]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/chips/cfi_cmdset_0002.c
Merge tag 'asoc-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43
44 #define MAX_WORD_RETRIES 3
45
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
50
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 size_t *retlen, const u_char *buf);
64
65 static void cfi_amdstd_destroy(struct mtd_info *);
66
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
82 };
83
84
85 /* #define DEBUG_CFI_FEATURES */
86
87
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
93 };
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
98 };
99
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 printk(" Address sensitive unlock: %s\n",
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
103
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
113
114
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
125
126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 extp->VppMin >> 4, extp->VppMin & 0xf);
128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 extp->VppMax >> 4, extp->VppMax & 0xf);
130
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd)
141 {
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
147
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
150
151 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
152 map->name, cfi->mfr, cfi->id);
153
154 /* AFAICS all 29LV400 with a bottom boot block have a device ID
155 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
156 * These were badly detected as they have the 0x80 bit set
157 * so treat them as a special case.
158 */
159 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
160
161 /* Macronix added CFI to their 2nd generation
162 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
163 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 * has CFI.
165 *
166 * Therefore also check the manufacturer.
167 * This reduces the risk of false detection due to
168 * the 8-bit device ID.
169 */
170 (cfi->mfr == CFI_MFR_MACRONIX)) {
171 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
172 " detected\n", map->name);
173 extp->TopBottom = 2; /* bottom boot */
174 } else
175 if (cfi->id & 0x80) {
176 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
177 extp->TopBottom = 3; /* top boot */
178 } else {
179 extp->TopBottom = 2; /* bottom boot */
180 }
181
182 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
185 }
186 }
187 #endif
188
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
194 pr_debug("Using buffer write method\n" );
195 mtd->_write = cfi_amdstd_write_buffers;
196 }
197 }
198
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 /* Setup for chips with a secsi area */
234 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 mtd->_erase = cfi_amdstd_erase_chip;
245 }
246
247 }
248
249 /*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 mtd->_lock = cfi_atmel_lock;
256 mtd->_unlock = cfi_atmel_unlock;
257 mtd->flags |= MTD_POWERUP_LOCK;
258 }
259
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
266 * These flashes report two separate eraseblock regions based on the
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272 }
273
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283 }
284
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
294
295 cfi->sector_erase_cmd = CMD(0x50);
296 }
297
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
303 fixup_sst39vf_rev_b(mtd);
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
321 }
322 }
323
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
332 }
333 }
334
335 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
336 {
337 struct map_info *map = mtd->priv;
338 struct cfi_private *cfi = map->fldrv_priv;
339
340 /*
341 * S29NS512P flash uses more than 8bits to report number of sectors,
342 * which is not permitted by CFI.
343 */
344 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
345 pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
346 }
347
348 /* Used to fix CFI-Tables of chips without Extended Query Tables */
349 static struct cfi_fixup cfi_nopri_fixup_table[] = {
350 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
351 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
352 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
353 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
354 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
355 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
356 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
357 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
358 { 0, 0, NULL }
359 };
360
361 static struct cfi_fixup cfi_fixup_table[] = {
362 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
363 #ifdef AMD_BOOTLOC_BUG
364 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
365 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
366 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
367 #endif
368 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
369 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
370 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
371 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
372 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
373 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
374 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
375 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
376 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
377 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
378 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
379 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
380 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
381 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
382 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
383 #if !FORCE_WORD_WRITE
384 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
385 #endif
386 { 0, 0, NULL }
387 };
388 static struct cfi_fixup jedec_fixup_table[] = {
389 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
390 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
391 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
392 { 0, 0, NULL }
393 };
394
395 static struct cfi_fixup fixup_table[] = {
396 /* The CFI vendor ids and the JEDEC vendor IDs appear
397 * to be common. It is like the devices id's are as
398 * well. This table is to pick all cases where
399 * we know that is the case.
400 */
401 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
402 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
403 { 0, 0, NULL }
404 };
405
406
407 static void cfi_fixup_major_minor(struct cfi_private *cfi,
408 struct cfi_pri_amdstd *extp)
409 {
410 if (cfi->mfr == CFI_MFR_SAMSUNG) {
411 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
412 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
413 /*
414 * Samsung K8P2815UQB and K8D6x16UxM chips
415 * report major=0 / minor=0.
416 * K8D3x16UxC chips report major=3 / minor=3.
417 */
418 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
419 " Extended Query version to 1.%c\n",
420 extp->MinorVersion);
421 extp->MajorVersion = '1';
422 }
423 }
424
425 /*
426 * SST 38VF640x chips report major=0xFF / minor=0xFF.
427 */
428 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
429 extp->MajorVersion = '1';
430 extp->MinorVersion = '0';
431 }
432 }
433
434 static int is_m29ew(struct cfi_private *cfi)
435 {
436 if (cfi->mfr == CFI_MFR_INTEL &&
437 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
438 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
439 return 1;
440 return 0;
441 }
442
443 /*
444 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
445 * Some revisions of the M29EW suffer from erase suspend hang ups. In
446 * particular, it can occur when the sequence
447 * Erase Confirm -> Suspend -> Program -> Resume
448 * causes a lockup due to internal timing issues. The consequence is that the
449 * erase cannot be resumed without inserting a dummy command after programming
450 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
451 * that writes an F0 command code before the RESUME command.
452 */
453 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
454 unsigned long adr)
455 {
456 struct cfi_private *cfi = map->fldrv_priv;
457 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
458 if (is_m29ew(cfi))
459 map_write(map, CMD(0xF0), adr);
460 }
461
462 /*
463 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
464 *
465 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
466 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
467 * command is issued after an ERASE RESUME operation without waiting for a
468 * minimum delay. The result is that once the ERASE seems to be completed
469 * (no bits are toggling), the contents of the Flash memory block on which
470 * the erase was ongoing could be inconsistent with the expected values
471 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
472 * values), causing a consequent failure of the ERASE operation.
473 * The occurrence of this issue could be high, especially when file system
474 * operations on the Flash are intensive. As a result, it is recommended
475 * that a patch be applied. Intensive file system operations can cause many
476 * calls to the garbage routine to free Flash space (also by erasing physical
477 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
478 * commands can occur. The problem disappears when a delay is inserted after
479 * the RESUME command by using the udelay() function available in Linux.
480 * The DELAY value must be tuned based on the customer's platform.
481 * The maximum value that fixes the problem in all cases is 500us.
482 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
483 * in most cases.
484 * We have chosen 500µs because this latency is acceptable.
485 */
486 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
487 {
488 /*
489 * Resolving the Delay After Resume Issue see Micron TN-13-07
490 * Worst case delay must be 500µs but 30-50µs should be ok as well
491 */
492 if (is_m29ew(cfi))
493 cfi_udelay(500);
494 }
495
496 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
497 {
498 struct cfi_private *cfi = map->fldrv_priv;
499 struct mtd_info *mtd;
500 int i;
501
502 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
503 if (!mtd) {
504 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
505 return NULL;
506 }
507 mtd->priv = map;
508 mtd->type = MTD_NORFLASH;
509
510 /* Fill in the default mtd operations */
511 mtd->_erase = cfi_amdstd_erase_varsize;
512 mtd->_write = cfi_amdstd_write_words;
513 mtd->_read = cfi_amdstd_read;
514 mtd->_sync = cfi_amdstd_sync;
515 mtd->_suspend = cfi_amdstd_suspend;
516 mtd->_resume = cfi_amdstd_resume;
517 mtd->flags = MTD_CAP_NORFLASH;
518 mtd->name = map->name;
519 mtd->writesize = 1;
520 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
521
522 pr_debug("MTD %s(): write buffer size %d\n", __func__,
523 mtd->writebufsize);
524
525 mtd->_panic_write = cfi_amdstd_panic_write;
526 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
527
528 if (cfi->cfi_mode==CFI_MODE_CFI){
529 unsigned char bootloc;
530 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
531 struct cfi_pri_amdstd *extp;
532
533 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
534 if (extp) {
535 /*
536 * It's a real CFI chip, not one for which the probe
537 * routine faked a CFI structure.
538 */
539 cfi_fixup_major_minor(cfi, extp);
540
541 /*
542 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
543 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
544 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
545 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
546 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
547 */
548 if (extp->MajorVersion != '1' ||
549 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
550 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
551 "version %c.%c (%#02x/%#02x).\n",
552 extp->MajorVersion, extp->MinorVersion,
553 extp->MajorVersion, extp->MinorVersion);
554 kfree(extp);
555 kfree(mtd);
556 return NULL;
557 }
558
559 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
560 extp->MajorVersion, extp->MinorVersion);
561
562 /* Install our own private info structure */
563 cfi->cmdset_priv = extp;
564
565 /* Apply cfi device specific fixups */
566 cfi_fixup(mtd, cfi_fixup_table);
567
568 #ifdef DEBUG_CFI_FEATURES
569 /* Tell the user about it in lots of lovely detail */
570 cfi_tell_features(extp);
571 #endif
572
573 bootloc = extp->TopBottom;
574 if ((bootloc < 2) || (bootloc > 5)) {
575 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
576 "bank location (%d). Assuming bottom.\n",
577 map->name, bootloc);
578 bootloc = 2;
579 }
580
581 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
582 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
583
584 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
585 int j = (cfi->cfiq->NumEraseRegions-1)-i;
586 __u32 swap;
587
588 swap = cfi->cfiq->EraseRegionInfo[i];
589 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
590 cfi->cfiq->EraseRegionInfo[j] = swap;
591 }
592 }
593 /* Set the default CFI lock/unlock addresses */
594 cfi->addr_unlock1 = 0x555;
595 cfi->addr_unlock2 = 0x2aa;
596 }
597 cfi_fixup(mtd, cfi_nopri_fixup_table);
598
599 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
600 kfree(mtd);
601 return NULL;
602 }
603
604 } /* CFI mode */
605 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
606 /* Apply jedec specific fixups */
607 cfi_fixup(mtd, jedec_fixup_table);
608 }
609 /* Apply generic fixups */
610 cfi_fixup(mtd, fixup_table);
611
612 for (i=0; i< cfi->numchips; i++) {
613 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
614 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
615 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
616 cfi->chips[i].ref_point_counter = 0;
617 init_waitqueue_head(&(cfi->chips[i].wq));
618 }
619
620 map->fldrv = &cfi_amdstd_chipdrv;
621
622 return cfi_amdstd_setup(mtd);
623 }
624 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
625 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
626 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
627 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
628 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
629
630 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
631 {
632 struct map_info *map = mtd->priv;
633 struct cfi_private *cfi = map->fldrv_priv;
634 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
635 unsigned long offset = 0;
636 int i,j;
637
638 printk(KERN_NOTICE "number of %s chips: %d\n",
639 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
640 /* Select the correct geometry setup */
641 mtd->size = devsize * cfi->numchips;
642
643 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
644 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
645 * mtd->numeraseregions, GFP_KERNEL);
646 if (!mtd->eraseregions) {
647 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
648 goto setup_err;
649 }
650
651 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
652 unsigned long ernum, ersize;
653 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
654 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
655
656 if (mtd->erasesize < ersize) {
657 mtd->erasesize = ersize;
658 }
659 for (j=0; j<cfi->numchips; j++) {
660 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
661 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
662 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
663 }
664 offset += (ersize * ernum);
665 }
666 if (offset != devsize) {
667 /* Argh */
668 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
669 goto setup_err;
670 }
671
672 __module_get(THIS_MODULE);
673 register_reboot_notifier(&mtd->reboot_notifier);
674 return mtd;
675
676 setup_err:
677 kfree(mtd->eraseregions);
678 kfree(mtd);
679 kfree(cfi->cmdset_priv);
680 kfree(cfi->cfiq);
681 return NULL;
682 }
683
684 /*
685 * Return true if the chip is ready.
686 *
687 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
688 * non-suspended sector) and is indicated by no toggle bits toggling.
689 *
690 * Note that anything more complicated than checking if no bits are toggling
691 * (including checking DQ5 for an error status) is tricky to get working
692 * correctly and is therefore not done (particularly with interleaved chips
693 * as each chip must be checked independently of the others).
694 */
695 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
696 {
697 map_word d, t;
698
699 d = map_read(map, addr);
700 t = map_read(map, addr);
701
702 return map_word_equal(map, d, t);
703 }
704
705 /*
706 * Return true if the chip is ready and has the correct value.
707 *
708 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
709 * non-suspended sector) and it is indicated by no bits toggling.
710 *
711 * Error are indicated by toggling bits or bits held with the wrong value,
712 * or with bits toggling.
713 *
714 * Note that anything more complicated than checking if no bits are toggling
715 * (including checking DQ5 for an error status) is tricky to get working
716 * correctly and is therefore not done (particularly with interleaved chips
717 * as each chip must be checked independently of the others).
718 *
719 */
720 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
721 {
722 map_word oldd, curd;
723
724 oldd = map_read(map, addr);
725 curd = map_read(map, addr);
726
727 return map_word_equal(map, oldd, curd) &&
728 map_word_equal(map, curd, expected);
729 }
730
731 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
732 {
733 DECLARE_WAITQUEUE(wait, current);
734 struct cfi_private *cfi = map->fldrv_priv;
735 unsigned long timeo;
736 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
737
738 resettime:
739 timeo = jiffies + HZ;
740 retry:
741 switch (chip->state) {
742
743 case FL_STATUS:
744 for (;;) {
745 if (chip_ready(map, adr))
746 break;
747
748 if (time_after(jiffies, timeo)) {
749 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
750 return -EIO;
751 }
752 mutex_unlock(&chip->mutex);
753 cfi_udelay(1);
754 mutex_lock(&chip->mutex);
755 /* Someone else might have been playing with it. */
756 goto retry;
757 }
758
759 case FL_READY:
760 case FL_CFI_QUERY:
761 case FL_JEDEC_QUERY:
762 return 0;
763
764 case FL_ERASING:
765 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
766 !(mode == FL_READY || mode == FL_POINT ||
767 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
768 goto sleep;
769
770 /* We could check to see if we're trying to access the sector
771 * that is currently being erased. However, no user will try
772 * anything like that so we just wait for the timeout. */
773
774 /* Erase suspend */
775 /* It's harmless to issue the Erase-Suspend and Erase-Resume
776 * commands when the erase algorithm isn't in progress. */
777 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
778 chip->oldstate = FL_ERASING;
779 chip->state = FL_ERASE_SUSPENDING;
780 chip->erase_suspended = 1;
781 for (;;) {
782 if (chip_ready(map, adr))
783 break;
784
785 if (time_after(jiffies, timeo)) {
786 /* Should have suspended the erase by now.
787 * Send an Erase-Resume command as either
788 * there was an error (so leave the erase
789 * routine to recover from it) or we trying to
790 * use the erase-in-progress sector. */
791 put_chip(map, chip, adr);
792 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
793 return -EIO;
794 }
795
796 mutex_unlock(&chip->mutex);
797 cfi_udelay(1);
798 mutex_lock(&chip->mutex);
799 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
800 So we can just loop here. */
801 }
802 chip->state = FL_READY;
803 return 0;
804
805 case FL_XIP_WHILE_ERASING:
806 if (mode != FL_READY && mode != FL_POINT &&
807 (!cfip || !(cfip->EraseSuspend&2)))
808 goto sleep;
809 chip->oldstate = chip->state;
810 chip->state = FL_READY;
811 return 0;
812
813 case FL_SHUTDOWN:
814 /* The machine is rebooting */
815 return -EIO;
816
817 case FL_POINT:
818 /* Only if there's no operation suspended... */
819 if (mode == FL_READY && chip->oldstate == FL_READY)
820 return 0;
821
822 default:
823 sleep:
824 set_current_state(TASK_UNINTERRUPTIBLE);
825 add_wait_queue(&chip->wq, &wait);
826 mutex_unlock(&chip->mutex);
827 schedule();
828 remove_wait_queue(&chip->wq, &wait);
829 mutex_lock(&chip->mutex);
830 goto resettime;
831 }
832 }
833
834
835 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
836 {
837 struct cfi_private *cfi = map->fldrv_priv;
838
839 switch(chip->oldstate) {
840 case FL_ERASING:
841 cfi_fixup_m29ew_erase_suspend(map,
842 chip->in_progress_block_addr);
843 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
844 cfi_fixup_m29ew_delay_after_resume(cfi);
845 chip->oldstate = FL_READY;
846 chip->state = FL_ERASING;
847 break;
848
849 case FL_XIP_WHILE_ERASING:
850 chip->state = chip->oldstate;
851 chip->oldstate = FL_READY;
852 break;
853
854 case FL_READY:
855 case FL_STATUS:
856 break;
857 default:
858 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
859 }
860 wake_up(&chip->wq);
861 }
862
863 #ifdef CONFIG_MTD_XIP
864
865 /*
866 * No interrupt what so ever can be serviced while the flash isn't in array
867 * mode. This is ensured by the xip_disable() and xip_enable() functions
868 * enclosing any code path where the flash is known not to be in array mode.
869 * And within a XIP disabled code path, only functions marked with __xipram
870 * may be called and nothing else (it's a good thing to inspect generated
871 * assembly to make sure inline functions were actually inlined and that gcc
872 * didn't emit calls to its own support functions). Also configuring MTD CFI
873 * support to a single buswidth and a single interleave is also recommended.
874 */
875
876 static void xip_disable(struct map_info *map, struct flchip *chip,
877 unsigned long adr)
878 {
879 /* TODO: chips with no XIP use should ignore and return */
880 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
881 local_irq_disable();
882 }
883
884 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
885 unsigned long adr)
886 {
887 struct cfi_private *cfi = map->fldrv_priv;
888
889 if (chip->state != FL_POINT && chip->state != FL_READY) {
890 map_write(map, CMD(0xf0), adr);
891 chip->state = FL_READY;
892 }
893 (void) map_read(map, adr);
894 xip_iprefetch();
895 local_irq_enable();
896 }
897
898 /*
899 * When a delay is required for the flash operation to complete, the
900 * xip_udelay() function is polling for both the given timeout and pending
901 * (but still masked) hardware interrupts. Whenever there is an interrupt
902 * pending then the flash erase operation is suspended, array mode restored
903 * and interrupts unmasked. Task scheduling might also happen at that
904 * point. The CPU eventually returns from the interrupt or the call to
905 * schedule() and the suspended flash operation is resumed for the remaining
906 * of the delay period.
907 *
908 * Warning: this function _will_ fool interrupt latency tracing tools.
909 */
910
911 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
912 unsigned long adr, int usec)
913 {
914 struct cfi_private *cfi = map->fldrv_priv;
915 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
916 map_word status, OK = CMD(0x80);
917 unsigned long suspended, start = xip_currtime();
918 flstate_t oldstate;
919
920 do {
921 cpu_relax();
922 if (xip_irqpending() && extp &&
923 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
924 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
925 /*
926 * Let's suspend the erase operation when supported.
927 * Note that we currently don't try to suspend
928 * interleaved chips if there is already another
929 * operation suspended (imagine what happens
930 * when one chip was already done with the current
931 * operation while another chip suspended it, then
932 * we resume the whole thing at once). Yes, it
933 * can happen!
934 */
935 map_write(map, CMD(0xb0), adr);
936 usec -= xip_elapsed_since(start);
937 suspended = xip_currtime();
938 do {
939 if (xip_elapsed_since(suspended) > 100000) {
940 /*
941 * The chip doesn't want to suspend
942 * after waiting for 100 msecs.
943 * This is a critical error but there
944 * is not much we can do here.
945 */
946 return;
947 }
948 status = map_read(map, adr);
949 } while (!map_word_andequal(map, status, OK, OK));
950
951 /* Suspend succeeded */
952 oldstate = chip->state;
953 if (!map_word_bitsset(map, status, CMD(0x40)))
954 break;
955 chip->state = FL_XIP_WHILE_ERASING;
956 chip->erase_suspended = 1;
957 map_write(map, CMD(0xf0), adr);
958 (void) map_read(map, adr);
959 xip_iprefetch();
960 local_irq_enable();
961 mutex_unlock(&chip->mutex);
962 xip_iprefetch();
963 cond_resched();
964
965 /*
966 * We're back. However someone else might have
967 * decided to go write to the chip if we are in
968 * a suspended erase state. If so let's wait
969 * until it's done.
970 */
971 mutex_lock(&chip->mutex);
972 while (chip->state != FL_XIP_WHILE_ERASING) {
973 DECLARE_WAITQUEUE(wait, current);
974 set_current_state(TASK_UNINTERRUPTIBLE);
975 add_wait_queue(&chip->wq, &wait);
976 mutex_unlock(&chip->mutex);
977 schedule();
978 remove_wait_queue(&chip->wq, &wait);
979 mutex_lock(&chip->mutex);
980 }
981 /* Disallow XIP again */
982 local_irq_disable();
983
984 /* Correct Erase Suspend Hangups for M29EW */
985 cfi_fixup_m29ew_erase_suspend(map, adr);
986 /* Resume the write or erase operation */
987 map_write(map, cfi->sector_erase_cmd, adr);
988 chip->state = oldstate;
989 start = xip_currtime();
990 } else if (usec >= 1000000/HZ) {
991 /*
992 * Try to save on CPU power when waiting delay
993 * is at least a system timer tick period.
994 * No need to be extremely accurate here.
995 */
996 xip_cpu_idle();
997 }
998 status = map_read(map, adr);
999 } while (!map_word_andequal(map, status, OK, OK)
1000 && xip_elapsed_since(start) < usec);
1001 }
1002
1003 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1004
1005 /*
1006 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1007 * the flash is actively programming or erasing since we have to poll for
1008 * the operation to complete anyway. We can't do that in a generic way with
1009 * a XIP setup so do it before the actual flash operation in this case
1010 * and stub it out from INVALIDATE_CACHE_UDELAY.
1011 */
1012 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1013 INVALIDATE_CACHED_RANGE(map, from, size)
1014
1015 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1016 UDELAY(map, chip, adr, usec)
1017
1018 /*
1019 * Extra notes:
1020 *
1021 * Activating this XIP support changes the way the code works a bit. For
1022 * example the code to suspend the current process when concurrent access
1023 * happens is never executed because xip_udelay() will always return with the
1024 * same chip state as it was entered with. This is why there is no care for
1025 * the presence of add_wait_queue() or schedule() calls from within a couple
1026 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1027 * The queueing and scheduling are always happening within xip_udelay().
1028 *
1029 * Similarly, get_chip() and put_chip() just happen to always be executed
1030 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1031 * is in array mode, therefore never executing many cases therein and not
1032 * causing any problem with XIP.
1033 */
1034
1035 #else
1036
1037 #define xip_disable(map, chip, adr)
1038 #define xip_enable(map, chip, adr)
1039 #define XIP_INVAL_CACHED_RANGE(x...)
1040
1041 #define UDELAY(map, chip, adr, usec) \
1042 do { \
1043 mutex_unlock(&chip->mutex); \
1044 cfi_udelay(usec); \
1045 mutex_lock(&chip->mutex); \
1046 } while (0)
1047
1048 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1049 do { \
1050 mutex_unlock(&chip->mutex); \
1051 INVALIDATE_CACHED_RANGE(map, adr, len); \
1052 cfi_udelay(usec); \
1053 mutex_lock(&chip->mutex); \
1054 } while (0)
1055
1056 #endif
1057
1058 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1059 {
1060 unsigned long cmd_addr;
1061 struct cfi_private *cfi = map->fldrv_priv;
1062 int ret;
1063
1064 adr += chip->start;
1065
1066 /* Ensure cmd read/writes are aligned. */
1067 cmd_addr = adr & ~(map_bankwidth(map)-1);
1068
1069 mutex_lock(&chip->mutex);
1070 ret = get_chip(map, chip, cmd_addr, FL_READY);
1071 if (ret) {
1072 mutex_unlock(&chip->mutex);
1073 return ret;
1074 }
1075
1076 if (chip->state != FL_POINT && chip->state != FL_READY) {
1077 map_write(map, CMD(0xf0), cmd_addr);
1078 chip->state = FL_READY;
1079 }
1080
1081 map_copy_from(map, buf, adr, len);
1082
1083 put_chip(map, chip, cmd_addr);
1084
1085 mutex_unlock(&chip->mutex);
1086 return 0;
1087 }
1088
1089
1090 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1091 {
1092 struct map_info *map = mtd->priv;
1093 struct cfi_private *cfi = map->fldrv_priv;
1094 unsigned long ofs;
1095 int chipnum;
1096 int ret = 0;
1097
1098 /* ofs: offset within the first chip that the first read should start */
1099 chipnum = (from >> cfi->chipshift);
1100 ofs = from - (chipnum << cfi->chipshift);
1101
1102 while (len) {
1103 unsigned long thislen;
1104
1105 if (chipnum >= cfi->numchips)
1106 break;
1107
1108 if ((len + ofs -1) >> cfi->chipshift)
1109 thislen = (1<<cfi->chipshift) - ofs;
1110 else
1111 thislen = len;
1112
1113 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1114 if (ret)
1115 break;
1116
1117 *retlen += thislen;
1118 len -= thislen;
1119 buf += thislen;
1120
1121 ofs = 0;
1122 chipnum++;
1123 }
1124 return ret;
1125 }
1126
1127
1128 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1129 {
1130 DECLARE_WAITQUEUE(wait, current);
1131 unsigned long timeo = jiffies + HZ;
1132 struct cfi_private *cfi = map->fldrv_priv;
1133
1134 retry:
1135 mutex_lock(&chip->mutex);
1136
1137 if (chip->state != FL_READY){
1138 set_current_state(TASK_UNINTERRUPTIBLE);
1139 add_wait_queue(&chip->wq, &wait);
1140
1141 mutex_unlock(&chip->mutex);
1142
1143 schedule();
1144 remove_wait_queue(&chip->wq, &wait);
1145 timeo = jiffies + HZ;
1146
1147 goto retry;
1148 }
1149
1150 adr += chip->start;
1151
1152 chip->state = FL_READY;
1153
1154 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1155 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1156 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1157
1158 map_copy_from(map, buf, adr, len);
1159
1160 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1161 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1162 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1163 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1164
1165 wake_up(&chip->wq);
1166 mutex_unlock(&chip->mutex);
1167
1168 return 0;
1169 }
1170
1171 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1172 {
1173 struct map_info *map = mtd->priv;
1174 struct cfi_private *cfi = map->fldrv_priv;
1175 unsigned long ofs;
1176 int chipnum;
1177 int ret = 0;
1178
1179 /* ofs: offset within the first chip that the first read should start */
1180 /* 8 secsi bytes per chip */
1181 chipnum=from>>3;
1182 ofs=from & 7;
1183
1184 while (len) {
1185 unsigned long thislen;
1186
1187 if (chipnum >= cfi->numchips)
1188 break;
1189
1190 if ((len + ofs -1) >> 3)
1191 thislen = (1<<3) - ofs;
1192 else
1193 thislen = len;
1194
1195 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1196 if (ret)
1197 break;
1198
1199 *retlen += thislen;
1200 len -= thislen;
1201 buf += thislen;
1202
1203 ofs = 0;
1204 chipnum++;
1205 }
1206 return ret;
1207 }
1208
1209
1210 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1211 {
1212 struct cfi_private *cfi = map->fldrv_priv;
1213 unsigned long timeo = jiffies + HZ;
1214 /*
1215 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1216 * have a max write time of a few hundreds usec). However, we should
1217 * use the maximum timeout value given by the chip at probe time
1218 * instead. Unfortunately, struct flchip does have a field for
1219 * maximum timeout, only for typical which can be far too short
1220 * depending of the conditions. The ' + 1' is to avoid having a
1221 * timeout of 0 jiffies if HZ is smaller than 1000.
1222 */
1223 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1224 int ret = 0;
1225 map_word oldd;
1226 int retry_cnt = 0;
1227
1228 adr += chip->start;
1229
1230 mutex_lock(&chip->mutex);
1231 ret = get_chip(map, chip, adr, FL_WRITING);
1232 if (ret) {
1233 mutex_unlock(&chip->mutex);
1234 return ret;
1235 }
1236
1237 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1238 __func__, adr, datum.x[0] );
1239
1240 /*
1241 * Check for a NOP for the case when the datum to write is already
1242 * present - it saves time and works around buggy chips that corrupt
1243 * data at other locations when 0xff is written to a location that
1244 * already contains 0xff.
1245 */
1246 oldd = map_read(map, adr);
1247 if (map_word_equal(map, oldd, datum)) {
1248 pr_debug("MTD %s(): NOP\n",
1249 __func__);
1250 goto op_done;
1251 }
1252
1253 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1254 ENABLE_VPP(map);
1255 xip_disable(map, chip, adr);
1256 retry:
1257 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1258 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1259 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1260 map_write(map, datum, adr);
1261 chip->state = FL_WRITING;
1262
1263 INVALIDATE_CACHE_UDELAY(map, chip,
1264 adr, map_bankwidth(map),
1265 chip->word_write_time);
1266
1267 /* See comment above for timeout value. */
1268 timeo = jiffies + uWriteTimeout;
1269 for (;;) {
1270 if (chip->state != FL_WRITING) {
1271 /* Someone's suspended the write. Sleep */
1272 DECLARE_WAITQUEUE(wait, current);
1273
1274 set_current_state(TASK_UNINTERRUPTIBLE);
1275 add_wait_queue(&chip->wq, &wait);
1276 mutex_unlock(&chip->mutex);
1277 schedule();
1278 remove_wait_queue(&chip->wq, &wait);
1279 timeo = jiffies + (HZ / 2); /* FIXME */
1280 mutex_lock(&chip->mutex);
1281 continue;
1282 }
1283
1284 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1285 xip_enable(map, chip, adr);
1286 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1287 xip_disable(map, chip, adr);
1288 break;
1289 }
1290
1291 if (chip_ready(map, adr))
1292 break;
1293
1294 /* Latency issues. Drop the lock, wait a while and retry */
1295 UDELAY(map, chip, adr, 1);
1296 }
1297 /* Did we succeed? */
1298 if (!chip_good(map, adr, datum)) {
1299 /* reset on all failures. */
1300 map_write( map, CMD(0xF0), chip->start );
1301 /* FIXME - should have reset delay before continuing */
1302
1303 if (++retry_cnt <= MAX_WORD_RETRIES)
1304 goto retry;
1305
1306 ret = -EIO;
1307 }
1308 xip_enable(map, chip, adr);
1309 op_done:
1310 chip->state = FL_READY;
1311 DISABLE_VPP(map);
1312 put_chip(map, chip, adr);
1313 mutex_unlock(&chip->mutex);
1314
1315 return ret;
1316 }
1317
1318
1319 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1320 size_t *retlen, const u_char *buf)
1321 {
1322 struct map_info *map = mtd->priv;
1323 struct cfi_private *cfi = map->fldrv_priv;
1324 int ret = 0;
1325 int chipnum;
1326 unsigned long ofs, chipstart;
1327 DECLARE_WAITQUEUE(wait, current);
1328
1329 chipnum = to >> cfi->chipshift;
1330 ofs = to - (chipnum << cfi->chipshift);
1331 chipstart = cfi->chips[chipnum].start;
1332
1333 /* If it's not bus-aligned, do the first byte write */
1334 if (ofs & (map_bankwidth(map)-1)) {
1335 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1336 int i = ofs - bus_ofs;
1337 int n = 0;
1338 map_word tmp_buf;
1339
1340 retry:
1341 mutex_lock(&cfi->chips[chipnum].mutex);
1342
1343 if (cfi->chips[chipnum].state != FL_READY) {
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1346
1347 mutex_unlock(&cfi->chips[chipnum].mutex);
1348
1349 schedule();
1350 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351 goto retry;
1352 }
1353
1354 /* Load 'tmp_buf' with old contents of flash */
1355 tmp_buf = map_read(map, bus_ofs+chipstart);
1356
1357 mutex_unlock(&cfi->chips[chipnum].mutex);
1358
1359 /* Number of bytes to copy from buffer */
1360 n = min_t(int, len, map_bankwidth(map)-i);
1361
1362 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1363
1364 ret = do_write_oneword(map, &cfi->chips[chipnum],
1365 bus_ofs, tmp_buf);
1366 if (ret)
1367 return ret;
1368
1369 ofs += n;
1370 buf += n;
1371 (*retlen) += n;
1372 len -= n;
1373
1374 if (ofs >> cfi->chipshift) {
1375 chipnum ++;
1376 ofs = 0;
1377 if (chipnum == cfi->numchips)
1378 return 0;
1379 }
1380 }
1381
1382 /* We are now aligned, write as much as possible */
1383 while(len >= map_bankwidth(map)) {
1384 map_word datum;
1385
1386 datum = map_word_load(map, buf);
1387
1388 ret = do_write_oneword(map, &cfi->chips[chipnum],
1389 ofs, datum);
1390 if (ret)
1391 return ret;
1392
1393 ofs += map_bankwidth(map);
1394 buf += map_bankwidth(map);
1395 (*retlen) += map_bankwidth(map);
1396 len -= map_bankwidth(map);
1397
1398 if (ofs >> cfi->chipshift) {
1399 chipnum ++;
1400 ofs = 0;
1401 if (chipnum == cfi->numchips)
1402 return 0;
1403 chipstart = cfi->chips[chipnum].start;
1404 }
1405 }
1406
1407 /* Write the trailing bytes if any */
1408 if (len & (map_bankwidth(map)-1)) {
1409 map_word tmp_buf;
1410
1411 retry1:
1412 mutex_lock(&cfi->chips[chipnum].mutex);
1413
1414 if (cfi->chips[chipnum].state != FL_READY) {
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1417
1418 mutex_unlock(&cfi->chips[chipnum].mutex);
1419
1420 schedule();
1421 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1422 goto retry1;
1423 }
1424
1425 tmp_buf = map_read(map, ofs + chipstart);
1426
1427 mutex_unlock(&cfi->chips[chipnum].mutex);
1428
1429 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1430
1431 ret = do_write_oneword(map, &cfi->chips[chipnum],
1432 ofs, tmp_buf);
1433 if (ret)
1434 return ret;
1435
1436 (*retlen) += len;
1437 }
1438
1439 return 0;
1440 }
1441
1442
1443 /*
1444 * FIXME: interleaved mode not tested, and probably not supported!
1445 */
1446 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1447 unsigned long adr, const u_char *buf,
1448 int len)
1449 {
1450 struct cfi_private *cfi = map->fldrv_priv;
1451 unsigned long timeo = jiffies + HZ;
1452 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1453 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1454 int ret = -EIO;
1455 unsigned long cmd_adr;
1456 int z, words;
1457 map_word datum;
1458
1459 adr += chip->start;
1460 cmd_adr = adr;
1461
1462 mutex_lock(&chip->mutex);
1463 ret = get_chip(map, chip, adr, FL_WRITING);
1464 if (ret) {
1465 mutex_unlock(&chip->mutex);
1466 return ret;
1467 }
1468
1469 datum = map_word_load(map, buf);
1470
1471 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1472 __func__, adr, datum.x[0] );
1473
1474 XIP_INVAL_CACHED_RANGE(map, adr, len);
1475 ENABLE_VPP(map);
1476 xip_disable(map, chip, cmd_adr);
1477
1478 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1479 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1480
1481 /* Write Buffer Load */
1482 map_write(map, CMD(0x25), cmd_adr);
1483
1484 chip->state = FL_WRITING_TO_BUFFER;
1485
1486 /* Write length of data to come */
1487 words = len / map_bankwidth(map);
1488 map_write(map, CMD(words - 1), cmd_adr);
1489 /* Write data */
1490 z = 0;
1491 while(z < words * map_bankwidth(map)) {
1492 datum = map_word_load(map, buf);
1493 map_write(map, datum, adr + z);
1494
1495 z += map_bankwidth(map);
1496 buf += map_bankwidth(map);
1497 }
1498 z -= map_bankwidth(map);
1499
1500 adr += z;
1501
1502 /* Write Buffer Program Confirm: GO GO GO */
1503 map_write(map, CMD(0x29), cmd_adr);
1504 chip->state = FL_WRITING;
1505
1506 INVALIDATE_CACHE_UDELAY(map, chip,
1507 adr, map_bankwidth(map),
1508 chip->word_write_time);
1509
1510 timeo = jiffies + uWriteTimeout;
1511
1512 for (;;) {
1513 if (chip->state != FL_WRITING) {
1514 /* Someone's suspended the write. Sleep */
1515 DECLARE_WAITQUEUE(wait, current);
1516
1517 set_current_state(TASK_UNINTERRUPTIBLE);
1518 add_wait_queue(&chip->wq, &wait);
1519 mutex_unlock(&chip->mutex);
1520 schedule();
1521 remove_wait_queue(&chip->wq, &wait);
1522 timeo = jiffies + (HZ / 2); /* FIXME */
1523 mutex_lock(&chip->mutex);
1524 continue;
1525 }
1526
1527 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1528 break;
1529
1530 if (chip_ready(map, adr)) {
1531 xip_enable(map, chip, adr);
1532 goto op_done;
1533 }
1534
1535 /* Latency issues. Drop the lock, wait a while and retry */
1536 UDELAY(map, chip, adr, 1);
1537 }
1538
1539 /* reset on all failures. */
1540 map_write( map, CMD(0xF0), chip->start );
1541 xip_enable(map, chip, adr);
1542 /* FIXME - should have reset delay before continuing */
1543
1544 printk(KERN_WARNING "MTD %s(): software timeout\n",
1545 __func__ );
1546
1547 ret = -EIO;
1548 op_done:
1549 chip->state = FL_READY;
1550 DISABLE_VPP(map);
1551 put_chip(map, chip, adr);
1552 mutex_unlock(&chip->mutex);
1553
1554 return ret;
1555 }
1556
1557
1558 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1559 size_t *retlen, const u_char *buf)
1560 {
1561 struct map_info *map = mtd->priv;
1562 struct cfi_private *cfi = map->fldrv_priv;
1563 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1564 int ret = 0;
1565 int chipnum;
1566 unsigned long ofs;
1567
1568 chipnum = to >> cfi->chipshift;
1569 ofs = to - (chipnum << cfi->chipshift);
1570
1571 /* If it's not bus-aligned, do the first word write */
1572 if (ofs & (map_bankwidth(map)-1)) {
1573 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1574 if (local_len > len)
1575 local_len = len;
1576 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1577 local_len, retlen, buf);
1578 if (ret)
1579 return ret;
1580 ofs += local_len;
1581 buf += local_len;
1582 len -= local_len;
1583
1584 if (ofs >> cfi->chipshift) {
1585 chipnum ++;
1586 ofs = 0;
1587 if (chipnum == cfi->numchips)
1588 return 0;
1589 }
1590 }
1591
1592 /* Write buffer is worth it only if more than one word to write... */
1593 while (len >= map_bankwidth(map) * 2) {
1594 /* We must not cross write block boundaries */
1595 int size = wbufsize - (ofs & (wbufsize-1));
1596
1597 if (size > len)
1598 size = len;
1599 if (size % map_bankwidth(map))
1600 size -= size % map_bankwidth(map);
1601
1602 ret = do_write_buffer(map, &cfi->chips[chipnum],
1603 ofs, buf, size);
1604 if (ret)
1605 return ret;
1606
1607 ofs += size;
1608 buf += size;
1609 (*retlen) += size;
1610 len -= size;
1611
1612 if (ofs >> cfi->chipshift) {
1613 chipnum ++;
1614 ofs = 0;
1615 if (chipnum == cfi->numchips)
1616 return 0;
1617 }
1618 }
1619
1620 if (len) {
1621 size_t retlen_dregs = 0;
1622
1623 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1624 len, &retlen_dregs, buf);
1625
1626 *retlen += retlen_dregs;
1627 return ret;
1628 }
1629
1630 return 0;
1631 }
1632
1633 /*
1634 * Wait for the flash chip to become ready to write data
1635 *
1636 * This is only called during the panic_write() path. When panic_write()
1637 * is called, the kernel is in the process of a panic, and will soon be
1638 * dead. Therefore we don't take any locks, and attempt to get access
1639 * to the chip as soon as possible.
1640 */
1641 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1642 unsigned long adr)
1643 {
1644 struct cfi_private *cfi = map->fldrv_priv;
1645 int retries = 10;
1646 int i;
1647
1648 /*
1649 * If the driver thinks the chip is idle, and no toggle bits
1650 * are changing, then the chip is actually idle for sure.
1651 */
1652 if (chip->state == FL_READY && chip_ready(map, adr))
1653 return 0;
1654
1655 /*
1656 * Try several times to reset the chip and then wait for it
1657 * to become idle. The upper limit of a few milliseconds of
1658 * delay isn't a big problem: the kernel is dying anyway. It
1659 * is more important to save the messages.
1660 */
1661 while (retries > 0) {
1662 const unsigned long timeo = (HZ / 1000) + 1;
1663
1664 /* send the reset command */
1665 map_write(map, CMD(0xF0), chip->start);
1666
1667 /* wait for the chip to become ready */
1668 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1669 if (chip_ready(map, adr))
1670 return 0;
1671
1672 udelay(1);
1673 }
1674 }
1675
1676 /* the chip never became ready */
1677 return -EBUSY;
1678 }
1679
1680 /*
1681 * Write out one word of data to a single flash chip during a kernel panic
1682 *
1683 * This is only called during the panic_write() path. When panic_write()
1684 * is called, the kernel is in the process of a panic, and will soon be
1685 * dead. Therefore we don't take any locks, and attempt to get access
1686 * to the chip as soon as possible.
1687 *
1688 * The implementation of this routine is intentionally similar to
1689 * do_write_oneword(), in order to ease code maintenance.
1690 */
1691 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1692 unsigned long adr, map_word datum)
1693 {
1694 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1695 struct cfi_private *cfi = map->fldrv_priv;
1696 int retry_cnt = 0;
1697 map_word oldd;
1698 int ret = 0;
1699 int i;
1700
1701 adr += chip->start;
1702
1703 ret = cfi_amdstd_panic_wait(map, chip, adr);
1704 if (ret)
1705 return ret;
1706
1707 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1708 __func__, adr, datum.x[0]);
1709
1710 /*
1711 * Check for a NOP for the case when the datum to write is already
1712 * present - it saves time and works around buggy chips that corrupt
1713 * data at other locations when 0xff is written to a location that
1714 * already contains 0xff.
1715 */
1716 oldd = map_read(map, adr);
1717 if (map_word_equal(map, oldd, datum)) {
1718 pr_debug("MTD %s(): NOP\n", __func__);
1719 goto op_done;
1720 }
1721
1722 ENABLE_VPP(map);
1723
1724 retry:
1725 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1726 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1727 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1728 map_write(map, datum, adr);
1729
1730 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1731 if (chip_ready(map, adr))
1732 break;
1733
1734 udelay(1);
1735 }
1736
1737 if (!chip_good(map, adr, datum)) {
1738 /* reset on all failures. */
1739 map_write(map, CMD(0xF0), chip->start);
1740 /* FIXME - should have reset delay before continuing */
1741
1742 if (++retry_cnt <= MAX_WORD_RETRIES)
1743 goto retry;
1744
1745 ret = -EIO;
1746 }
1747
1748 op_done:
1749 DISABLE_VPP(map);
1750 return ret;
1751 }
1752
1753 /*
1754 * Write out some data during a kernel panic
1755 *
1756 * This is used by the mtdoops driver to save the dying messages from a
1757 * kernel which has panic'd.
1758 *
1759 * This routine ignores all of the locking used throughout the rest of the
1760 * driver, in order to ensure that the data gets written out no matter what
1761 * state this driver (and the flash chip itself) was in when the kernel crashed.
1762 *
1763 * The implementation of this routine is intentionally similar to
1764 * cfi_amdstd_write_words(), in order to ease code maintenance.
1765 */
1766 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1767 size_t *retlen, const u_char *buf)
1768 {
1769 struct map_info *map = mtd->priv;
1770 struct cfi_private *cfi = map->fldrv_priv;
1771 unsigned long ofs, chipstart;
1772 int ret = 0;
1773 int chipnum;
1774
1775 chipnum = to >> cfi->chipshift;
1776 ofs = to - (chipnum << cfi->chipshift);
1777 chipstart = cfi->chips[chipnum].start;
1778
1779 /* If it's not bus aligned, do the first byte write */
1780 if (ofs & (map_bankwidth(map) - 1)) {
1781 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1782 int i = ofs - bus_ofs;
1783 int n = 0;
1784 map_word tmp_buf;
1785
1786 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1787 if (ret)
1788 return ret;
1789
1790 /* Load 'tmp_buf' with old contents of flash */
1791 tmp_buf = map_read(map, bus_ofs + chipstart);
1792
1793 /* Number of bytes to copy from buffer */
1794 n = min_t(int, len, map_bankwidth(map) - i);
1795
1796 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1797
1798 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1799 bus_ofs, tmp_buf);
1800 if (ret)
1801 return ret;
1802
1803 ofs += n;
1804 buf += n;
1805 (*retlen) += n;
1806 len -= n;
1807
1808 if (ofs >> cfi->chipshift) {
1809 chipnum++;
1810 ofs = 0;
1811 if (chipnum == cfi->numchips)
1812 return 0;
1813 }
1814 }
1815
1816 /* We are now aligned, write as much as possible */
1817 while (len >= map_bankwidth(map)) {
1818 map_word datum;
1819
1820 datum = map_word_load(map, buf);
1821
1822 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1823 ofs, datum);
1824 if (ret)
1825 return ret;
1826
1827 ofs += map_bankwidth(map);
1828 buf += map_bankwidth(map);
1829 (*retlen) += map_bankwidth(map);
1830 len -= map_bankwidth(map);
1831
1832 if (ofs >> cfi->chipshift) {
1833 chipnum++;
1834 ofs = 0;
1835 if (chipnum == cfi->numchips)
1836 return 0;
1837
1838 chipstart = cfi->chips[chipnum].start;
1839 }
1840 }
1841
1842 /* Write the trailing bytes if any */
1843 if (len & (map_bankwidth(map) - 1)) {
1844 map_word tmp_buf;
1845
1846 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1847 if (ret)
1848 return ret;
1849
1850 tmp_buf = map_read(map, ofs + chipstart);
1851
1852 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1853
1854 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1855 ofs, tmp_buf);
1856 if (ret)
1857 return ret;
1858
1859 (*retlen) += len;
1860 }
1861
1862 return 0;
1863 }
1864
1865
1866 /*
1867 * Handle devices with one erase region, that only implement
1868 * the chip erase command.
1869 */
1870 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1871 {
1872 struct cfi_private *cfi = map->fldrv_priv;
1873 unsigned long timeo = jiffies + HZ;
1874 unsigned long int adr;
1875 DECLARE_WAITQUEUE(wait, current);
1876 int ret = 0;
1877
1878 adr = cfi->addr_unlock1;
1879
1880 mutex_lock(&chip->mutex);
1881 ret = get_chip(map, chip, adr, FL_WRITING);
1882 if (ret) {
1883 mutex_unlock(&chip->mutex);
1884 return ret;
1885 }
1886
1887 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1888 __func__, chip->start );
1889
1890 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1891 ENABLE_VPP(map);
1892 xip_disable(map, chip, adr);
1893
1894 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1895 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1896 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1897 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1898 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1899 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1900
1901 chip->state = FL_ERASING;
1902 chip->erase_suspended = 0;
1903 chip->in_progress_block_addr = adr;
1904
1905 INVALIDATE_CACHE_UDELAY(map, chip,
1906 adr, map->size,
1907 chip->erase_time*500);
1908
1909 timeo = jiffies + (HZ*20);
1910
1911 for (;;) {
1912 if (chip->state != FL_ERASING) {
1913 /* Someone's suspended the erase. Sleep */
1914 set_current_state(TASK_UNINTERRUPTIBLE);
1915 add_wait_queue(&chip->wq, &wait);
1916 mutex_unlock(&chip->mutex);
1917 schedule();
1918 remove_wait_queue(&chip->wq, &wait);
1919 mutex_lock(&chip->mutex);
1920 continue;
1921 }
1922 if (chip->erase_suspended) {
1923 /* This erase was suspended and resumed.
1924 Adjust the timeout */
1925 timeo = jiffies + (HZ*20); /* FIXME */
1926 chip->erase_suspended = 0;
1927 }
1928
1929 if (chip_ready(map, adr))
1930 break;
1931
1932 if (time_after(jiffies, timeo)) {
1933 printk(KERN_WARNING "MTD %s(): software timeout\n",
1934 __func__ );
1935 break;
1936 }
1937
1938 /* Latency issues. Drop the lock, wait a while and retry */
1939 UDELAY(map, chip, adr, 1000000/HZ);
1940 }
1941 /* Did we succeed? */
1942 if (!chip_good(map, adr, map_word_ff(map))) {
1943 /* reset on all failures. */
1944 map_write( map, CMD(0xF0), chip->start );
1945 /* FIXME - should have reset delay before continuing */
1946
1947 ret = -EIO;
1948 }
1949
1950 chip->state = FL_READY;
1951 xip_enable(map, chip, adr);
1952 DISABLE_VPP(map);
1953 put_chip(map, chip, adr);
1954 mutex_unlock(&chip->mutex);
1955
1956 return ret;
1957 }
1958
1959
1960 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1961 {
1962 struct cfi_private *cfi = map->fldrv_priv;
1963 unsigned long timeo = jiffies + HZ;
1964 DECLARE_WAITQUEUE(wait, current);
1965 int ret = 0;
1966
1967 adr += chip->start;
1968
1969 mutex_lock(&chip->mutex);
1970 ret = get_chip(map, chip, adr, FL_ERASING);
1971 if (ret) {
1972 mutex_unlock(&chip->mutex);
1973 return ret;
1974 }
1975
1976 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1977 __func__, adr );
1978
1979 XIP_INVAL_CACHED_RANGE(map, adr, len);
1980 ENABLE_VPP(map);
1981 xip_disable(map, chip, adr);
1982
1983 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1984 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1985 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1986 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1987 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1988 map_write(map, cfi->sector_erase_cmd, adr);
1989
1990 chip->state = FL_ERASING;
1991 chip->erase_suspended = 0;
1992 chip->in_progress_block_addr = adr;
1993
1994 INVALIDATE_CACHE_UDELAY(map, chip,
1995 adr, len,
1996 chip->erase_time*500);
1997
1998 timeo = jiffies + (HZ*20);
1999
2000 for (;;) {
2001 if (chip->state != FL_ERASING) {
2002 /* Someone's suspended the erase. Sleep */
2003 set_current_state(TASK_UNINTERRUPTIBLE);
2004 add_wait_queue(&chip->wq, &wait);
2005 mutex_unlock(&chip->mutex);
2006 schedule();
2007 remove_wait_queue(&chip->wq, &wait);
2008 mutex_lock(&chip->mutex);
2009 continue;
2010 }
2011 if (chip->erase_suspended) {
2012 /* This erase was suspended and resumed.
2013 Adjust the timeout */
2014 timeo = jiffies + (HZ*20); /* FIXME */
2015 chip->erase_suspended = 0;
2016 }
2017
2018 if (chip_ready(map, adr)) {
2019 xip_enable(map, chip, adr);
2020 break;
2021 }
2022
2023 if (time_after(jiffies, timeo)) {
2024 xip_enable(map, chip, adr);
2025 printk(KERN_WARNING "MTD %s(): software timeout\n",
2026 __func__ );
2027 break;
2028 }
2029
2030 /* Latency issues. Drop the lock, wait a while and retry */
2031 UDELAY(map, chip, adr, 1000000/HZ);
2032 }
2033 /* Did we succeed? */
2034 if (!chip_good(map, adr, map_word_ff(map))) {
2035 /* reset on all failures. */
2036 map_write( map, CMD(0xF0), chip->start );
2037 /* FIXME - should have reset delay before continuing */
2038
2039 ret = -EIO;
2040 }
2041
2042 chip->state = FL_READY;
2043 DISABLE_VPP(map);
2044 put_chip(map, chip, adr);
2045 mutex_unlock(&chip->mutex);
2046 return ret;
2047 }
2048
2049
2050 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2051 {
2052 unsigned long ofs, len;
2053 int ret;
2054
2055 ofs = instr->addr;
2056 len = instr->len;
2057
2058 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2059 if (ret)
2060 return ret;
2061
2062 instr->state = MTD_ERASE_DONE;
2063 mtd_erase_callback(instr);
2064
2065 return 0;
2066 }
2067
2068
2069 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2070 {
2071 struct map_info *map = mtd->priv;
2072 struct cfi_private *cfi = map->fldrv_priv;
2073 int ret = 0;
2074
2075 if (instr->addr != 0)
2076 return -EINVAL;
2077
2078 if (instr->len != mtd->size)
2079 return -EINVAL;
2080
2081 ret = do_erase_chip(map, &cfi->chips[0]);
2082 if (ret)
2083 return ret;
2084
2085 instr->state = MTD_ERASE_DONE;
2086 mtd_erase_callback(instr);
2087
2088 return 0;
2089 }
2090
2091 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2092 unsigned long adr, int len, void *thunk)
2093 {
2094 struct cfi_private *cfi = map->fldrv_priv;
2095 int ret;
2096
2097 mutex_lock(&chip->mutex);
2098 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2099 if (ret)
2100 goto out_unlock;
2101 chip->state = FL_LOCKING;
2102
2103 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2104
2105 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2106 cfi->device_type, NULL);
2107 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2108 cfi->device_type, NULL);
2109 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2110 cfi->device_type, NULL);
2111 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2112 cfi->device_type, NULL);
2113 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2114 cfi->device_type, NULL);
2115 map_write(map, CMD(0x40), chip->start + adr);
2116
2117 chip->state = FL_READY;
2118 put_chip(map, chip, adr + chip->start);
2119 ret = 0;
2120
2121 out_unlock:
2122 mutex_unlock(&chip->mutex);
2123 return ret;
2124 }
2125
2126 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2127 unsigned long adr, int len, void *thunk)
2128 {
2129 struct cfi_private *cfi = map->fldrv_priv;
2130 int ret;
2131
2132 mutex_lock(&chip->mutex);
2133 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2134 if (ret)
2135 goto out_unlock;
2136 chip->state = FL_UNLOCKING;
2137
2138 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2139
2140 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2141 cfi->device_type, NULL);
2142 map_write(map, CMD(0x70), adr);
2143
2144 chip->state = FL_READY;
2145 put_chip(map, chip, adr + chip->start);
2146 ret = 0;
2147
2148 out_unlock:
2149 mutex_unlock(&chip->mutex);
2150 return ret;
2151 }
2152
2153 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2154 {
2155 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2156 }
2157
2158 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2159 {
2160 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2161 }
2162
2163
2164 static void cfi_amdstd_sync (struct mtd_info *mtd)
2165 {
2166 struct map_info *map = mtd->priv;
2167 struct cfi_private *cfi = map->fldrv_priv;
2168 int i;
2169 struct flchip *chip;
2170 int ret = 0;
2171 DECLARE_WAITQUEUE(wait, current);
2172
2173 for (i=0; !ret && i<cfi->numchips; i++) {
2174 chip = &cfi->chips[i];
2175
2176 retry:
2177 mutex_lock(&chip->mutex);
2178
2179 switch(chip->state) {
2180 case FL_READY:
2181 case FL_STATUS:
2182 case FL_CFI_QUERY:
2183 case FL_JEDEC_QUERY:
2184 chip->oldstate = chip->state;
2185 chip->state = FL_SYNCING;
2186 /* No need to wake_up() on this state change -
2187 * as the whole point is that nobody can do anything
2188 * with the chip now anyway.
2189 */
2190 case FL_SYNCING:
2191 mutex_unlock(&chip->mutex);
2192 break;
2193
2194 default:
2195 /* Not an idle state */
2196 set_current_state(TASK_UNINTERRUPTIBLE);
2197 add_wait_queue(&chip->wq, &wait);
2198
2199 mutex_unlock(&chip->mutex);
2200
2201 schedule();
2202
2203 remove_wait_queue(&chip->wq, &wait);
2204
2205 goto retry;
2206 }
2207 }
2208
2209 /* Unlock the chips again */
2210
2211 for (i--; i >=0; i--) {
2212 chip = &cfi->chips[i];
2213
2214 mutex_lock(&chip->mutex);
2215
2216 if (chip->state == FL_SYNCING) {
2217 chip->state = chip->oldstate;
2218 wake_up(&chip->wq);
2219 }
2220 mutex_unlock(&chip->mutex);
2221 }
2222 }
2223
2224
2225 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2226 {
2227 struct map_info *map = mtd->priv;
2228 struct cfi_private *cfi = map->fldrv_priv;
2229 int i;
2230 struct flchip *chip;
2231 int ret = 0;
2232
2233 for (i=0; !ret && i<cfi->numchips; i++) {
2234 chip = &cfi->chips[i];
2235
2236 mutex_lock(&chip->mutex);
2237
2238 switch(chip->state) {
2239 case FL_READY:
2240 case FL_STATUS:
2241 case FL_CFI_QUERY:
2242 case FL_JEDEC_QUERY:
2243 chip->oldstate = chip->state;
2244 chip->state = FL_PM_SUSPENDED;
2245 /* No need to wake_up() on this state change -
2246 * as the whole point is that nobody can do anything
2247 * with the chip now anyway.
2248 */
2249 case FL_PM_SUSPENDED:
2250 break;
2251
2252 default:
2253 ret = -EAGAIN;
2254 break;
2255 }
2256 mutex_unlock(&chip->mutex);
2257 }
2258
2259 /* Unlock the chips again */
2260
2261 if (ret) {
2262 for (i--; i >=0; i--) {
2263 chip = &cfi->chips[i];
2264
2265 mutex_lock(&chip->mutex);
2266
2267 if (chip->state == FL_PM_SUSPENDED) {
2268 chip->state = chip->oldstate;
2269 wake_up(&chip->wq);
2270 }
2271 mutex_unlock(&chip->mutex);
2272 }
2273 }
2274
2275 return ret;
2276 }
2277
2278
2279 static void cfi_amdstd_resume(struct mtd_info *mtd)
2280 {
2281 struct map_info *map = mtd->priv;
2282 struct cfi_private *cfi = map->fldrv_priv;
2283 int i;
2284 struct flchip *chip;
2285
2286 for (i=0; i<cfi->numchips; i++) {
2287
2288 chip = &cfi->chips[i];
2289
2290 mutex_lock(&chip->mutex);
2291
2292 if (chip->state == FL_PM_SUSPENDED) {
2293 chip->state = FL_READY;
2294 map_write(map, CMD(0xF0), chip->start);
2295 wake_up(&chip->wq);
2296 }
2297 else
2298 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2299
2300 mutex_unlock(&chip->mutex);
2301 }
2302 }
2303
2304
2305 /*
2306 * Ensure that the flash device is put back into read array mode before
2307 * unloading the driver or rebooting. On some systems, rebooting while
2308 * the flash is in query/program/erase mode will prevent the CPU from
2309 * fetching the bootloader code, requiring a hard reset or power cycle.
2310 */
2311 static int cfi_amdstd_reset(struct mtd_info *mtd)
2312 {
2313 struct map_info *map = mtd->priv;
2314 struct cfi_private *cfi = map->fldrv_priv;
2315 int i, ret;
2316 struct flchip *chip;
2317
2318 for (i = 0; i < cfi->numchips; i++) {
2319
2320 chip = &cfi->chips[i];
2321
2322 mutex_lock(&chip->mutex);
2323
2324 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2325 if (!ret) {
2326 map_write(map, CMD(0xF0), chip->start);
2327 chip->state = FL_SHUTDOWN;
2328 put_chip(map, chip, chip->start);
2329 }
2330
2331 mutex_unlock(&chip->mutex);
2332 }
2333
2334 return 0;
2335 }
2336
2337
2338 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2339 void *v)
2340 {
2341 struct mtd_info *mtd;
2342
2343 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2344 cfi_amdstd_reset(mtd);
2345 return NOTIFY_DONE;
2346 }
2347
2348
2349 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2350 {
2351 struct map_info *map = mtd->priv;
2352 struct cfi_private *cfi = map->fldrv_priv;
2353
2354 cfi_amdstd_reset(mtd);
2355 unregister_reboot_notifier(&mtd->reboot_notifier);
2356 kfree(cfi->cmdset_priv);
2357 kfree(cfi->cfiq);
2358 kfree(cfi);
2359 kfree(mtd->eraseregions);
2360 }
2361
2362 MODULE_LICENSE("GPL");
2363 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2364 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2365 MODULE_ALIAS("cfi_cmdset_0006");
2366 MODULE_ALIAS("cfi_cmdset_0701");