]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/chips/cfi_cmdset_0002.c
Merge branch 'power-supply-scope' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43
44 #define MAX_WORD_RETRIES 3
45
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
50
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62 static void cfi_amdstd_destroy(struct mtd_info *);
63
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 .probe = NULL, /* Not usable directly */
76 .destroy = cfi_amdstd_destroy,
77 .name = "cfi_cmdset_0002",
78 .module = THIS_MODULE
79 };
80
81
82 /* #define DEBUG_CFI_FEATURES */
83
84
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 const char* erase_suspend[3] = {
89 "Not supported", "Read only", "Read/write"
90 };
91 const char* top_bottom[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
95 };
96
97 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 printk(" Address sensitive unlock: %s\n",
99 (extp->SiliconRevision & 1) ? "Not required" : "Required");
100
101 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 else
104 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105
106 if (extp->BlkProt == 0)
107 printk(" Block protection: Not supported\n");
108 else
109 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110
111
112 printk(" Temporary block unprotect: %s\n",
113 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 printk(" Burst mode: %s\n",
117 extp->BurstMode ? "Supported" : "Not supported");
118 if (extp->PageMode == 0)
119 printk(" Page mode: Not supported\n");
120 else
121 printk(" Page mode: %d word page\n", extp->PageMode << 2);
122
123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMin >> 4, extp->VppMin & 0xf);
125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 extp->VppMax >> 4, extp->VppMax & 0xf);
127
128 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 else
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 struct map_info *map = mtd->priv;
140 struct cfi_private *cfi = map->fldrv_priv;
141 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 __u8 major = extp->MajorVersion;
143 __u8 minor = extp->MinorVersion;
144
145 if (((major << 8) | minor) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
147
148 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
149 map->name, cfi->mfr, cfi->id);
150
151 /* AFAICS all 29LV400 with a bottom boot block have a device ID
152 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
153 * These were badly detected as they have the 0x80 bit set
154 * so treat them as a special case.
155 */
156 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
157
158 /* Macronix added CFI to their 2nd generation
159 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
160 * Fujitsu, Spansion, EON, ESI and older Macronix)
161 * has CFI.
162 *
163 * Therefore also check the manufacturer.
164 * This reduces the risk of false detection due to
165 * the 8-bit device ID.
166 */
167 (cfi->mfr == CFI_MFR_MACRONIX)) {
168 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
169 " detected\n", map->name);
170 extp->TopBottom = 2; /* bottom boot */
171 } else
172 if (cfi->id & 0x80) {
173 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
174 extp->TopBottom = 3; /* top boot */
175 } else {
176 extp->TopBottom = 2; /* bottom boot */
177 }
178
179 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
180 " deduced %s from Device ID\n", map->name, major, minor,
181 extp->TopBottom == 2 ? "bottom" : "top");
182 }
183 }
184 #endif
185
186 static void fixup_use_write_buffers(struct mtd_info *mtd)
187 {
188 struct map_info *map = mtd->priv;
189 struct cfi_private *cfi = map->fldrv_priv;
190 if (cfi->cfiq->BufWriteTimeoutTyp) {
191 pr_debug("Using buffer write method\n" );
192 mtd->write = cfi_amdstd_write_buffers;
193 }
194 }
195
196 /* Atmel chips don't use the same PRI format as AMD chips */
197 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
198 {
199 struct map_info *map = mtd->priv;
200 struct cfi_private *cfi = map->fldrv_priv;
201 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
202 struct cfi_pri_atmel atmel_pri;
203
204 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
205 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
206
207 if (atmel_pri.Features & 0x02)
208 extp->EraseSuspend = 2;
209
210 /* Some chips got it backwards... */
211 if (cfi->id == AT49BV6416) {
212 if (atmel_pri.BottomBoot)
213 extp->TopBottom = 3;
214 else
215 extp->TopBottom = 2;
216 } else {
217 if (atmel_pri.BottomBoot)
218 extp->TopBottom = 2;
219 else
220 extp->TopBottom = 3;
221 }
222
223 /* burst write mode not supported */
224 cfi->cfiq->BufWriteTimeoutTyp = 0;
225 cfi->cfiq->BufWriteTimeoutMax = 0;
226 }
227
228 static void fixup_use_secsi(struct mtd_info *mtd)
229 {
230 /* Setup for chips with a secsi area */
231 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
232 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
233 }
234
235 static void fixup_use_erase_chip(struct mtd_info *mtd)
236 {
237 struct map_info *map = mtd->priv;
238 struct cfi_private *cfi = map->fldrv_priv;
239 if ((cfi->cfiq->NumEraseRegions == 1) &&
240 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
241 mtd->erase = cfi_amdstd_erase_chip;
242 }
243
244 }
245
246 /*
247 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
248 * locked by default.
249 */
250 static void fixup_use_atmel_lock(struct mtd_info *mtd)
251 {
252 mtd->lock = cfi_atmel_lock;
253 mtd->unlock = cfi_atmel_unlock;
254 mtd->flags |= MTD_POWERUP_LOCK;
255 }
256
257 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
258 {
259 struct map_info *map = mtd->priv;
260 struct cfi_private *cfi = map->fldrv_priv;
261
262 /*
263 * These flashes report two separate eraseblock regions based on the
264 * sector_erase-size and block_erase-size, although they both operate on the
265 * same memory. This is not allowed according to CFI, so we just pick the
266 * sector_erase-size.
267 */
268 cfi->cfiq->NumEraseRegions = 1;
269 }
270
271 static void fixup_sst39vf(struct mtd_info *mtd)
272 {
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275
276 fixup_old_sst_eraseregion(mtd);
277
278 cfi->addr_unlock1 = 0x5555;
279 cfi->addr_unlock2 = 0x2AAA;
280 }
281
282 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
283 {
284 struct map_info *map = mtd->priv;
285 struct cfi_private *cfi = map->fldrv_priv;
286
287 fixup_old_sst_eraseregion(mtd);
288
289 cfi->addr_unlock1 = 0x555;
290 cfi->addr_unlock2 = 0x2AA;
291
292 cfi->sector_erase_cmd = CMD(0x50);
293 }
294
295 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
296 {
297 struct map_info *map = mtd->priv;
298 struct cfi_private *cfi = map->fldrv_priv;
299
300 fixup_sst39vf_rev_b(mtd);
301
302 /*
303 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
304 * it should report a size of 8KBytes (0x0020*256).
305 */
306 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
307 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
308 }
309
310 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
311 {
312 struct map_info *map = mtd->priv;
313 struct cfi_private *cfi = map->fldrv_priv;
314
315 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
316 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
317 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
318 }
319 }
320
321 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
322 {
323 struct map_info *map = mtd->priv;
324 struct cfi_private *cfi = map->fldrv_priv;
325
326 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
327 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
328 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
329 }
330 }
331
332 /* Used to fix CFI-Tables of chips without Extended Query Tables */
333 static struct cfi_fixup cfi_nopri_fixup_table[] = {
334 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
335 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
336 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
337 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
338 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
339 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
340 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
341 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
342 { 0, 0, NULL }
343 };
344
345 static struct cfi_fixup cfi_fixup_table[] = {
346 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
347 #ifdef AMD_BOOTLOC_BUG
348 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
349 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
350 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
351 #endif
352 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
353 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
354 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
355 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
359 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
360 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
361 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
362 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
363 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
364 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
365 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
366 #if !FORCE_WORD_WRITE
367 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
368 #endif
369 { 0, 0, NULL }
370 };
371 static struct cfi_fixup jedec_fixup_table[] = {
372 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
373 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
374 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
375 { 0, 0, NULL }
376 };
377
378 static struct cfi_fixup fixup_table[] = {
379 /* The CFI vendor ids and the JEDEC vendor IDs appear
380 * to be common. It is like the devices id's are as
381 * well. This table is to pick all cases where
382 * we know that is the case.
383 */
384 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
385 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
386 { 0, 0, NULL }
387 };
388
389
390 static void cfi_fixup_major_minor(struct cfi_private *cfi,
391 struct cfi_pri_amdstd *extp)
392 {
393 if (cfi->mfr == CFI_MFR_SAMSUNG) {
394 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
395 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
396 /*
397 * Samsung K8P2815UQB and K8D6x16UxM chips
398 * report major=0 / minor=0.
399 * K8D3x16UxC chips report major=3 / minor=3.
400 */
401 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
402 " Extended Query version to 1.%c\n",
403 extp->MinorVersion);
404 extp->MajorVersion = '1';
405 }
406 }
407
408 /*
409 * SST 38VF640x chips report major=0xFF / minor=0xFF.
410 */
411 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
412 extp->MajorVersion = '1';
413 extp->MinorVersion = '0';
414 }
415 }
416
417 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
418 {
419 struct cfi_private *cfi = map->fldrv_priv;
420 struct mtd_info *mtd;
421 int i;
422
423 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
424 if (!mtd) {
425 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
426 return NULL;
427 }
428 mtd->priv = map;
429 mtd->type = MTD_NORFLASH;
430
431 /* Fill in the default mtd operations */
432 mtd->erase = cfi_amdstd_erase_varsize;
433 mtd->write = cfi_amdstd_write_words;
434 mtd->read = cfi_amdstd_read;
435 mtd->sync = cfi_amdstd_sync;
436 mtd->suspend = cfi_amdstd_suspend;
437 mtd->resume = cfi_amdstd_resume;
438 mtd->flags = MTD_CAP_NORFLASH;
439 mtd->name = map->name;
440 mtd->writesize = 1;
441 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
442
443 pr_debug("MTD %s(): write buffer size %d\n", __func__,
444 mtd->writebufsize);
445
446 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
447
448 if (cfi->cfi_mode==CFI_MODE_CFI){
449 unsigned char bootloc;
450 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
451 struct cfi_pri_amdstd *extp;
452
453 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
454 if (extp) {
455 /*
456 * It's a real CFI chip, not one for which the probe
457 * routine faked a CFI structure.
458 */
459 cfi_fixup_major_minor(cfi, extp);
460
461 /*
462 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
463 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
464 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
465 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
466 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
467 */
468 if (extp->MajorVersion != '1' ||
469 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
470 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
471 "version %c.%c (%#02x/%#02x).\n",
472 extp->MajorVersion, extp->MinorVersion,
473 extp->MajorVersion, extp->MinorVersion);
474 kfree(extp);
475 kfree(mtd);
476 return NULL;
477 }
478
479 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
480 extp->MajorVersion, extp->MinorVersion);
481
482 /* Install our own private info structure */
483 cfi->cmdset_priv = extp;
484
485 /* Apply cfi device specific fixups */
486 cfi_fixup(mtd, cfi_fixup_table);
487
488 #ifdef DEBUG_CFI_FEATURES
489 /* Tell the user about it in lots of lovely detail */
490 cfi_tell_features(extp);
491 #endif
492
493 bootloc = extp->TopBottom;
494 if ((bootloc < 2) || (bootloc > 5)) {
495 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
496 "bank location (%d). Assuming bottom.\n",
497 map->name, bootloc);
498 bootloc = 2;
499 }
500
501 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
502 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
503
504 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
505 int j = (cfi->cfiq->NumEraseRegions-1)-i;
506 __u32 swap;
507
508 swap = cfi->cfiq->EraseRegionInfo[i];
509 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
510 cfi->cfiq->EraseRegionInfo[j] = swap;
511 }
512 }
513 /* Set the default CFI lock/unlock addresses */
514 cfi->addr_unlock1 = 0x555;
515 cfi->addr_unlock2 = 0x2aa;
516 }
517 cfi_fixup(mtd, cfi_nopri_fixup_table);
518
519 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
520 kfree(mtd);
521 return NULL;
522 }
523
524 } /* CFI mode */
525 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
526 /* Apply jedec specific fixups */
527 cfi_fixup(mtd, jedec_fixup_table);
528 }
529 /* Apply generic fixups */
530 cfi_fixup(mtd, fixup_table);
531
532 for (i=0; i< cfi->numchips; i++) {
533 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
534 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
535 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
536 cfi->chips[i].ref_point_counter = 0;
537 init_waitqueue_head(&(cfi->chips[i].wq));
538 }
539
540 map->fldrv = &cfi_amdstd_chipdrv;
541
542 return cfi_amdstd_setup(mtd);
543 }
544 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
545 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
546 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
549
550 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
551 {
552 struct map_info *map = mtd->priv;
553 struct cfi_private *cfi = map->fldrv_priv;
554 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
555 unsigned long offset = 0;
556 int i,j;
557
558 printk(KERN_NOTICE "number of %s chips: %d\n",
559 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
560 /* Select the correct geometry setup */
561 mtd->size = devsize * cfi->numchips;
562
563 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
564 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
565 * mtd->numeraseregions, GFP_KERNEL);
566 if (!mtd->eraseregions) {
567 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
568 goto setup_err;
569 }
570
571 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
572 unsigned long ernum, ersize;
573 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
574 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
575
576 if (mtd->erasesize < ersize) {
577 mtd->erasesize = ersize;
578 }
579 for (j=0; j<cfi->numchips; j++) {
580 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
583 }
584 offset += (ersize * ernum);
585 }
586 if (offset != devsize) {
587 /* Argh */
588 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
589 goto setup_err;
590 }
591
592 __module_get(THIS_MODULE);
593 register_reboot_notifier(&mtd->reboot_notifier);
594 return mtd;
595
596 setup_err:
597 kfree(mtd->eraseregions);
598 kfree(mtd);
599 kfree(cfi->cmdset_priv);
600 kfree(cfi->cfiq);
601 return NULL;
602 }
603
604 /*
605 * Return true if the chip is ready.
606 *
607 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
608 * non-suspended sector) and is indicated by no toggle bits toggling.
609 *
610 * Note that anything more complicated than checking if no bits are toggling
611 * (including checking DQ5 for an error status) is tricky to get working
612 * correctly and is therefore not done (particularly with interleaved chips
613 * as each chip must be checked independently of the others).
614 */
615 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
616 {
617 map_word d, t;
618
619 d = map_read(map, addr);
620 t = map_read(map, addr);
621
622 return map_word_equal(map, d, t);
623 }
624
625 /*
626 * Return true if the chip is ready and has the correct value.
627 *
628 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
629 * non-suspended sector) and it is indicated by no bits toggling.
630 *
631 * Error are indicated by toggling bits or bits held with the wrong value,
632 * or with bits toggling.
633 *
634 * Note that anything more complicated than checking if no bits are toggling
635 * (including checking DQ5 for an error status) is tricky to get working
636 * correctly and is therefore not done (particularly with interleaved chips
637 * as each chip must be checked independently of the others).
638 *
639 */
640 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
641 {
642 map_word oldd, curd;
643
644 oldd = map_read(map, addr);
645 curd = map_read(map, addr);
646
647 return map_word_equal(map, oldd, curd) &&
648 map_word_equal(map, curd, expected);
649 }
650
651 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
652 {
653 DECLARE_WAITQUEUE(wait, current);
654 struct cfi_private *cfi = map->fldrv_priv;
655 unsigned long timeo;
656 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
657
658 resettime:
659 timeo = jiffies + HZ;
660 retry:
661 switch (chip->state) {
662
663 case FL_STATUS:
664 for (;;) {
665 if (chip_ready(map, adr))
666 break;
667
668 if (time_after(jiffies, timeo)) {
669 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
670 return -EIO;
671 }
672 mutex_unlock(&chip->mutex);
673 cfi_udelay(1);
674 mutex_lock(&chip->mutex);
675 /* Someone else might have been playing with it. */
676 goto retry;
677 }
678
679 case FL_READY:
680 case FL_CFI_QUERY:
681 case FL_JEDEC_QUERY:
682 return 0;
683
684 case FL_ERASING:
685 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
686 !(mode == FL_READY || mode == FL_POINT ||
687 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
688 goto sleep;
689
690 /* We could check to see if we're trying to access the sector
691 * that is currently being erased. However, no user will try
692 * anything like that so we just wait for the timeout. */
693
694 /* Erase suspend */
695 /* It's harmless to issue the Erase-Suspend and Erase-Resume
696 * commands when the erase algorithm isn't in progress. */
697 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
698 chip->oldstate = FL_ERASING;
699 chip->state = FL_ERASE_SUSPENDING;
700 chip->erase_suspended = 1;
701 for (;;) {
702 if (chip_ready(map, adr))
703 break;
704
705 if (time_after(jiffies, timeo)) {
706 /* Should have suspended the erase by now.
707 * Send an Erase-Resume command as either
708 * there was an error (so leave the erase
709 * routine to recover from it) or we trying to
710 * use the erase-in-progress sector. */
711 put_chip(map, chip, adr);
712 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
713 return -EIO;
714 }
715
716 mutex_unlock(&chip->mutex);
717 cfi_udelay(1);
718 mutex_lock(&chip->mutex);
719 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
720 So we can just loop here. */
721 }
722 chip->state = FL_READY;
723 return 0;
724
725 case FL_XIP_WHILE_ERASING:
726 if (mode != FL_READY && mode != FL_POINT &&
727 (!cfip || !(cfip->EraseSuspend&2)))
728 goto sleep;
729 chip->oldstate = chip->state;
730 chip->state = FL_READY;
731 return 0;
732
733 case FL_SHUTDOWN:
734 /* The machine is rebooting */
735 return -EIO;
736
737 case FL_POINT:
738 /* Only if there's no operation suspended... */
739 if (mode == FL_READY && chip->oldstate == FL_READY)
740 return 0;
741
742 default:
743 sleep:
744 set_current_state(TASK_UNINTERRUPTIBLE);
745 add_wait_queue(&chip->wq, &wait);
746 mutex_unlock(&chip->mutex);
747 schedule();
748 remove_wait_queue(&chip->wq, &wait);
749 mutex_lock(&chip->mutex);
750 goto resettime;
751 }
752 }
753
754
755 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
756 {
757 struct cfi_private *cfi = map->fldrv_priv;
758
759 switch(chip->oldstate) {
760 case FL_ERASING:
761 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
762 chip->oldstate = FL_READY;
763 chip->state = FL_ERASING;
764 break;
765
766 case FL_XIP_WHILE_ERASING:
767 chip->state = chip->oldstate;
768 chip->oldstate = FL_READY;
769 break;
770
771 case FL_READY:
772 case FL_STATUS:
773 /* We should really make set_vpp() count, rather than doing this */
774 DISABLE_VPP(map);
775 break;
776 default:
777 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
778 }
779 wake_up(&chip->wq);
780 }
781
782 #ifdef CONFIG_MTD_XIP
783
784 /*
785 * No interrupt what so ever can be serviced while the flash isn't in array
786 * mode. This is ensured by the xip_disable() and xip_enable() functions
787 * enclosing any code path where the flash is known not to be in array mode.
788 * And within a XIP disabled code path, only functions marked with __xipram
789 * may be called and nothing else (it's a good thing to inspect generated
790 * assembly to make sure inline functions were actually inlined and that gcc
791 * didn't emit calls to its own support functions). Also configuring MTD CFI
792 * support to a single buswidth and a single interleave is also recommended.
793 */
794
795 static void xip_disable(struct map_info *map, struct flchip *chip,
796 unsigned long adr)
797 {
798 /* TODO: chips with no XIP use should ignore and return */
799 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
800 local_irq_disable();
801 }
802
803 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
804 unsigned long adr)
805 {
806 struct cfi_private *cfi = map->fldrv_priv;
807
808 if (chip->state != FL_POINT && chip->state != FL_READY) {
809 map_write(map, CMD(0xf0), adr);
810 chip->state = FL_READY;
811 }
812 (void) map_read(map, adr);
813 xip_iprefetch();
814 local_irq_enable();
815 }
816
817 /*
818 * When a delay is required for the flash operation to complete, the
819 * xip_udelay() function is polling for both the given timeout and pending
820 * (but still masked) hardware interrupts. Whenever there is an interrupt
821 * pending then the flash erase operation is suspended, array mode restored
822 * and interrupts unmasked. Task scheduling might also happen at that
823 * point. The CPU eventually returns from the interrupt or the call to
824 * schedule() and the suspended flash operation is resumed for the remaining
825 * of the delay period.
826 *
827 * Warning: this function _will_ fool interrupt latency tracing tools.
828 */
829
830 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
831 unsigned long adr, int usec)
832 {
833 struct cfi_private *cfi = map->fldrv_priv;
834 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
835 map_word status, OK = CMD(0x80);
836 unsigned long suspended, start = xip_currtime();
837 flstate_t oldstate;
838
839 do {
840 cpu_relax();
841 if (xip_irqpending() && extp &&
842 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
843 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
844 /*
845 * Let's suspend the erase operation when supported.
846 * Note that we currently don't try to suspend
847 * interleaved chips if there is already another
848 * operation suspended (imagine what happens
849 * when one chip was already done with the current
850 * operation while another chip suspended it, then
851 * we resume the whole thing at once). Yes, it
852 * can happen!
853 */
854 map_write(map, CMD(0xb0), adr);
855 usec -= xip_elapsed_since(start);
856 suspended = xip_currtime();
857 do {
858 if (xip_elapsed_since(suspended) > 100000) {
859 /*
860 * The chip doesn't want to suspend
861 * after waiting for 100 msecs.
862 * This is a critical error but there
863 * is not much we can do here.
864 */
865 return;
866 }
867 status = map_read(map, adr);
868 } while (!map_word_andequal(map, status, OK, OK));
869
870 /* Suspend succeeded */
871 oldstate = chip->state;
872 if (!map_word_bitsset(map, status, CMD(0x40)))
873 break;
874 chip->state = FL_XIP_WHILE_ERASING;
875 chip->erase_suspended = 1;
876 map_write(map, CMD(0xf0), adr);
877 (void) map_read(map, adr);
878 xip_iprefetch();
879 local_irq_enable();
880 mutex_unlock(&chip->mutex);
881 xip_iprefetch();
882 cond_resched();
883
884 /*
885 * We're back. However someone else might have
886 * decided to go write to the chip if we are in
887 * a suspended erase state. If so let's wait
888 * until it's done.
889 */
890 mutex_lock(&chip->mutex);
891 while (chip->state != FL_XIP_WHILE_ERASING) {
892 DECLARE_WAITQUEUE(wait, current);
893 set_current_state(TASK_UNINTERRUPTIBLE);
894 add_wait_queue(&chip->wq, &wait);
895 mutex_unlock(&chip->mutex);
896 schedule();
897 remove_wait_queue(&chip->wq, &wait);
898 mutex_lock(&chip->mutex);
899 }
900 /* Disallow XIP again */
901 local_irq_disable();
902
903 /* Resume the write or erase operation */
904 map_write(map, cfi->sector_erase_cmd, adr);
905 chip->state = oldstate;
906 start = xip_currtime();
907 } else if (usec >= 1000000/HZ) {
908 /*
909 * Try to save on CPU power when waiting delay
910 * is at least a system timer tick period.
911 * No need to be extremely accurate here.
912 */
913 xip_cpu_idle();
914 }
915 status = map_read(map, adr);
916 } while (!map_word_andequal(map, status, OK, OK)
917 && xip_elapsed_since(start) < usec);
918 }
919
920 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
921
922 /*
923 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
924 * the flash is actively programming or erasing since we have to poll for
925 * the operation to complete anyway. We can't do that in a generic way with
926 * a XIP setup so do it before the actual flash operation in this case
927 * and stub it out from INVALIDATE_CACHE_UDELAY.
928 */
929 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
930 INVALIDATE_CACHED_RANGE(map, from, size)
931
932 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
933 UDELAY(map, chip, adr, usec)
934
935 /*
936 * Extra notes:
937 *
938 * Activating this XIP support changes the way the code works a bit. For
939 * example the code to suspend the current process when concurrent access
940 * happens is never executed because xip_udelay() will always return with the
941 * same chip state as it was entered with. This is why there is no care for
942 * the presence of add_wait_queue() or schedule() calls from within a couple
943 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
944 * The queueing and scheduling are always happening within xip_udelay().
945 *
946 * Similarly, get_chip() and put_chip() just happen to always be executed
947 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
948 * is in array mode, therefore never executing many cases therein and not
949 * causing any problem with XIP.
950 */
951
952 #else
953
954 #define xip_disable(map, chip, adr)
955 #define xip_enable(map, chip, adr)
956 #define XIP_INVAL_CACHED_RANGE(x...)
957
958 #define UDELAY(map, chip, adr, usec) \
959 do { \
960 mutex_unlock(&chip->mutex); \
961 cfi_udelay(usec); \
962 mutex_lock(&chip->mutex); \
963 } while (0)
964
965 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
966 do { \
967 mutex_unlock(&chip->mutex); \
968 INVALIDATE_CACHED_RANGE(map, adr, len); \
969 cfi_udelay(usec); \
970 mutex_lock(&chip->mutex); \
971 } while (0)
972
973 #endif
974
975 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
976 {
977 unsigned long cmd_addr;
978 struct cfi_private *cfi = map->fldrv_priv;
979 int ret;
980
981 adr += chip->start;
982
983 /* Ensure cmd read/writes are aligned. */
984 cmd_addr = adr & ~(map_bankwidth(map)-1);
985
986 mutex_lock(&chip->mutex);
987 ret = get_chip(map, chip, cmd_addr, FL_READY);
988 if (ret) {
989 mutex_unlock(&chip->mutex);
990 return ret;
991 }
992
993 if (chip->state != FL_POINT && chip->state != FL_READY) {
994 map_write(map, CMD(0xf0), cmd_addr);
995 chip->state = FL_READY;
996 }
997
998 map_copy_from(map, buf, adr, len);
999
1000 put_chip(map, chip, cmd_addr);
1001
1002 mutex_unlock(&chip->mutex);
1003 return 0;
1004 }
1005
1006
1007 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1008 {
1009 struct map_info *map = mtd->priv;
1010 struct cfi_private *cfi = map->fldrv_priv;
1011 unsigned long ofs;
1012 int chipnum;
1013 int ret = 0;
1014
1015 /* ofs: offset within the first chip that the first read should start */
1016
1017 chipnum = (from >> cfi->chipshift);
1018 ofs = from - (chipnum << cfi->chipshift);
1019
1020
1021 *retlen = 0;
1022
1023 while (len) {
1024 unsigned long thislen;
1025
1026 if (chipnum >= cfi->numchips)
1027 break;
1028
1029 if ((len + ofs -1) >> cfi->chipshift)
1030 thislen = (1<<cfi->chipshift) - ofs;
1031 else
1032 thislen = len;
1033
1034 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1035 if (ret)
1036 break;
1037
1038 *retlen += thislen;
1039 len -= thislen;
1040 buf += thislen;
1041
1042 ofs = 0;
1043 chipnum++;
1044 }
1045 return ret;
1046 }
1047
1048
1049 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1050 {
1051 DECLARE_WAITQUEUE(wait, current);
1052 unsigned long timeo = jiffies + HZ;
1053 struct cfi_private *cfi = map->fldrv_priv;
1054
1055 retry:
1056 mutex_lock(&chip->mutex);
1057
1058 if (chip->state != FL_READY){
1059 set_current_state(TASK_UNINTERRUPTIBLE);
1060 add_wait_queue(&chip->wq, &wait);
1061
1062 mutex_unlock(&chip->mutex);
1063
1064 schedule();
1065 remove_wait_queue(&chip->wq, &wait);
1066 timeo = jiffies + HZ;
1067
1068 goto retry;
1069 }
1070
1071 adr += chip->start;
1072
1073 chip->state = FL_READY;
1074
1075 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1076 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1077 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1078
1079 map_copy_from(map, buf, adr, len);
1080
1081 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1082 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1083 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1084 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1085
1086 wake_up(&chip->wq);
1087 mutex_unlock(&chip->mutex);
1088
1089 return 0;
1090 }
1091
1092 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1093 {
1094 struct map_info *map = mtd->priv;
1095 struct cfi_private *cfi = map->fldrv_priv;
1096 unsigned long ofs;
1097 int chipnum;
1098 int ret = 0;
1099
1100
1101 /* ofs: offset within the first chip that the first read should start */
1102
1103 /* 8 secsi bytes per chip */
1104 chipnum=from>>3;
1105 ofs=from & 7;
1106
1107
1108 *retlen = 0;
1109
1110 while (len) {
1111 unsigned long thislen;
1112
1113 if (chipnum >= cfi->numchips)
1114 break;
1115
1116 if ((len + ofs -1) >> 3)
1117 thislen = (1<<3) - ofs;
1118 else
1119 thislen = len;
1120
1121 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1122 if (ret)
1123 break;
1124
1125 *retlen += thislen;
1126 len -= thislen;
1127 buf += thislen;
1128
1129 ofs = 0;
1130 chipnum++;
1131 }
1132 return ret;
1133 }
1134
1135
1136 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1137 {
1138 struct cfi_private *cfi = map->fldrv_priv;
1139 unsigned long timeo = jiffies + HZ;
1140 /*
1141 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1142 * have a max write time of a few hundreds usec). However, we should
1143 * use the maximum timeout value given by the chip at probe time
1144 * instead. Unfortunately, struct flchip does have a field for
1145 * maximum timeout, only for typical which can be far too short
1146 * depending of the conditions. The ' + 1' is to avoid having a
1147 * timeout of 0 jiffies if HZ is smaller than 1000.
1148 */
1149 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1150 int ret = 0;
1151 map_word oldd;
1152 int retry_cnt = 0;
1153
1154 adr += chip->start;
1155
1156 mutex_lock(&chip->mutex);
1157 ret = get_chip(map, chip, adr, FL_WRITING);
1158 if (ret) {
1159 mutex_unlock(&chip->mutex);
1160 return ret;
1161 }
1162
1163 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1164 __func__, adr, datum.x[0] );
1165
1166 /*
1167 * Check for a NOP for the case when the datum to write is already
1168 * present - it saves time and works around buggy chips that corrupt
1169 * data at other locations when 0xff is written to a location that
1170 * already contains 0xff.
1171 */
1172 oldd = map_read(map, adr);
1173 if (map_word_equal(map, oldd, datum)) {
1174 pr_debug("MTD %s(): NOP\n",
1175 __func__);
1176 goto op_done;
1177 }
1178
1179 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1180 ENABLE_VPP(map);
1181 xip_disable(map, chip, adr);
1182 retry:
1183 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1184 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1185 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1186 map_write(map, datum, adr);
1187 chip->state = FL_WRITING;
1188
1189 INVALIDATE_CACHE_UDELAY(map, chip,
1190 adr, map_bankwidth(map),
1191 chip->word_write_time);
1192
1193 /* See comment above for timeout value. */
1194 timeo = jiffies + uWriteTimeout;
1195 for (;;) {
1196 if (chip->state != FL_WRITING) {
1197 /* Someone's suspended the write. Sleep */
1198 DECLARE_WAITQUEUE(wait, current);
1199
1200 set_current_state(TASK_UNINTERRUPTIBLE);
1201 add_wait_queue(&chip->wq, &wait);
1202 mutex_unlock(&chip->mutex);
1203 schedule();
1204 remove_wait_queue(&chip->wq, &wait);
1205 timeo = jiffies + (HZ / 2); /* FIXME */
1206 mutex_lock(&chip->mutex);
1207 continue;
1208 }
1209
1210 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1211 xip_enable(map, chip, adr);
1212 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1213 xip_disable(map, chip, adr);
1214 break;
1215 }
1216
1217 if (chip_ready(map, adr))
1218 break;
1219
1220 /* Latency issues. Drop the lock, wait a while and retry */
1221 UDELAY(map, chip, adr, 1);
1222 }
1223 /* Did we succeed? */
1224 if (!chip_good(map, adr, datum)) {
1225 /* reset on all failures. */
1226 map_write( map, CMD(0xF0), chip->start );
1227 /* FIXME - should have reset delay before continuing */
1228
1229 if (++retry_cnt <= MAX_WORD_RETRIES)
1230 goto retry;
1231
1232 ret = -EIO;
1233 }
1234 xip_enable(map, chip, adr);
1235 op_done:
1236 chip->state = FL_READY;
1237 put_chip(map, chip, adr);
1238 mutex_unlock(&chip->mutex);
1239
1240 return ret;
1241 }
1242
1243
1244 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1245 size_t *retlen, const u_char *buf)
1246 {
1247 struct map_info *map = mtd->priv;
1248 struct cfi_private *cfi = map->fldrv_priv;
1249 int ret = 0;
1250 int chipnum;
1251 unsigned long ofs, chipstart;
1252 DECLARE_WAITQUEUE(wait, current);
1253
1254 *retlen = 0;
1255 if (!len)
1256 return 0;
1257
1258 chipnum = to >> cfi->chipshift;
1259 ofs = to - (chipnum << cfi->chipshift);
1260 chipstart = cfi->chips[chipnum].start;
1261
1262 /* If it's not bus-aligned, do the first byte write */
1263 if (ofs & (map_bankwidth(map)-1)) {
1264 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1265 int i = ofs - bus_ofs;
1266 int n = 0;
1267 map_word tmp_buf;
1268
1269 retry:
1270 mutex_lock(&cfi->chips[chipnum].mutex);
1271
1272 if (cfi->chips[chipnum].state != FL_READY) {
1273 set_current_state(TASK_UNINTERRUPTIBLE);
1274 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1275
1276 mutex_unlock(&cfi->chips[chipnum].mutex);
1277
1278 schedule();
1279 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280 goto retry;
1281 }
1282
1283 /* Load 'tmp_buf' with old contents of flash */
1284 tmp_buf = map_read(map, bus_ofs+chipstart);
1285
1286 mutex_unlock(&cfi->chips[chipnum].mutex);
1287
1288 /* Number of bytes to copy from buffer */
1289 n = min_t(int, len, map_bankwidth(map)-i);
1290
1291 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1292
1293 ret = do_write_oneword(map, &cfi->chips[chipnum],
1294 bus_ofs, tmp_buf);
1295 if (ret)
1296 return ret;
1297
1298 ofs += n;
1299 buf += n;
1300 (*retlen) += n;
1301 len -= n;
1302
1303 if (ofs >> cfi->chipshift) {
1304 chipnum ++;
1305 ofs = 0;
1306 if (chipnum == cfi->numchips)
1307 return 0;
1308 }
1309 }
1310
1311 /* We are now aligned, write as much as possible */
1312 while(len >= map_bankwidth(map)) {
1313 map_word datum;
1314
1315 datum = map_word_load(map, buf);
1316
1317 ret = do_write_oneword(map, &cfi->chips[chipnum],
1318 ofs, datum);
1319 if (ret)
1320 return ret;
1321
1322 ofs += map_bankwidth(map);
1323 buf += map_bankwidth(map);
1324 (*retlen) += map_bankwidth(map);
1325 len -= map_bankwidth(map);
1326
1327 if (ofs >> cfi->chipshift) {
1328 chipnum ++;
1329 ofs = 0;
1330 if (chipnum == cfi->numchips)
1331 return 0;
1332 chipstart = cfi->chips[chipnum].start;
1333 }
1334 }
1335
1336 /* Write the trailing bytes if any */
1337 if (len & (map_bankwidth(map)-1)) {
1338 map_word tmp_buf;
1339
1340 retry1:
1341 mutex_lock(&cfi->chips[chipnum].mutex);
1342
1343 if (cfi->chips[chipnum].state != FL_READY) {
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1346
1347 mutex_unlock(&cfi->chips[chipnum].mutex);
1348
1349 schedule();
1350 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351 goto retry1;
1352 }
1353
1354 tmp_buf = map_read(map, ofs + chipstart);
1355
1356 mutex_unlock(&cfi->chips[chipnum].mutex);
1357
1358 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1359
1360 ret = do_write_oneword(map, &cfi->chips[chipnum],
1361 ofs, tmp_buf);
1362 if (ret)
1363 return ret;
1364
1365 (*retlen) += len;
1366 }
1367
1368 return 0;
1369 }
1370
1371
1372 /*
1373 * FIXME: interleaved mode not tested, and probably not supported!
1374 */
1375 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1376 unsigned long adr, const u_char *buf,
1377 int len)
1378 {
1379 struct cfi_private *cfi = map->fldrv_priv;
1380 unsigned long timeo = jiffies + HZ;
1381 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1382 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1383 int ret = -EIO;
1384 unsigned long cmd_adr;
1385 int z, words;
1386 map_word datum;
1387
1388 adr += chip->start;
1389 cmd_adr = adr;
1390
1391 mutex_lock(&chip->mutex);
1392 ret = get_chip(map, chip, adr, FL_WRITING);
1393 if (ret) {
1394 mutex_unlock(&chip->mutex);
1395 return ret;
1396 }
1397
1398 datum = map_word_load(map, buf);
1399
1400 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1401 __func__, adr, datum.x[0] );
1402
1403 XIP_INVAL_CACHED_RANGE(map, adr, len);
1404 ENABLE_VPP(map);
1405 xip_disable(map, chip, cmd_adr);
1406
1407 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1408 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1409
1410 /* Write Buffer Load */
1411 map_write(map, CMD(0x25), cmd_adr);
1412
1413 chip->state = FL_WRITING_TO_BUFFER;
1414
1415 /* Write length of data to come */
1416 words = len / map_bankwidth(map);
1417 map_write(map, CMD(words - 1), cmd_adr);
1418 /* Write data */
1419 z = 0;
1420 while(z < words * map_bankwidth(map)) {
1421 datum = map_word_load(map, buf);
1422 map_write(map, datum, adr + z);
1423
1424 z += map_bankwidth(map);
1425 buf += map_bankwidth(map);
1426 }
1427 z -= map_bankwidth(map);
1428
1429 adr += z;
1430
1431 /* Write Buffer Program Confirm: GO GO GO */
1432 map_write(map, CMD(0x29), cmd_adr);
1433 chip->state = FL_WRITING;
1434
1435 INVALIDATE_CACHE_UDELAY(map, chip,
1436 adr, map_bankwidth(map),
1437 chip->word_write_time);
1438
1439 timeo = jiffies + uWriteTimeout;
1440
1441 for (;;) {
1442 if (chip->state != FL_WRITING) {
1443 /* Someone's suspended the write. Sleep */
1444 DECLARE_WAITQUEUE(wait, current);
1445
1446 set_current_state(TASK_UNINTERRUPTIBLE);
1447 add_wait_queue(&chip->wq, &wait);
1448 mutex_unlock(&chip->mutex);
1449 schedule();
1450 remove_wait_queue(&chip->wq, &wait);
1451 timeo = jiffies + (HZ / 2); /* FIXME */
1452 mutex_lock(&chip->mutex);
1453 continue;
1454 }
1455
1456 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1457 break;
1458
1459 if (chip_ready(map, adr)) {
1460 xip_enable(map, chip, adr);
1461 goto op_done;
1462 }
1463
1464 /* Latency issues. Drop the lock, wait a while and retry */
1465 UDELAY(map, chip, adr, 1);
1466 }
1467
1468 /* reset on all failures. */
1469 map_write( map, CMD(0xF0), chip->start );
1470 xip_enable(map, chip, adr);
1471 /* FIXME - should have reset delay before continuing */
1472
1473 printk(KERN_WARNING "MTD %s(): software timeout\n",
1474 __func__ );
1475
1476 ret = -EIO;
1477 op_done:
1478 chip->state = FL_READY;
1479 put_chip(map, chip, adr);
1480 mutex_unlock(&chip->mutex);
1481
1482 return ret;
1483 }
1484
1485
1486 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1487 size_t *retlen, const u_char *buf)
1488 {
1489 struct map_info *map = mtd->priv;
1490 struct cfi_private *cfi = map->fldrv_priv;
1491 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1492 int ret = 0;
1493 int chipnum;
1494 unsigned long ofs;
1495
1496 *retlen = 0;
1497 if (!len)
1498 return 0;
1499
1500 chipnum = to >> cfi->chipshift;
1501 ofs = to - (chipnum << cfi->chipshift);
1502
1503 /* If it's not bus-aligned, do the first word write */
1504 if (ofs & (map_bankwidth(map)-1)) {
1505 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1506 if (local_len > len)
1507 local_len = len;
1508 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1509 local_len, retlen, buf);
1510 if (ret)
1511 return ret;
1512 ofs += local_len;
1513 buf += local_len;
1514 len -= local_len;
1515
1516 if (ofs >> cfi->chipshift) {
1517 chipnum ++;
1518 ofs = 0;
1519 if (chipnum == cfi->numchips)
1520 return 0;
1521 }
1522 }
1523
1524 /* Write buffer is worth it only if more than one word to write... */
1525 while (len >= map_bankwidth(map) * 2) {
1526 /* We must not cross write block boundaries */
1527 int size = wbufsize - (ofs & (wbufsize-1));
1528
1529 if (size > len)
1530 size = len;
1531 if (size % map_bankwidth(map))
1532 size -= size % map_bankwidth(map);
1533
1534 ret = do_write_buffer(map, &cfi->chips[chipnum],
1535 ofs, buf, size);
1536 if (ret)
1537 return ret;
1538
1539 ofs += size;
1540 buf += size;
1541 (*retlen) += size;
1542 len -= size;
1543
1544 if (ofs >> cfi->chipshift) {
1545 chipnum ++;
1546 ofs = 0;
1547 if (chipnum == cfi->numchips)
1548 return 0;
1549 }
1550 }
1551
1552 if (len) {
1553 size_t retlen_dregs = 0;
1554
1555 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1556 len, &retlen_dregs, buf);
1557
1558 *retlen += retlen_dregs;
1559 return ret;
1560 }
1561
1562 return 0;
1563 }
1564
1565
1566 /*
1567 * Handle devices with one erase region, that only implement
1568 * the chip erase command.
1569 */
1570 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1571 {
1572 struct cfi_private *cfi = map->fldrv_priv;
1573 unsigned long timeo = jiffies + HZ;
1574 unsigned long int adr;
1575 DECLARE_WAITQUEUE(wait, current);
1576 int ret = 0;
1577
1578 adr = cfi->addr_unlock1;
1579
1580 mutex_lock(&chip->mutex);
1581 ret = get_chip(map, chip, adr, FL_WRITING);
1582 if (ret) {
1583 mutex_unlock(&chip->mutex);
1584 return ret;
1585 }
1586
1587 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1588 __func__, chip->start );
1589
1590 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1591 ENABLE_VPP(map);
1592 xip_disable(map, chip, adr);
1593
1594 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1595 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1596 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1597 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1598 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1599 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600
1601 chip->state = FL_ERASING;
1602 chip->erase_suspended = 0;
1603 chip->in_progress_block_addr = adr;
1604
1605 INVALIDATE_CACHE_UDELAY(map, chip,
1606 adr, map->size,
1607 chip->erase_time*500);
1608
1609 timeo = jiffies + (HZ*20);
1610
1611 for (;;) {
1612 if (chip->state != FL_ERASING) {
1613 /* Someone's suspended the erase. Sleep */
1614 set_current_state(TASK_UNINTERRUPTIBLE);
1615 add_wait_queue(&chip->wq, &wait);
1616 mutex_unlock(&chip->mutex);
1617 schedule();
1618 remove_wait_queue(&chip->wq, &wait);
1619 mutex_lock(&chip->mutex);
1620 continue;
1621 }
1622 if (chip->erase_suspended) {
1623 /* This erase was suspended and resumed.
1624 Adjust the timeout */
1625 timeo = jiffies + (HZ*20); /* FIXME */
1626 chip->erase_suspended = 0;
1627 }
1628
1629 if (chip_ready(map, adr))
1630 break;
1631
1632 if (time_after(jiffies, timeo)) {
1633 printk(KERN_WARNING "MTD %s(): software timeout\n",
1634 __func__ );
1635 break;
1636 }
1637
1638 /* Latency issues. Drop the lock, wait a while and retry */
1639 UDELAY(map, chip, adr, 1000000/HZ);
1640 }
1641 /* Did we succeed? */
1642 if (!chip_good(map, adr, map_word_ff(map))) {
1643 /* reset on all failures. */
1644 map_write( map, CMD(0xF0), chip->start );
1645 /* FIXME - should have reset delay before continuing */
1646
1647 ret = -EIO;
1648 }
1649
1650 chip->state = FL_READY;
1651 xip_enable(map, chip, adr);
1652 put_chip(map, chip, adr);
1653 mutex_unlock(&chip->mutex);
1654
1655 return ret;
1656 }
1657
1658
1659 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1660 {
1661 struct cfi_private *cfi = map->fldrv_priv;
1662 unsigned long timeo = jiffies + HZ;
1663 DECLARE_WAITQUEUE(wait, current);
1664 int ret = 0;
1665
1666 adr += chip->start;
1667
1668 mutex_lock(&chip->mutex);
1669 ret = get_chip(map, chip, adr, FL_ERASING);
1670 if (ret) {
1671 mutex_unlock(&chip->mutex);
1672 return ret;
1673 }
1674
1675 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1676 __func__, adr );
1677
1678 XIP_INVAL_CACHED_RANGE(map, adr, len);
1679 ENABLE_VPP(map);
1680 xip_disable(map, chip, adr);
1681
1682 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1683 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1684 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1685 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1686 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1687 map_write(map, cfi->sector_erase_cmd, adr);
1688
1689 chip->state = FL_ERASING;
1690 chip->erase_suspended = 0;
1691 chip->in_progress_block_addr = adr;
1692
1693 INVALIDATE_CACHE_UDELAY(map, chip,
1694 adr, len,
1695 chip->erase_time*500);
1696
1697 timeo = jiffies + (HZ*20);
1698
1699 for (;;) {
1700 if (chip->state != FL_ERASING) {
1701 /* Someone's suspended the erase. Sleep */
1702 set_current_state(TASK_UNINTERRUPTIBLE);
1703 add_wait_queue(&chip->wq, &wait);
1704 mutex_unlock(&chip->mutex);
1705 schedule();
1706 remove_wait_queue(&chip->wq, &wait);
1707 mutex_lock(&chip->mutex);
1708 continue;
1709 }
1710 if (chip->erase_suspended) {
1711 /* This erase was suspended and resumed.
1712 Adjust the timeout */
1713 timeo = jiffies + (HZ*20); /* FIXME */
1714 chip->erase_suspended = 0;
1715 }
1716
1717 if (chip_ready(map, adr)) {
1718 xip_enable(map, chip, adr);
1719 break;
1720 }
1721
1722 if (time_after(jiffies, timeo)) {
1723 xip_enable(map, chip, adr);
1724 printk(KERN_WARNING "MTD %s(): software timeout\n",
1725 __func__ );
1726 break;
1727 }
1728
1729 /* Latency issues. Drop the lock, wait a while and retry */
1730 UDELAY(map, chip, adr, 1000000/HZ);
1731 }
1732 /* Did we succeed? */
1733 if (!chip_good(map, adr, map_word_ff(map))) {
1734 /* reset on all failures. */
1735 map_write( map, CMD(0xF0), chip->start );
1736 /* FIXME - should have reset delay before continuing */
1737
1738 ret = -EIO;
1739 }
1740
1741 chip->state = FL_READY;
1742 put_chip(map, chip, adr);
1743 mutex_unlock(&chip->mutex);
1744 return ret;
1745 }
1746
1747
1748 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1749 {
1750 unsigned long ofs, len;
1751 int ret;
1752
1753 ofs = instr->addr;
1754 len = instr->len;
1755
1756 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1757 if (ret)
1758 return ret;
1759
1760 instr->state = MTD_ERASE_DONE;
1761 mtd_erase_callback(instr);
1762
1763 return 0;
1764 }
1765
1766
1767 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1768 {
1769 struct map_info *map = mtd->priv;
1770 struct cfi_private *cfi = map->fldrv_priv;
1771 int ret = 0;
1772
1773 if (instr->addr != 0)
1774 return -EINVAL;
1775
1776 if (instr->len != mtd->size)
1777 return -EINVAL;
1778
1779 ret = do_erase_chip(map, &cfi->chips[0]);
1780 if (ret)
1781 return ret;
1782
1783 instr->state = MTD_ERASE_DONE;
1784 mtd_erase_callback(instr);
1785
1786 return 0;
1787 }
1788
1789 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1790 unsigned long adr, int len, void *thunk)
1791 {
1792 struct cfi_private *cfi = map->fldrv_priv;
1793 int ret;
1794
1795 mutex_lock(&chip->mutex);
1796 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1797 if (ret)
1798 goto out_unlock;
1799 chip->state = FL_LOCKING;
1800
1801 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
1802
1803 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1804 cfi->device_type, NULL);
1805 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1806 cfi->device_type, NULL);
1807 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1808 cfi->device_type, NULL);
1809 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1810 cfi->device_type, NULL);
1811 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1812 cfi->device_type, NULL);
1813 map_write(map, CMD(0x40), chip->start + adr);
1814
1815 chip->state = FL_READY;
1816 put_chip(map, chip, adr + chip->start);
1817 ret = 0;
1818
1819 out_unlock:
1820 mutex_unlock(&chip->mutex);
1821 return ret;
1822 }
1823
1824 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1825 unsigned long adr, int len, void *thunk)
1826 {
1827 struct cfi_private *cfi = map->fldrv_priv;
1828 int ret;
1829
1830 mutex_lock(&chip->mutex);
1831 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1832 if (ret)
1833 goto out_unlock;
1834 chip->state = FL_UNLOCKING;
1835
1836 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
1837
1838 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1839 cfi->device_type, NULL);
1840 map_write(map, CMD(0x70), adr);
1841
1842 chip->state = FL_READY;
1843 put_chip(map, chip, adr + chip->start);
1844 ret = 0;
1845
1846 out_unlock:
1847 mutex_unlock(&chip->mutex);
1848 return ret;
1849 }
1850
1851 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1852 {
1853 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1854 }
1855
1856 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1857 {
1858 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1859 }
1860
1861
1862 static void cfi_amdstd_sync (struct mtd_info *mtd)
1863 {
1864 struct map_info *map = mtd->priv;
1865 struct cfi_private *cfi = map->fldrv_priv;
1866 int i;
1867 struct flchip *chip;
1868 int ret = 0;
1869 DECLARE_WAITQUEUE(wait, current);
1870
1871 for (i=0; !ret && i<cfi->numchips; i++) {
1872 chip = &cfi->chips[i];
1873
1874 retry:
1875 mutex_lock(&chip->mutex);
1876
1877 switch(chip->state) {
1878 case FL_READY:
1879 case FL_STATUS:
1880 case FL_CFI_QUERY:
1881 case FL_JEDEC_QUERY:
1882 chip->oldstate = chip->state;
1883 chip->state = FL_SYNCING;
1884 /* No need to wake_up() on this state change -
1885 * as the whole point is that nobody can do anything
1886 * with the chip now anyway.
1887 */
1888 case FL_SYNCING:
1889 mutex_unlock(&chip->mutex);
1890 break;
1891
1892 default:
1893 /* Not an idle state */
1894 set_current_state(TASK_UNINTERRUPTIBLE);
1895 add_wait_queue(&chip->wq, &wait);
1896
1897 mutex_unlock(&chip->mutex);
1898
1899 schedule();
1900
1901 remove_wait_queue(&chip->wq, &wait);
1902
1903 goto retry;
1904 }
1905 }
1906
1907 /* Unlock the chips again */
1908
1909 for (i--; i >=0; i--) {
1910 chip = &cfi->chips[i];
1911
1912 mutex_lock(&chip->mutex);
1913
1914 if (chip->state == FL_SYNCING) {
1915 chip->state = chip->oldstate;
1916 wake_up(&chip->wq);
1917 }
1918 mutex_unlock(&chip->mutex);
1919 }
1920 }
1921
1922
1923 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1924 {
1925 struct map_info *map = mtd->priv;
1926 struct cfi_private *cfi = map->fldrv_priv;
1927 int i;
1928 struct flchip *chip;
1929 int ret = 0;
1930
1931 for (i=0; !ret && i<cfi->numchips; i++) {
1932 chip = &cfi->chips[i];
1933
1934 mutex_lock(&chip->mutex);
1935
1936 switch(chip->state) {
1937 case FL_READY:
1938 case FL_STATUS:
1939 case FL_CFI_QUERY:
1940 case FL_JEDEC_QUERY:
1941 chip->oldstate = chip->state;
1942 chip->state = FL_PM_SUSPENDED;
1943 /* No need to wake_up() on this state change -
1944 * as the whole point is that nobody can do anything
1945 * with the chip now anyway.
1946 */
1947 case FL_PM_SUSPENDED:
1948 break;
1949
1950 default:
1951 ret = -EAGAIN;
1952 break;
1953 }
1954 mutex_unlock(&chip->mutex);
1955 }
1956
1957 /* Unlock the chips again */
1958
1959 if (ret) {
1960 for (i--; i >=0; i--) {
1961 chip = &cfi->chips[i];
1962
1963 mutex_lock(&chip->mutex);
1964
1965 if (chip->state == FL_PM_SUSPENDED) {
1966 chip->state = chip->oldstate;
1967 wake_up(&chip->wq);
1968 }
1969 mutex_unlock(&chip->mutex);
1970 }
1971 }
1972
1973 return ret;
1974 }
1975
1976
1977 static void cfi_amdstd_resume(struct mtd_info *mtd)
1978 {
1979 struct map_info *map = mtd->priv;
1980 struct cfi_private *cfi = map->fldrv_priv;
1981 int i;
1982 struct flchip *chip;
1983
1984 for (i=0; i<cfi->numchips; i++) {
1985
1986 chip = &cfi->chips[i];
1987
1988 mutex_lock(&chip->mutex);
1989
1990 if (chip->state == FL_PM_SUSPENDED) {
1991 chip->state = FL_READY;
1992 map_write(map, CMD(0xF0), chip->start);
1993 wake_up(&chip->wq);
1994 }
1995 else
1996 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1997
1998 mutex_unlock(&chip->mutex);
1999 }
2000 }
2001
2002
2003 /*
2004 * Ensure that the flash device is put back into read array mode before
2005 * unloading the driver or rebooting. On some systems, rebooting while
2006 * the flash is in query/program/erase mode will prevent the CPU from
2007 * fetching the bootloader code, requiring a hard reset or power cycle.
2008 */
2009 static int cfi_amdstd_reset(struct mtd_info *mtd)
2010 {
2011 struct map_info *map = mtd->priv;
2012 struct cfi_private *cfi = map->fldrv_priv;
2013 int i, ret;
2014 struct flchip *chip;
2015
2016 for (i = 0; i < cfi->numchips; i++) {
2017
2018 chip = &cfi->chips[i];
2019
2020 mutex_lock(&chip->mutex);
2021
2022 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2023 if (!ret) {
2024 map_write(map, CMD(0xF0), chip->start);
2025 chip->state = FL_SHUTDOWN;
2026 put_chip(map, chip, chip->start);
2027 }
2028
2029 mutex_unlock(&chip->mutex);
2030 }
2031
2032 return 0;
2033 }
2034
2035
2036 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2037 void *v)
2038 {
2039 struct mtd_info *mtd;
2040
2041 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2042 cfi_amdstd_reset(mtd);
2043 return NOTIFY_DONE;
2044 }
2045
2046
2047 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2048 {
2049 struct map_info *map = mtd->priv;
2050 struct cfi_private *cfi = map->fldrv_priv;
2051
2052 cfi_amdstd_reset(mtd);
2053 unregister_reboot_notifier(&mtd->reboot_notifier);
2054 kfree(cfi->cmdset_priv);
2055 kfree(cfi->cfiq);
2056 kfree(cfi);
2057 kfree(mtd->eraseregions);
2058 }
2059
2060 MODULE_LICENSE("GPL");
2061 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2062 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2063 MODULE_ALIAS("cfi_cmdset_0006");
2064 MODULE_ALIAS("cfi_cmdset_0701");