip, adr, usec)
1069
1070 /*
1071 * Extra notes:
1072 *
1073 * Activating this XIP support changes the way the code works a bit. For
1074 * example the code to suspend the current process when concurrent access
1075 * happens is never executed because xip_udelay() will always return with the
1076 * same chip state as it was entered with. This is why there is no care for
1077 * the presence of add_wait_queue() or schedule() calls from within a couple
1078 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1079 * The queueing and scheduling are always happening within xip_udelay().
1080 *
1081 * Similarly, get_chip() and put_chip() just happen to always be executed
1082 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1083 * is in array mode, therefore never executing many cases therein and not
1084 * causing any problem with XIP.
1085 */
1086
1087 #else
1088
1089 #define xip_disable(map, chip, adr)
1090 #define xip_enable(map, chip, adr)
1091 #define XIP_INVAL_CACHED_RANGE(x...)
1092
1093 #define UDELAY(map, chip, adr, usec) \
1094 do { \
1095 mutex_unlock(&chip->mutex); \
1096 cfi_udelay(usec); \
1097 mutex_lock(&chip->mutex); \
1098 } while (0)
1099
1100 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1101 do { \
1102 mutex_unlock(&chip->mutex); \
1103 INVALIDATE_CACHED_RANGE(map, adr, len); \
1104 cfi_udelay(usec); \
1105 mutex_lock(&chip->mutex); \
1106 } while (0)
1107
1108 #endif
1109
1110 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1111 {
1112 unsigned long cmd_addr;
1113 struct cfi_private *cfi = map->fldrv_priv;
1114 int ret;
1115
1116 adr += chip->start;
1117
1118 /* Ensure cmd read/writes are aligned. */
1119 cmd_addr = adr & ~(map_bankwidth(map)-1);
1120
1121 mutex_lock(&chip->mutex);
1122 ret = get_chip(map, chip, cmd_addr, FL_READY);
1123 if (ret) {
1124 mutex_unlock(&chip->mutex);
1125 return ret;
1126 }
1127
1128 if (chip->state != FL_POINT && chip->state != FL_READY) {
1129 map_write(map, CMD(0xf0), cmd_addr);
1130 chip->state = FL_READY;
1131 }
1132
1133 map_copy_from(map, buf, adr, len);
1134
1135 put_chip(map, chip, cmd_addr);
1136
1137 mutex_unlock(&chip->mutex);
1138 return 0;
1139 }
1140
1141
1142 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1143 {
1144 struct map_info *map = mtd->priv;
1145 struct cfi_private *cfi = map->fldrv_priv;
1146 unsigned long ofs;
1147 int chipnum;
1148 int ret = 0;
1149
1150 /* ofs: offset within the first chip that the first read should start */
1151 chipnum = (from >> cfi->chipshift);
1152 ofs = from - (chipnum << cfi->chipshift);
1153
1154 while (len) {
1155 unsigned long thislen;
1156
1157 if (chipnum >= cfi->numchips)
1158 break;
1159
1160 if ((len + ofs -1) >> cfi->chipshift)
1161 thislen = (1<<cfi->chipshift) - ofs;
1162 else
1163 thislen = len;
1164
1165 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1166 if (ret)
1167 break;
1168
1169 *retlen += thislen;
1170 len -= thislen;
1171 buf += thislen;
1172
1173 ofs = 0;
1174 chipnum++;
1175 }
1176 return ret;
1177 }
1178
1179 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1180 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1181
1182 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1183 loff_t adr, size_t len)
1184 {
1185 struct cfi_private *cfi = map->fldrv_priv;
1186
1187 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1188 cfi->device_type, NULL);
1189 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1190 cfi->device_type, NULL);
1191 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1192 cfi->device_type, NULL);
1193
1194 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1195 }
1196
1197 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1198 loff_t adr, size_t len)
1199 {
1200 struct cfi_private *cfi = map->fldrv_priv;
1201
1202 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1203 cfi->device_type, NULL);
1204 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1205 cfi->device_type, NULL);
1206 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1207 cfi->device_type, NULL);
1208 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1209 cfi->device_type, NULL);
1210
1211 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1212 }
1213
1214 static inline int do_read_secsi_onechip(struct map_info *map,
1215 struct flchip *chip, loff_t adr,
1216 size_t len, u_char *buf,
1217 size_t grouplen)
1218 {
1219 DECLARE_WAITQUEUE(wait, current);
1220
1221 retry:
1222 mutex_lock(&chip->mutex);
1223
1224 if (chip->state != FL_READY){
1225 set_current_state(TASK_UNINTERRUPTIBLE);
1226 add_wait_queue(&chip->wq, &wait);
1227
1228 mutex_unlock(&chip->mutex);
1229
1230 schedule();
1231 remove_wait_queue(&chip->wq, &wait);
1232
1233 goto retry;
1234 }
1235
1236 adr += chip->start;
1237
1238 chip->state = FL_READY;
1239
1240 otp_enter(map, chip, adr, len);
1241 map_copy_from(map, buf, adr, len);
1242 otp_exit(map, chip, adr, len);
1243
1244 wake_up(&chip->wq);
1245 mutex_unlock(&chip->mutex);
1246
1247 return 0;
1248 }
1249
1250 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1251 {
1252 struct map_info *map = mtd->priv;
1253 struct cfi_private *cfi = map->fldrv_priv;
1254 unsigned long ofs;
1255 int chipnum;
1256 int ret = 0;
1257
1258 /* ofs: offset within the first chip that the first read should start */
1259 /* 8 secsi bytes per chip */
1260 chipnum=from>>3;
1261 ofs=from & 7;
1262
1263 while (len) {
1264 unsigned long thislen;
1265
1266 if (chipnum >= cfi->numchips)
1267 break;
1268
1269 if ((len + ofs -1) >> 3)
1270 thislen = (1<<3) - ofs;
1271 else
1272 thislen = len;
1273
1274 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1275 thislen, buf, 0);
1276 if (ret)
1277 break;
1278
1279 *retlen += thislen;
1280 len -= thislen;
1281 buf += thislen;
1282
1283 ofs = 0;
1284 chipnum++;
1285 }
1286 return ret;
1287 }
1288
1289 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1290 unsigned long adr, map_word datum,
1291 int mode);
1292
1293 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1294 size_t len, u_char *buf, size_t grouplen)
1295 {
1296 int ret;
1297 while (len) {
1298 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1299 int gap = adr - bus_ofs;
1300 int n = min_t(int, len, map_bankwidth(map) - gap);
1301 map_word datum = map_word_ff(map);
1302
1303 if (n != map_bankwidth(map)) {
1304 /* partial write of a word, load old contents */
1305 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1306 datum = map_read(map, bus_ofs);
1307 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1308 }
1309
1310 datum = map_word_load_partial(map, datum, buf, gap, n);
1311 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1312 if (ret)
1313 return ret;
1314
1315 adr += n;
1316 buf += n;
1317 len -= n;
1318 }
1319
1320 return 0;
1321 }
1322
1323 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1324 size_t len, u_char *buf, size_t grouplen)
1325 {
1326 struct cfi_private *cfi = map->fldrv_priv;
1327 uint8_t lockreg;
1328 unsigned long timeo;
1329 int ret;
1330
1331 /* make sure area matches group boundaries */
1332 if ((adr != 0) || (len != grouplen))
1333 return -EINVAL;
1334
1335 mutex_lock(&chip->mutex);
1336 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1337 if (ret) {
1338 mutex_unlock(&chip->mutex);
1339 return ret;
1340 }
1341 chip->state = FL_LOCKING;
1342
1343 /* Enter lock register command */
1344 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1345 cfi->device_type, NULL);
1346 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1347 cfi->device_type, NULL);
1348 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1349 cfi->device_type, NULL);
1350
1351 /* read lock register */
1352 lockreg = cfi_read_query(map, 0);
1353
1354 /* set bit 0 to protect extended memory block */
1355 lockreg &= ~0x01;
1356
1357 /* set bit 0 to protect extended memory block */
1358 /* write lock register */
1359 map_write(map, CMD(0xA0), chip->start);
1360 map_write(map, CMD(lockreg), chip->start);
1361
1362 /* wait for chip to become ready */
1363 timeo = jiffies + msecs_to_jiffies(2);
1364 for (;;) {
1365 if (chip_ready(map, adr))
1366 break;
1367
1368 if (time_after(jiffies, timeo)) {
1369 pr_err("Waiting for chip to be ready timed out.\n");
1370 ret = -EIO;
1371 break;
1372 }
1373 UDELAY(map, chip, 0, 1);
1374 }
1375
1376 /* exit protection commands */
1377 map_write(map, CMD(0x90), chip->start);
1378 map_write(map, CMD(0x00), chip->start);
1379
1380 chip->state = FL_READY;
1381 put_chip(map, chip, chip->start);
1382 mutex_unlock(&chip->mutex);
1383
1384 return ret;
1385 }
1386
1387 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1388 size_t *retlen, u_char *buf,
1389 otp_op_t action, int user_regs)
1390 {
1391 struct map_info *map = mtd->priv;
1392 struct cfi_private *cfi = map->fldrv_priv;
1393 int ofs_factor = cfi->interleave * cfi->device_type;
1394 unsigned long base;
1395 int chipnum;
1396 struct flchip *chip;
1397 uint8_t otp, lockreg;
1398 int ret;
1399
1400 size_t user_size, factory_size, otpsize;
1401 loff_t user_offset, factory_offset, otpoffset;
1402 int user_locked = 0, otplocked;
1403
1404 *retlen = 0;
1405
1406 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1407 chip = &cfi->chips[chipnum];
1408 factory_size = 0;
1409 user_size = 0;
1410
1411 /* Micron M29EW family */
1412 if (is_m29ew(cfi)) {
1413 base = chip->start;
1414
1415 /* check whether secsi area is factory locked
1416 or user lockable */
1417 mutex_lock(&chip->mutex);
1418 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1419 if (ret) {
1420 mutex_unlock(&chip->mutex);
1421 return ret;
1422 }
1423 cfi_qry_mode_on(base, map, cfi);
1424 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1425 cfi_qry_mode_off(base, map, cfi);
1426 put_chip(map, chip, base);
1427 mutex_unlock(&chip->mutex);
1428
1429 if (otp & 0x80) {
1430 /* factory locked */
1431 factory_offset = 0;
1432 factory_size = 0x100;
1433 } else {
1434 /* customer lockable */
1435 user_offset = 0;
1436 user_size = 0x100;
1437
1438 mutex_lock(&chip->mutex);
1439 ret = get_chip(map, chip, base, FL_LOCKING);
1440 if (ret) {
1441 mutex_unlock(&chip->mutex);
1442 return ret;
1443 }
1444
1445 /* Enter lock register command */
1446 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1447 chip->start, map, cfi,
1448 cfi->device_type, NULL);
1449 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1450 chip->start, map, cfi,
1451 cfi->device_type, NULL);
1452 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1453 chip->start, map, cfi,
1454 cfi->device_type, NULL);
1455 /* read lock register */
1456 lockreg = cfi_read_query(map, 0);
1457 /* exit protection commands */
1458 map_write(map, CMD(0x90), chip->start);
1459 map_write(map, CMD(0x00), chip->start);
1460 put_chip(map, chip, chip->start);
1461 mutex_unlock(&chip->mutex);
1462
1463 user_locked = ((lockreg & 0x01) == 0x00);
1464 }
1465 }
1466
1467 otpsize = user_regs ? user_size : factory_size;
1468 if (!otpsize)
1469 continue;
1470 otpoffset = user_regs ? user_offset : factory_offset;
1471 otplocked = user_regs ? user_locked : 1;
1472
1473 if (!action) {
1474 /* return otpinfo */
1475 struct otp_info *otpinfo;
1476 len -= sizeof(*otpinfo);
1477 if (len <= 0)
1478 return -ENOSPC;
1479 otpinfo = (struct otp_info *)buf;
1480 otpinfo->start = from;
1481 otpinfo->length = otpsize;
1482 otpinfo->locked = otplocked;
1483 buf += sizeof(*otpinfo);
1484 *retlen += sizeof(*otpinfo);
1485 from += otpsize;
1486 } else if ((from < otpsize) && (len > 0)) {
1487 size_t size;
1488 size = (len < otpsize - from) ? len : otpsize - from;
1489 ret = action(map, chip, otpoffset + from, size, buf,
1490 otpsize);
1491 if (ret < 0)
1492 return ret;
1493
1494 buf += size;
1495 len -= size;
1496 *retlen += size;
1497 from = 0;
1498 } else {
1499 from -= otpsize;
1500 }
1501 }
1502 return 0;
1503 }
1504
1505 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1506 size_t *retlen, struct otp_info *buf)
1507 {
1508 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1509 NULL, 0);
1510 }
1511
1512 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1513 size_t *retlen, struct otp_info *buf)
1514 {
1515 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1516 NULL, 1);
1517 }
1518
1519 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1520 size_t len, size_t *retlen,
1521 u_char *buf)
1522 {
1523 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1524 buf, do_read_secsi_onechip, 0);
1525 }
1526
1527 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1528 size_t len, size_t *retlen,
1529 u_char *buf)
1530 {
1531 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1532 buf, do_read_secsi_onechip, 1);
1533 }
1534
1535 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1536 size_t len, size_t *retlen,
1537 u_char *buf)
1538 {
1539 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1540 do_otp_write, 1);
1541 }
1542
1543 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1544 size_t len)
1545 {
1546 size_t retlen;
1547 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1548 do_otp_lock, 1);
1549 }
1550
1551 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1552 unsigned long adr, map_word datum,
1553 int mode)
1554 {
1555 struct cfi_private *cfi = map->fldrv_priv;
1556 unsigned long timeo = jiffies + HZ;
1557 /*
1558 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1559 * have a max write time of a few hundreds usec). However, we should
1560 * use the maximum timeout value given by the chip at probe time
1561 * instead. Unfortunately, struct flchip does have a field for
1562 * maximum timeout, only for typical which can be far too short
1563 * depending of the conditions. The ' + 1' is to avoid having a
1564 * timeout of 0 jiffies if HZ is smaller than 1000.
1565 */
1566 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1567 int ret = 0;
1568 map_word oldd;
1569 int retry_cnt = 0;
1570
1571 adr += chip->start;
1572
1573 mutex_lock(&chip->mutex);
1574 ret = get_chip(map, chip, adr, mode);
1575 if (ret) {
1576 mutex_unlock(&chip->mutex);
1577 return ret;
1578 }
1579
1580 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1581 __func__, adr, datum.x[0]);
1582
1583 if (mode == FL_OTP_WRITE)
1584 otp_enter(map, chip, adr, map_bankwidth(map));
1585
1586 /*
1587 * Check for a NOP for the case when the datum to write is already
1588 * present - it saves time and works around buggy chips that corrupt
1589 * data at other locations when 0xff is written to a location that
1590 * already contains 0xff.
1591 */
1592 oldd = map_read(map, adr);
1593 if (map_word_equal(map, oldd, datum)) {
1594 pr_debug("MTD %s(): NOP\n",
1595 __func__);
1596 goto op_done;
1597 }
1598
1599 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1600 ENABLE_VPP(map);
1601 xip_disable(map, chip, adr);
1602
1603 retry:
1604 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1605 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1606 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1607 map_write(map, datum, adr);
1608 chip->state = mode;
1609
1610 INVALIDATE_CACHE_UDELAY(map, chip,
1611 adr, map_bankwidth(map),
1612 chip->word_write_time);
1613
1614 /* See comment above for timeout value. */
1615 timeo = jiffies + uWriteTimeout;
1616 for (;;) {
1617 if (chip->state != mode) {
1618 /* Someone's suspended the write. Sleep */
1619 DECLARE_WAITQUEUE(wait, current);
1620
1621 set_current_state(TASK_UNINTERRUPTIBLE);
1622 add_wait_queue(&chip->wq, &wait);
1623 mutex_unlock(&chip->mutex);
1624 schedule();
1625 remove_wait_queue(&chip->wq, &wait);
1626 timeo = jiffies + (HZ / 2); /* FIXME */
1627 mutex_lock(&chip->mutex);
1628 continue;
1629 }
1630
1631 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1632 xip_enable(map, chip, adr);
1633 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1634 xip_disable(map, chip, adr);
1635 break;
1636 }
1637
1638 if (chip_ready(map, adr))
1639 break;
1640
1641 /* Latency issues. Drop the lock, wait a while and retry */
1642 UDELAY(map, chip, adr, 1);
1643 }
1644 /* Did we succeed? */
1645 if (!chip_good(map, adr, datum)) {
1646 /* reset on all failures. */
1647 map_write(map, CMD(0xF0), chip->start);
1648 /* FIXME - should have reset delay before continuing */
1649
1650 if (++retry_cnt <= MAX_RETRIES)
1651 goto retry;
1652
1653 ret = -EIO;
1654 }
1655 xip_enable(map, chip, adr);
1656 op_done:
1657 if (mode == FL_OTP_WRITE)
1658 otp_exit(map, chip, adr, map_bankwidth(map));
1659 chip->state = FL_READY;
1660 DISABLE_VPP(map);
1661 put_chip(map, chip, adr);
1662 mutex_unlock(&chip->mutex);
1663
1664 return ret;
1665 }
1666
1667
1668 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1669 size_t *retlen, const u_char *buf)
1670 {
1671 struct map_info *map = mtd->priv;
1672 struct cfi_private *cfi = map->fldrv_priv;
1673 int ret = 0;
1674 int chipnum;
1675 unsigned long ofs, chipstart;
1676 DECLARE_WAITQUEUE(wait, current);
1677
1678 chipnum = to >> cfi->chipshift;
1679 ofs = to - (chipnum << cfi->chipshift);
1680 chipstart = cfi->chips[chipnum].start;
1681
1682 /* If it's not bus-aligned, do the first byte write */
1683 if (ofs & (map_bankwidth(map)-1)) {
1684 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1685 int i = ofs - bus_ofs;
1686 int n = 0;
1687 map_word tmp_buf;
1688
1689 retry:
1690 mutex_lock(&cfi->chips[chipnum].mutex);
1691
1692 if (cfi->chips[chipnum].state != FL_READY) {
1693 set_current_state(TASK_UNINTERRUPTIBLE);
1694 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1695
1696 mutex_unlock(&cfi->chips[chipnum].mutex);
1697
1698 schedule();
1699 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1700 goto retry;
1701 }
1702
1703 /* Load 'tmp_buf' with old contents of flash */
1704 tmp_buf = map_read(map, bus_ofs+chipstart);
1705
1706 mutex_unlock(&cfi->chips[chipnum].mutex);
1707
1708 /* Number of bytes to copy from buffer */
1709 n = min_t(int, len, map_bankwidth(map)-i);
1710
1711 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1712
1713 ret = do_write_oneword(map, &cfi->chips[chipnum],
1714 bus_ofs, tmp_buf, FL_WRITING);
1715 if (ret)
1716 return ret;
1717
1718 ofs += n;
1719 buf += n;
1720 (*retlen) += n;
1721 len -= n;
1722
1723 if (ofs >> cfi->chipshift) {
1724 chipnum ++;
1725 ofs = 0;
1726 if (chipnum == cfi->numchips)
1727 return 0;
1728 }
1729 }
1730
1731 /* We are now aligned, write as much as possible */
1732 while(len >= map_bankwidth(map)) {
1733 map_word datum;
1734
1735 datum = map_word_load(map, buf);
1736
1737 ret = do_write_oneword(map, &cfi->chips[chipnum],
1738 ofs, datum, FL_WRITING);
1739 if (ret)
1740 return ret;
1741
1742 ofs += map_bankwidth(map);
1743 buf += map_bankwidth(map);
1744 (*retlen) += map_bankwidth(map);
1745 len -= map_bankwidth(map);
1746
1747 if (ofs >> cfi->chipshift) {
1748 chipnum ++;
1749 ofs = 0;
1750 if (chipnum == cfi->numchips)
1751 return 0;
1752 chipstart = cfi->chips[chipnum].start;
1753 }
1754 }
1755
1756 /* Write the trailing bytes if any */
1757 if (len & (map_bankwidth(map)-1)) {
1758 map_word tmp_buf;
1759
1760 retry1:
1761 mutex_lock(&cfi->chips[chipnum].mutex);
1762
1763 if (cfi->chips[chipnum].state != FL_READY) {
1764 set_current_state(TASK_UNINTERRUPTIBLE);
1765 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1766
1767 mutex_unlock(&cfi->chips[chipnum].mutex);
1768
1769 schedule();
1770 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1771 goto retry1;
1772 }
1773
1774 tmp_buf = map_read(map, ofs + chipstart);
1775
1776 mutex_unlock(&cfi->chips[chipnum].mutex);
1777
1778 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1779
1780 ret = do_write_oneword(map, &cfi->chips[chipnum],
1781 ofs, tmp_buf, FL_WRITING);
1782 if (ret)
1783 return ret;
1784
1785 (*retlen) += len;
1786 }
1787
1788 return 0;
1789 }
1790
1791
1792 /*
1793 * FIXME: interleaved mode not tested, and probably not supported!
1794 */
1795 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1796 unsigned long adr, const u_char *buf,
1797 int len)
1798 {
1799 struct cfi_private *cfi = map->fldrv_priv;
1800 unsigned long timeo = jiffies + HZ;
1801 /*
1802 * Timeout is calculated according to CFI data, if available.
1803 * See more comments in cfi_cmdset_0002().
1804 */
1805 unsigned long uWriteTimeout =
1806 usecs_to_jiffies(chip->buffer_write_time_max);
1807 int ret = -EIO;
1808 unsigned long cmd_adr;
1809 int z, words;
1810 map_word datum;
1811
1812 adr += chip->start;
1813 cmd_adr = adr;
1814
1815 mutex_lock(&chip->mutex);
1816 ret = get_chip(map, chip, adr, FL_WRITING);
1817 if (ret) {
1818 mutex_unlock(&chip->mutex);
1819 return ret;
1820 }
1821
1822 datum = map_word_load(map, buf);
1823
1824 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1825 __func__, adr, datum.x[0]);
1826
1827 XIP_INVAL_CACHED_RANGE(map, adr, len);
1828 ENABLE_VPP(map);
1829 xip_disable(map, chip, cmd_adr);
1830
1831 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1832 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1833
1834 /* Write Buffer Load */
1835 map_write(map, CMD(0x25), cmd_adr);
1836
1837 chip->state = FL_WRITING_TO_BUFFER;
1838
1839 /* Write length of data to come */
1840 words = len / map_bankwidth(map);
1841 map_write(map, CMD(words - 1), cmd_adr);
1842 /* Write data */
1843 z = 0;
1844 while(z < words * map_bankwidth(map)) {
1845 datum = map_word_load(map, buf);
1846 map_write(map, datum, adr + z);
1847
1848 z += map_bankwidth(map);
1849 buf += map_bankwidth(map);
1850 }
1851 z -= map_bankwidth(map);
1852
1853 adr += z;
1854
1855 /* Write Buffer Program Confirm: GO GO GO */
1856 map_write(map, CMD(0x29), cmd_adr);
1857 chip->state = FL_WRITING;
1858
1859 INVALIDATE_CACHE_UDELAY(map, chip,
1860 adr, map_bankwidth(map),
1861 chip->word_write_time);
1862
1863 timeo = jiffies + uWriteTimeout;
1864
1865 for (;;) {
1866 if (chip->state != FL_WRITING) {
1867 /* Someone's suspended the write. Sleep */
1868 DECLARE_WAITQUEUE(wait, current);
1869
1870 set_current_state(TASK_UNINTERRUPTIBLE);
1871 add_wait_queue(&chip->wq, &wait);
1872 mutex_unlock(&chip->mutex);
1873 schedule();
1874 remove_wait_queue(&chip->wq, &wait);
1875 timeo = jiffies + (HZ / 2); /* FIXME */
1876 mutex_lock(&chip->mutex);
1877 continue;
1878 }
1879
1880 /*
1881 * We check "time_after" and "!chip_good" before checking "chip_good" to avoid
1882 * the failure due to scheduling.
1883 */
1884 if (time_after(jiffies, timeo) && !chip_good(map, adr, datum))
1885 break;
1886
1887 if (chip_good(map, adr, datum)) {
1888 xip_enable(map, chip, adr);
1889 goto op_done;
1890 }
1891
1892 /* Latency issues. Drop the lock, wait a while and retry */
1893 UDELAY(map, chip, adr, 1);
1894 }
1895
1896 /*
1897 * Recovery from write-buffer programming failures requires
1898 * the write-to-buffer-reset sequence. Since the last part
1899 * of the sequence also works as a normal reset, we can run
1900 * the same commands regardless of why we are here.
1901 * See e.g.
1902 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1903 */
1904 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1905 cfi->device_type, NULL);
1906 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1907 cfi->device_type, NULL);
1908 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1909 cfi->device_type, NULL);
1910 xip_enable(map, chip, adr);
1911 /* FIXME - should have reset delay before continuing */
1912
1913 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1914 __func__, adr);
1915
1916 ret = -EIO;
1917 op_done:
1918 chip->state = FL_READY;
1919 DISABLE_VPP(map);
1920 put_chip(map, chip, adr);
1921 mutex_unlock(&chip->mutex);
1922
1923 return ret;
1924 }
1925
1926
1927 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1928 size_t *retlen, const u_char *buf)
1929 {
1930 struct map_info *map = mtd->priv;
1931 struct cfi_private *cfi = map->fldrv_priv;
1932 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1933 int ret = 0;
1934 int chipnum;
1935 unsigned long ofs;
1936
1937 chipnum = to >> cfi->chipshift;
1938 ofs = to - (chipnum << cfi->chipshift);
1939
1940 /* If it's not bus-aligned, do the first word write */
1941 if (ofs & (map_bankwidth(map)-1)) {
1942 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1943 if (local_len > len)
1944 local_len = len;
1945 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1946 local_len, retlen, buf);
1947 if (ret)
1948 return ret;
1949 ofs += local_len;
1950 buf += local_len;
1951 len -= local_len;
1952
1953 if (ofs >> cfi->chipshift) {
1954 chipnum ++;
1955 ofs = 0;
1956 if (chipnum == cfi->numchips)
1957 return 0;
1958 }
1959 }
1960
1961 /* Write buffer is worth it only if more than one word to write... */
1962 while (len >= map_bankwidth(map) * 2) {
1963 /* We must not cross write block boundaries */
1964 int size = wbufsize - (ofs & (wbufsize-1));
1965
1966 if (size > len)
1967 size = len;
1968 if (size % map_bankwidth(map))
1969 size -= size % map_bankwidth(map);
1970
1971 ret = do_write_buffer(map, &cfi->chips[chipnum],
1972 ofs, buf, size);
1973 if (ret)
1974 return ret;
1975
1976 ofs += size;
1977 buf += size;
1978 (*retlen) += size;
1979 len -= size;
1980
1981 if (ofs >> cfi->chipshift) {
1982 chipnum ++;
1983 ofs = 0;
1984 if (chipnum == cfi->numchips)
1985 return 0;
1986 }
1987 }
1988
1989 if (len) {
1990 size_t retlen_dregs = 0;
1991
1992 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1993 len, &retlen_dregs, buf);
1994
1995 *retlen += retlen_dregs;
1996 return ret;
1997 }
1998
1999 return 0;
2000 }
2001
2002 /*
2003 * Wait for the flash chip to become ready to write data
2004 *
2005 * This is only called during the panic_write() path. When panic_write()
2006 * is called, the kernel is in the process of a panic, and will soon be
2007 * dead. Therefore we don't take any locks, and attempt to get access
2008 * to the chip as soon as possible.
2009 */
2010 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2011 unsigned long adr)
2012 {
2013 struct cfi_private *cfi = map->fldrv_priv;
2014 int retries = 10;
2015 int i;
2016
2017 /*
2018 * If the driver thinks the chip is idle, and no toggle bits
2019 * are changing, then the chip is actually idle for sure.
2020 */
2021 if (chip->state == FL_READY && chip_ready(map, adr))
2022 return 0;
2023
2024 /*
2025 * Try several times to reset the chip and then wait for it
2026 * to become idle. The upper limit of a few milliseconds of
2027 * delay isn't a big problem: the kernel is dying anyway. It
2028 * is more important to save the messages.
2029 */
2030 while (retries > 0) {
2031 const unsigned long timeo = (HZ / 1000) + 1;
2032
2033 /* send the reset command */
2034 map_write(map, CMD(0xF0), chip->start);
2035
2036 /* wait for the chip to become ready */
2037 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2038 if (chip_ready(map, adr))
2039 return 0;
2040
2041 udelay(1);
2042 }
2043
2044 retries--;
2045 }
2046
2047 /* the chip never became ready */
2048 return -EBUSY;
2049 }
2050
2051 /*
2052 * Write out one word of data to a single flash chip during a kernel panic
2053 *
2054 * This is only called during the panic_write() path. When panic_write()
2055 * is called, the kernel is in the process of a panic, and will soon be
2056 * dead. Therefore we don't take any locks, and attempt to get access
2057 * to the chip as soon as possible.
2058 *
2059 * The implementation of this routine is intentionally similar to
2060 * do_write_oneword(), in order to ease code maintenance.
2061 */
2062 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2063 unsigned long adr, map_word datum)
2064 {
2065 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2066 struct cfi_private *cfi = map->fldrv_priv;
2067 int retry_cnt = 0;
2068 map_word oldd;
2069 int ret = 0;
2070 int i;
2071
2072 adr += chip->start;
2073
2074 ret = cfi_amdstd_panic_wait(map, chip, adr);
2075 if (ret)
2076 return ret;
2077
2078 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2079 __func__, adr, datum.x[0]);
2080
2081 /*
2082 * Check for a NOP for the case when the datum to write is already
2083 * present - it saves time and works around buggy chips that corrupt
2084 * data at other locations when 0xff is written to a location that
2085 * already contains 0xff.
2086 */
2087 oldd = map_read(map, adr);
2088 if (map_word_equal(map, oldd, datum)) {
2089 pr_debug("MTD %s(): NOP\n", __func__);
2090 goto op_done;
2091 }
2092
2093 ENABLE_VPP(map);
2094
2095 retry:
2096 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2097 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2098 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2099 map_write(map, datum, adr);
2100
2101 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2102 if (chip_ready(map, adr))
2103 break;
2104
2105 udelay(1);
2106 }
2107
2108 if (!chip_good(map, adr, datum)) {
2109 /* reset on all failures. */
2110 map_write(map, CMD(0xF0), chip->start);
2111 /* FIXME - should have reset delay before continuing */
2112
2113 if (++retry_cnt <= MAX_RETRIES)
2114 goto retry;
2115
2116 ret = -EIO;
2117 }
2118
2119 op_done:
2120 DISABLE_VPP(map);
2121 return ret;
2122 }
2123
2124 /*
2125 * Write out some data during a kernel panic
2126 *
2127 * This is used by the mtdoops driver to save the dying messages from a
2128 * kernel which has panic'd.
2129 *
2130 * This routine ignores all of the locking used throughout the rest of the
2131 * driver, in order to ensure that the data gets written out no matter what
2132 * state this driver (and the flash chip itself) was in when the kernel crashed.
2133 *
2134 * The implementation of this routine is intentionally similar to
2135 * cfi_amdstd_write_words(), in order to ease code maintenance.
2136 */
2137 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2138 size_t *retlen, const u_char *buf)
2139 {
2140 struct map_info *map = mtd->priv;
2141 struct cfi_private *cfi = map->fldrv_priv;
2142 unsigned long ofs, chipstart;
2143 int ret = 0;
2144 int chipnum;
2145
2146 chipnum = to >> cfi->chipshift;
2147 ofs = to - (chipnum << cfi->chipshift);
2148 chipstart = cfi->chips[chipnum].start;
2149
2150 /* If it's not bus aligned, do the first byte write */
2151 if (ofs & (map_bankwidth(map) - 1)) {
2152 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2153 int i = ofs - bus_ofs;
2154 int n = 0;
2155 map_word tmp_buf;
2156
2157 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2158 if (ret)
2159 return ret;
2160
2161 /* Load 'tmp_buf' with old contents of flash */
2162 tmp_buf = map_read(map, bus_ofs + chipstart);
2163
2164 /* Number of bytes to copy from buffer */
2165 n = min_t(int, len, map_bankwidth(map) - i);
2166
2167 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2168
2169 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2170 bus_ofs, tmp_buf);
2171 if (ret)
2172 return ret;
2173
2174 ofs += n;
2175 buf += n;
2176 (*retlen) += n;
2177 len -= n;
2178
2179 if (ofs >> cfi->chipshift) {
2180 chipnum++;
2181 ofs = 0;
2182 if (chipnum == cfi->numchips)
2183 return 0;
2184 }
2185 }
2186
2187 /* We are now aligned, write as much as possible */
2188 while (len >= map_bankwidth(map)) {
2189 map_word datum;
2190
2191 datum = map_word_load(map, buf);
2192
2193 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2194 ofs, datum);
2195 if (ret)
2196 return ret;
2197
2198 ofs += map_bankwidth(map);
2199 buf += map_bankwidth(map);
2200 (*retlen) += map_bankwidth(map);
2201 len -= map_bankwidth(map);
2202
2203 if (ofs >> cfi->chipshift) {
2204 chipnum++;
2205 ofs = 0;
2206 if (chipnum == cfi->numchips)
2207 return 0;
2208
2209 chipstart = cfi->chips[chipnum].start;
2210 }
2211 }
2212
2213 /* Write the trailing bytes if any */
2214 if (len & (map_bankwidth(map) - 1)) {
2215 map_word tmp_buf;
2216
2217 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2218 if (ret)
2219 return ret;
2220
2221 tmp_buf = map_read(map, ofs + chipstart);
2222
2223 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2224
2225 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2226 ofs, tmp_buf);
2227 if (ret)
2228 return ret;
2229
2230 (*retlen) += len;
2231 }
2232
2233 return 0;
2234 }
2235
2236
2237 /*
2238 * Handle devices with one erase region, that only implement
2239 * the chip erase command.
2240 */
2241 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2242 {
2243 struct cfi_private *cfi = map->fldrv_priv;
2244 unsigned long timeo = jiffies + HZ;
2245 unsigned long int adr;
2246 DECLARE_WAITQUEUE(wait, current);
2247 int ret = 0;
2248 int retry_cnt = 0;
2249
2250 adr = cfi->addr_unlock1;
2251
2252 mutex_lock(&chip->mutex);
2253 ret = get_chip(map, chip, adr, FL_WRITING);
2254 if (ret) {
2255 mutex_unlock(&chip->mutex);
2256 return ret;
2257 }
2258
2259 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2260 __func__, chip->start);
2261
2262 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2263 ENABLE_VPP(map);
2264 xip_disable(map, chip, adr);
2265
2266 retry:
2267 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2269 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2270 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2272 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2273
2274 chip->state = FL_ERASING;
2275 chip->erase_suspended = 0;
2276 chip->in_progress_block_addr = adr;
2277 chip->in_progress_block_mask = ~(map->size - 1);
2278
2279 INVALIDATE_CACHE_UDELAY(map, chip,
2280 adr, map->size,
2281 chip->erase_time*500);
2282
2283 timeo = jiffies + (HZ*20);
2284
2285 for (;;) {
2286 if (chip->state != FL_ERASING) {
2287 /* Someone's suspended the erase. Sleep */
2288 set_current_state(TASK_UNINTERRUPTIBLE);
2289 add_wait_queue(&chip->wq, &wait);
2290 mutex_unlock(&chip->mutex);
2291 schedule();
2292 remove_wait_queue(&chip->wq, &wait);
2293 mutex_lock(&chip->mutex);
2294 continue;
2295 }
2296 if (chip->erase_suspended) {
2297 /* This erase was suspended and resumed.
2298 Adjust the timeout */
2299 timeo = jiffies + (HZ*20); /* FIXME */
2300 chip->erase_suspended = 0;
2301 }
2302
2303 if (chip_good(map, adr, map_word_ff(map)))
2304 break;
2305
2306 if (time_after(jiffies, timeo)) {
2307 printk(KERN_WARNING "MTD %s(): software timeout\n",
2308 __func__);
2309 ret = -EIO;
2310 break;
2311 }
2312
2313 /* Latency issues. Drop the lock, wait a while and retry */
2314 UDELAY(map, chip, adr, 1000000/HZ);
2315 }
2316 /* Did we succeed? */
2317 if (ret) {
2318 /* reset on all failures. */
2319 map_write(map, CMD(0xF0), chip->start);
2320 /* FIXME - should have reset delay before continuing */
2321
2322 if (++retry_cnt <= MAX_RETRIES) {
2323 ret = 0;
2324 goto retry;
2325 }
2326 }
2327
2328 chip->state = FL_READY;
2329 xip_enable(map, chip, adr);
2330 DISABLE_VPP(map);
2331 put_chip(map, chip, adr);
2332 mutex_unlock(&chip->mutex);
2333
2334 return ret;
2335 }
2336
2337
2338 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2339 {
2340 struct cfi_private *cfi = map->fldrv_priv;
2341 unsigned long timeo = jiffies + HZ;
2342 DECLARE_WAITQUEUE(wait, current);
2343 int ret = 0;
2344 int retry_cnt = 0;
2345
2346 adr += chip->start;
2347
2348 mutex_lock(&chip->mutex);
2349 ret = get_chip(map, chip, adr, FL_ERASING);
2350 if (ret) {
2351 mutex_unlock(&chip->mutex);
2352 return ret;
2353 }
2354
2355 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2356 __func__, adr);
2357
2358 XIP_INVAL_CACHED_RANGE(map, adr, len);
2359 ENABLE_VPP(map);
2360 xip_disable(map, chip, adr);
2361
2362 retry:
2363 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2364 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2365 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2366 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2367 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2368 map_write(map, cfi->sector_erase_cmd, adr);
2369
2370 chip->state = FL_ERASING;
2371 chip->erase_suspended = 0;
2372 chip->in_progress_block_addr = adr;
2373 chip->in_progress_block_mask = ~(len - 1);
2374
2375 INVALIDATE_CACHE_UDELAY(map, chip,
2376 adr, len,
2377 chip->erase_time*500);
2378
2379 timeo = jiffies + (HZ*20);
2380
2381 for (;;) {
2382 if (chip->state != FL_ERASING) {
2383 /* Someone's suspended the erase. Sleep */
2384 set_current_state(TASK_UNINTERRUPTIBLE);
2385 add_wait_queue(&chip->wq, &wait);
2386 mutex_unlock(&chip->mutex);
2387 schedule();
2388 remove_wait_queue(&chip->wq, &wait);
2389 mutex_lock(&chip->mutex);
2390 continue;
2391 }
2392 if (chip->erase_suspended) {
2393 /* This erase was suspended and resumed.
2394 Adjust the timeout */
2395 timeo = jiffies + (HZ*20); /* FIXME */
2396 chip->erase_suspended = 0;
2397 }
2398
2399 if (chip_good(map, adr, map_word_ff(map)))
2400 break;
2401
2402 if (time_after(jiffies, timeo)) {
2403 printk(KERN_WARNING "MTD %s(): software timeout\n",
2404 __func__);
2405 ret = -EIO;
2406 break;
2407 }
2408
2409 /* Latency issues. Drop the lock, wait a while and retry */
2410 UDELAY(map, chip, adr, 1000000/HZ);
2411 }
2412 /* Did we succeed? */
2413 if (ret) {
2414 /* reset on all failures. */
2415 map_write(map, CMD(0xF0), chip->start);
2416 /* FIXME - should have reset delay before continuing */
2417
2418 if (++retry_cnt <= MAX_RETRIES) {
2419 ret = 0;
2420 goto retry;
2421 }
2422 }
2423
2424 chip->state = FL_READY;
2425 xip_enable(map, chip, adr);
2426 DISABLE_VPP(map);
2427 put_chip(map, chip, adr);
2428 mutex_unlock(&chip->mutex);
2429 return ret;
2430 }
2431
2432
2433 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2434 {
2435 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2436 instr->len, NULL);
2437 }
2438
2439
2440 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2441 {
2442 struct map_info *map = mtd->priv;
2443 struct cfi_private *cfi = map->fldrv_priv;
2444
2445 if (instr->addr != 0)
2446 return -EINVAL;
2447
2448 if (instr->len != mtd->size)
2449 return -EINVAL;
2450
2451 return do_erase_chip(map, &cfi->chips[0]);
2452 }
2453
2454 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2455 unsigned long adr, int len, void *thunk)
2456 {
2457 struct cfi_private *cfi = map->fldrv_priv;
2458 int ret;
2459
2460 mutex_lock(&chip->mutex);
2461 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2462 if (ret)
2463 goto out_unlock;
2464 chip->state = FL_LOCKING;
2465
2466 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2467
2468 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2469 cfi->device_type, NULL);
2470 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2471 cfi->device_type, NULL);
2472 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2473 cfi->device_type, NULL);
2474 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2475 cfi->device_type, NULL);
2476 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2477 cfi->device_type, NULL);
2478 map_write(map, CMD(0x40), chip->start + adr);
2479
2480 chip->state = FL_READY;
2481 put_chip(map, chip, adr + chip->start);
2482 ret = 0;
2483
2484 out_unlock:
2485 mutex_unlock(&chip->mutex);
2486 return ret;
2487 }
2488
2489 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2490 unsigned long adr, int len, void *thunk)
2491 {
2492 struct cfi_private *cfi = map->fldrv_priv;
2493 int ret;
2494
2495 mutex_lock(&chip->mutex);
2496 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2497 if (ret)
2498 goto out_unlock;
2499 chip->state = FL_UNLOCKING;
2500
2501 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2502
2503 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2504 cfi->device_type, NULL);
2505 map_write(map, CMD(0x70), adr);
2506
2507 chip->state = FL_READY;
2508 put_chip(map, chip, adr + chip->start);
2509 ret = 0;
2510
2511 out_unlock:
2512 mutex_unlock(&chip->mutex);
2513 return ret;
2514 }
2515
2516 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2517 {
2518 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2519 }
2520
2521 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2522 {
2523 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2524 }
2525
2526 /*
2527 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2528 */
2529
2530 struct ppb_lock {
2531 struct flchip *chip;
2532 unsigned long adr;
2533 int locked;
2534 };
2535
2536 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2537 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2538 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2539
2540 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2541 struct flchip *chip,
2542 unsigned long adr, int len, void *thunk)
2543 {
2544 struct cfi_private *cfi = map->fldrv_priv;
2545 unsigned long timeo;
2546 int ret;
2547
2548 adr += chip->start;
2549 mutex_lock(&chip->mutex);
2550 ret = get_chip(map, chip, adr, FL_LOCKING);
2551 if (ret) {
2552 mutex_unlock(&chip->mutex);
2553 return ret;
2554 }
2555
2556 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2557
2558 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2559 cfi->device_type, NULL);
2560 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2561 cfi->device_type, NULL);
2562 /* PPB entry command */
2563 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2564 cfi->device_type, NULL);
2565
2566 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2567 chip->state = FL_LOCKING;
2568 map_write(map, CMD(0xA0), adr);
2569 map_write(map, CMD(0x00), adr);
2570 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2571 /*
2572 * Unlocking of one specific sector is not supported, so we
2573 * have to unlock all sectors of this device instead
2574 */
2575 chip->state = FL_UNLOCKING;
2576 map_write(map, CMD(0x80), chip->start);
2577 map_write(map, CMD(0x30), chip->start);
2578 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2579 chip->state = FL_JEDEC_QUERY;
2580 /* Return locked status: 0->locked, 1->unlocked */
2581 ret = !cfi_read_query(map, adr);
2582 } else
2583 BUG();
2584
2585 /*
2586 * Wait for some time as unlocking of all sectors takes quite long
2587 */
2588 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2589 for (;;) {
2590 if (chip_ready(map, adr))
2591 break;
2592
2593 if (time_after(jiffies, timeo)) {
2594 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2595 ret = -EIO;
2596 break;
2597 }
2598
2599 UDELAY(map, chip, adr, 1);
2600 }
2601
2602 /* Exit BC commands */
2603 map_write(map, CMD(0x90), chip->start);
2604 map_write(map, CMD(0x00), chip->start);
2605
2606 chip->state = FL_READY;
2607 put_chip(map, chip, adr);
2608 mutex_unlock(&chip->mutex);
2609
2610 return ret;
2611 }
2612
2613 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2614 uint64_t len)
2615 {
2616 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2617 DO_XXLOCK_ONEBLOCK_LOCK);
2618 }
2619
2620 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2621 uint64_t len)
2622 {
2623 struct mtd_erase_region_info *regions = mtd->eraseregions;
2624 struct map_info *map = mtd->priv;
2625 struct cfi_private *cfi = map->fldrv_priv;
2626 struct ppb_lock *sect;
2627 unsigned long adr;
2628 loff_t offset;
2629 uint64_t length;
2630 int chipnum;
2631 int i;
2632 int sectors;
2633 int ret;
2634 int max_sectors;
2635
2636 /*
2637 * PPB unlocking always unlocks all sectors of the flash chip.
2638 * We need to re-lock all previously locked sectors. So lets
2639 * first check the locking status of all sectors and save
2640 * it for future use.
2641 */
2642 max_sectors = 0;
2643 for (i = 0; i < mtd->numeraseregions; i++)
2644 max_sectors += regions[i].numblocks;
2645
2646 sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2647 if (!sect)
2648 return -ENOMEM;
2649
2650 /*
2651 * This code to walk all sectors is a slightly modified version
2652 * of the cfi_varsize_frob() code.
2653 */
2654 i = 0;
2655 chipnum = 0;
2656 adr = 0;
2657 sectors = 0;
2658 offset = 0;
2659 length = mtd->size;
2660
2661 while (length) {
2662 int size = regions[i].erasesize;
2663
2664 /*
2665 * Only test sectors that shall not be unlocked. The other
2666 * sectors shall be unlocked, so lets keep their locking
2667 * status at "unlocked" (locked=0) for the final re-locking.
2668 */
2669 if ((offset < ofs) || (offset >= (ofs + len))) {
2670 sect[sectors].chip = &cfi->chips[chipnum];
2671 sect[sectors].adr = adr;
2672 sect[sectors].locked = do_ppb_xxlock(
2673 map, &cfi->chips[chipnum], adr, 0,
2674 DO_XXLOCK_ONEBLOCK_GETLOCK);
2675 }
2676
2677 adr += size;
2678 offset += size;
2679 length -= size;
2680
2681 if (offset == regions[i].offset + size * regions[i].numblocks)
2682 i++;
2683
2684 if (adr >> cfi->chipshift) {
2685 if (offset >= (ofs + len))
2686 break;
2687 adr = 0;
2688 chipnum++;
2689
2690 if (chipnum >= cfi->numchips)
2691 break;
2692 }
2693
2694 sectors++;
2695 if (sectors >= max_sectors) {
2696 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2697 max_sectors);
2698 kfree(sect);
2699 return -EINVAL;
2700 }
2701 }
2702
2703 /* Now unlock the whole chip */
2704 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2705 DO_XXLOCK_ONEBLOCK_UNLOCK);
2706 if (ret) {
2707 kfree(sect);
2708 return ret;
2709 }
2710
2711 /*
2712 * PPB unlocking always unlocks all sectors of the flash chip.
2713 * We need to re-lock all previously locked sectors.
2714 */
2715 for (i = 0; i < sectors; i++) {
2716 if (sect[i].locked)
2717 do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2718 DO_XXLOCK_ONEBLOCK_LOCK);
2719 }
2720
2721 kfree(sect);
2722 return ret;
2723 }
2724
2725 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2726 uint64_t len)
2727 {
2728 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2729 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2730 }
2731
2732 static void cfi_amdstd_sync (struct mtd_info *mtd)
2733 {
2734 struct map_info *map = mtd->priv;
2735 struct cfi_private *cfi = map->fldrv_priv;
2736 int i;
2737 struct flchip *chip;
2738 int ret = 0;
2739 DECLARE_WAITQUEUE(wait, current);
2740
2741 for (i=0; !ret && i<cfi->numchips; i++) {
2742 chip = &cfi->chips[i];
2743
2744 retry:
2745 mutex_lock(&chip->mutex);
2746
2747 switch(chip->state) {
2748 case FL_READY:
2749 case FL_STATUS:
2750 case FL_CFI_QUERY:
2751 case FL_JEDEC_QUERY:
2752 chip->oldstate = chip->state;
2753 chip->state = FL_SYNCING;
2754 /* No need to wake_up() on this state change -
2755 * as the whole point is that nobody can do anything
2756 * with the chip now anyway.
2757 */
2758 /* fall through */
2759 case FL_SYNCING:
2760 mutex_unlock(&chip->mutex);
2761 break;
2762
2763 default:
2764 /* Not an idle state */
2765 set_current_state(TASK_UNINTERRUPTIBLE);
2766 add_wait_queue(&chip->wq, &wait);
2767
2768 mutex_unlock(&chip->mutex);
2769
2770 schedule();
2771
2772 remove_wait_queue(&chip->wq, &wait);
2773
2774 goto retry;
2775 }
2776 }
2777
2778 /* Unlock the chips again */
2779
2780 for (i--; i >=0; i--) {
2781 chip = &cfi->chips[i];
2782
2783 mutex_lock(&chip->mutex);
2784
2785 if (chip->state == FL_SYNCING) {
2786 chip->state = chip->oldstate;
2787 wake_up(&chip->wq);
2788 }
2789 mutex_unlock(&chip->mutex);
2790 }
2791 }
2792
2793
2794 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2795 {
2796 struct map_info *map = mtd->priv;
2797 struct cfi_private *cfi = map->fldrv_priv;
2798 int i;
2799 struct flchip *chip;
2800 int ret = 0;
2801
2802 for (i=0; !ret && i<cfi->numchips; i++) {
2803 chip = &cfi->chips[i];
2804
2805 mutex_lock(&chip->mutex);
2806
2807 switch(chip->state) {
2808 case FL_READY:
2809 case FL_STATUS:
2810 case FL_CFI_QUERY:
2811 case FL_JEDEC_QUERY:
2812 chip->oldstate = chip->state;
2813 chip->state = FL_PM_SUSPENDED;
2814 /* No need to wake_up() on this state change -
2815 * as the whole point is that nobody can do anything
2816 * with the chip now anyway.
2817 */
2818 case FL_PM_SUSPENDED:
2819 break;
2820
2821 default:
2822 ret = -EAGAIN;
2823 break;
2824 }
2825 mutex_unlock(&chip->mutex);
2826 }
2827
2828 /* Unlock the chips again */
2829
2830 if (ret) {
2831 for (i--; i >=0; i--) {
2832 chip = &cfi->chips[i];
2833
2834 mutex_lock(&chip->mutex);
2835
2836 if (chip->state == FL_PM_SUSPENDED) {
2837 chip->state = chip->oldstate;
2838 wake_up(&chip->wq);
2839 }
2840 mutex_unlock(&chip->mutex);
2841 }
2842 }
2843
2844 return ret;
2845 }
2846
2847
2848 static void cfi_amdstd_resume(struct mtd_info *mtd)
2849 {
2850 struct map_info *map = mtd->priv;
2851 struct cfi_private *cfi = map->fldrv_priv;
2852 int i;
2853 struct flchip *chip;
2854
2855 for (i=0; i<cfi->numchips; i++) {
2856
2857 chip = &cfi->chips[i];
2858
2859 mutex_lock(&chip->mutex);
2860
2861 if (chip->state == FL_PM_SUSPENDED) {
2862 chip->state = FL_READY;
2863 map_write(map, CMD(0xF0), chip->start);
2864 wake_up(&chip->wq);
2865 }
2866 else
2867 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2868
2869 mutex_unlock(&chip->mutex);
2870 }
2871 }
2872
2873
2874 /*
2875 * Ensure that the flash device is put back into read array mode before
2876 * unloading the driver or rebooting. On some systems, rebooting while
2877 * the flash is in query/program/erase mode will prevent the CPU from
2878 * fetching the bootloader code, requiring a hard reset or power cycle.
2879 */
2880 static int cfi_amdstd_reset(struct mtd_info *mtd)
2881 {
2882 struct map_info *map = mtd->priv;
2883 struct cfi_private *cfi = map->fldrv_priv;
2884 int i, ret;
2885 struct flchip *chip;
2886
2887 for (i = 0; i < cfi->numchips; i++) {
2888
2889 chip = &cfi->chips[i];
2890
2891 mutex_lock(&chip->mutex);
2892
2893 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2894 if (!ret) {
2895 map_write(map, CMD(0xF0), chip->start);
2896 chip->state = FL_SHUTDOWN;
2897 put_chip(map, chip, chip->start);
2898 }
2899
2900 mutex_unlock(&chip->mutex);
2901 }
2902
2903 return 0;
2904 }
2905
2906
2907 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2908 void *v)
2909 {
2910 struct mtd_info *mtd;
2911
2912 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2913 cfi_amdstd_reset(mtd);
2914 return NOTIFY_DONE;
2915 }
2916
2917
2918 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2919 {
2920 struct map_info *map = mtd->priv;
2921 struct cfi_private *cfi = map->fldrv_priv;
2922
2923 cfi_amdstd_reset(mtd);
2924 unregister_reboot_notifier(&mtd->reboot_notifier);
2925 kfree(cfi->cmdset_priv);
2926 kfree(cfi->cfiq);
2927 kfree(cfi);
2928 kfree(mtd->eraseregions);
2929 }
2930
2931 MODULE_LICENSE("GPL");
2932 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2933 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2934 MODULE_ALIAS("cfi_cmdset_0006");
2935 MODULE_ALIAS("cfi_cmdset_0701");