]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/chips/cfi_cmdset_0002.c
Merge tag 'iwlwifi-for-kalle-2016-01-26_2' of https://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_WORD_RETRIES 3
46
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
51
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
76
77 static void cfi_amdstd_destroy(struct mtd_info *);
78
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
85
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
97 .module = THIS_MODULE
98 };
99
100
101 /* #define DEBUG_CFI_FEATURES */
102
103
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106 {
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
109 };
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
114 };
115
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
119
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 else
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
127 else
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
129
130
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
139 else
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
141
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppMin >> 4, extp->VppMin & 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp->VppMax >> 4, extp->VppMax & 0xf);
146
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 else
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151 }
152 #endif
153
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
157 {
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
163
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
166
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map->name, cfi->mfr, cfi->id);
169
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
174 */
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 * has CFI.
181 *
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
185 */
186 (cfi->mfr == CFI_MFR_MACRONIX)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
190 } else
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
194 } else {
195 extp->TopBottom = 2; /* bottom boot */
196 }
197
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
201 }
202 }
203 #endif
204
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
206 {
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
210 pr_debug("Using buffer write method\n" );
211 mtd->_write = cfi_amdstd_write_buffers;
212 }
213 }
214
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217 {
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
222
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
228
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
232 extp->TopBottom = 3;
233 else
234 extp->TopBottom = 2;
235 } else {
236 if (atmel_pri.BottomBoot)
237 extp->TopBottom = 2;
238 else
239 extp->TopBottom = 3;
240 }
241
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
245 }
246
247 static void fixup_use_secsi(struct mtd_info *mtd)
248 {
249 /* Setup for chips with a secsi area */
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252 }
253
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
255 {
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 mtd->_erase = cfi_amdstd_erase_chip;
261 }
262
263 }
264
265 /*
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
268 */
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
270 {
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
273 mtd->flags |= MTD_POWERUP_LOCK;
274 }
275
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277 {
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280
281 /*
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
285 * sector_erase-size.
286 */
287 cfi->cfiq->NumEraseRegions = 1;
288 }
289
290 static void fixup_sst39vf(struct mtd_info *mtd)
291 {
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
294
295 fixup_old_sst_eraseregion(mtd);
296
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
299 }
300
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302 {
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
305
306 fixup_old_sst_eraseregion(mtd);
307
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
310
311 cfi->sector_erase_cmd = CMD(0x50);
312 }
313
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315 {
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
318
319 fixup_sst39vf_rev_b(mtd);
320
321 /*
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
324 */
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
327 }
328
329 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
330 {
331 struct map_info *map = mtd->priv;
332 struct cfi_private *cfi = map->fldrv_priv;
333
334 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
335 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
336 pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
337 }
338 }
339
340 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
341 {
342 struct map_info *map = mtd->priv;
343 struct cfi_private *cfi = map->fldrv_priv;
344
345 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
346 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
347 pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
348 }
349 }
350
351 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
352 {
353 struct map_info *map = mtd->priv;
354 struct cfi_private *cfi = map->fldrv_priv;
355
356 /*
357 * S29NS512P flash uses more than 8bits to report number of sectors,
358 * which is not permitted by CFI.
359 */
360 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
361 pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
362 }
363
364 /* Used to fix CFI-Tables of chips without Extended Query Tables */
365 static struct cfi_fixup cfi_nopri_fixup_table[] = {
366 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
367 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
368 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
369 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
370 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
371 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
372 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
373 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
374 { 0, 0, NULL }
375 };
376
377 static struct cfi_fixup cfi_fixup_table[] = {
378 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
379 #ifdef AMD_BOOTLOC_BUG
380 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
381 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
382 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
383 #endif
384 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
385 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
386 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
387 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
388 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
391 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
392 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
393 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
394 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
395 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
396 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
397 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
398 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
399 #if !FORCE_WORD_WRITE
400 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
401 #endif
402 { 0, 0, NULL }
403 };
404 static struct cfi_fixup jedec_fixup_table[] = {
405 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
406 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
407 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
408 { 0, 0, NULL }
409 };
410
411 static struct cfi_fixup fixup_table[] = {
412 /* The CFI vendor ids and the JEDEC vendor IDs appear
413 * to be common. It is like the devices id's are as
414 * well. This table is to pick all cases where
415 * we know that is the case.
416 */
417 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
418 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
419 { 0, 0, NULL }
420 };
421
422
423 static void cfi_fixup_major_minor(struct cfi_private *cfi,
424 struct cfi_pri_amdstd *extp)
425 {
426 if (cfi->mfr == CFI_MFR_SAMSUNG) {
427 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
428 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
429 /*
430 * Samsung K8P2815UQB and K8D6x16UxM chips
431 * report major=0 / minor=0.
432 * K8D3x16UxC chips report major=3 / minor=3.
433 */
434 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
435 " Extended Query version to 1.%c\n",
436 extp->MinorVersion);
437 extp->MajorVersion = '1';
438 }
439 }
440
441 /*
442 * SST 38VF640x chips report major=0xFF / minor=0xFF.
443 */
444 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
445 extp->MajorVersion = '1';
446 extp->MinorVersion = '0';
447 }
448 }
449
450 static int is_m29ew(struct cfi_private *cfi)
451 {
452 if (cfi->mfr == CFI_MFR_INTEL &&
453 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
454 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
455 return 1;
456 return 0;
457 }
458
459 /*
460 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
461 * Some revisions of the M29EW suffer from erase suspend hang ups. In
462 * particular, it can occur when the sequence
463 * Erase Confirm -> Suspend -> Program -> Resume
464 * causes a lockup due to internal timing issues. The consequence is that the
465 * erase cannot be resumed without inserting a dummy command after programming
466 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
467 * that writes an F0 command code before the RESUME command.
468 */
469 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
470 unsigned long adr)
471 {
472 struct cfi_private *cfi = map->fldrv_priv;
473 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
474 if (is_m29ew(cfi))
475 map_write(map, CMD(0xF0), adr);
476 }
477
478 /*
479 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
480 *
481 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
482 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
483 * command is issued after an ERASE RESUME operation without waiting for a
484 * minimum delay. The result is that once the ERASE seems to be completed
485 * (no bits are toggling), the contents of the Flash memory block on which
486 * the erase was ongoing could be inconsistent with the expected values
487 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
488 * values), causing a consequent failure of the ERASE operation.
489 * The occurrence of this issue could be high, especially when file system
490 * operations on the Flash are intensive. As a result, it is recommended
491 * that a patch be applied. Intensive file system operations can cause many
492 * calls to the garbage routine to free Flash space (also by erasing physical
493 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
494 * commands can occur. The problem disappears when a delay is inserted after
495 * the RESUME command by using the udelay() function available in Linux.
496 * The DELAY value must be tuned based on the customer's platform.
497 * The maximum value that fixes the problem in all cases is 500us.
498 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
499 * in most cases.
500 * We have chosen 500µs because this latency is acceptable.
501 */
502 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
503 {
504 /*
505 * Resolving the Delay After Resume Issue see Micron TN-13-07
506 * Worst case delay must be 500µs but 30-50µs should be ok as well
507 */
508 if (is_m29ew(cfi))
509 cfi_udelay(500);
510 }
511
512 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
513 {
514 struct cfi_private *cfi = map->fldrv_priv;
515 struct device_node __maybe_unused *np = map->device_node;
516 struct mtd_info *mtd;
517 int i;
518
519 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
520 if (!mtd)
521 return NULL;
522 mtd->priv = map;
523 mtd->type = MTD_NORFLASH;
524
525 /* Fill in the default mtd operations */
526 mtd->_erase = cfi_amdstd_erase_varsize;
527 mtd->_write = cfi_amdstd_write_words;
528 mtd->_read = cfi_amdstd_read;
529 mtd->_sync = cfi_amdstd_sync;
530 mtd->_suspend = cfi_amdstd_suspend;
531 mtd->_resume = cfi_amdstd_resume;
532 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
533 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
534 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
535 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
536 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
537 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
538 mtd->flags = MTD_CAP_NORFLASH;
539 mtd->name = map->name;
540 mtd->writesize = 1;
541 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
542
543 pr_debug("MTD %s(): write buffer size %d\n", __func__,
544 mtd->writebufsize);
545
546 mtd->_panic_write = cfi_amdstd_panic_write;
547 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
548
549 if (cfi->cfi_mode==CFI_MODE_CFI){
550 unsigned char bootloc;
551 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
552 struct cfi_pri_amdstd *extp;
553
554 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
555 if (extp) {
556 /*
557 * It's a real CFI chip, not one for which the probe
558 * routine faked a CFI structure.
559 */
560 cfi_fixup_major_minor(cfi, extp);
561
562 /*
563 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
564 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
565 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
566 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
567 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
568 */
569 if (extp->MajorVersion != '1' ||
570 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
571 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
572 "version %c.%c (%#02x/%#02x).\n",
573 extp->MajorVersion, extp->MinorVersion,
574 extp->MajorVersion, extp->MinorVersion);
575 kfree(extp);
576 kfree(mtd);
577 return NULL;
578 }
579
580 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
581 extp->MajorVersion, extp->MinorVersion);
582
583 /* Install our own private info structure */
584 cfi->cmdset_priv = extp;
585
586 /* Apply cfi device specific fixups */
587 cfi_fixup(mtd, cfi_fixup_table);
588
589 #ifdef DEBUG_CFI_FEATURES
590 /* Tell the user about it in lots of lovely detail */
591 cfi_tell_features(extp);
592 #endif
593
594 #ifdef CONFIG_OF
595 if (np && of_property_read_bool(
596 np, "use-advanced-sector-protection")
597 && extp->BlkProtUnprot == 8) {
598 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
599 mtd->_lock = cfi_ppb_lock;
600 mtd->_unlock = cfi_ppb_unlock;
601 mtd->_is_locked = cfi_ppb_is_locked;
602 }
603 #endif
604
605 bootloc = extp->TopBottom;
606 if ((bootloc < 2) || (bootloc > 5)) {
607 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
608 "bank location (%d). Assuming bottom.\n",
609 map->name, bootloc);
610 bootloc = 2;
611 }
612
613 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
614 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
615
616 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
617 int j = (cfi->cfiq->NumEraseRegions-1)-i;
618
619 swap(cfi->cfiq->EraseRegionInfo[i],
620 cfi->cfiq->EraseRegionInfo[j]);
621 }
622 }
623 /* Set the default CFI lock/unlock addresses */
624 cfi->addr_unlock1 = 0x555;
625 cfi->addr_unlock2 = 0x2aa;
626 }
627 cfi_fixup(mtd, cfi_nopri_fixup_table);
628
629 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
630 kfree(mtd);
631 return NULL;
632 }
633
634 } /* CFI mode */
635 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
636 /* Apply jedec specific fixups */
637 cfi_fixup(mtd, jedec_fixup_table);
638 }
639 /* Apply generic fixups */
640 cfi_fixup(mtd, fixup_table);
641
642 for (i=0; i< cfi->numchips; i++) {
643 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
644 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
645 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
646 /*
647 * First calculate the timeout max according to timeout field
648 * of struct cfi_ident that probed from chip's CFI aera, if
649 * available. Specify a minimum of 2000us, in case the CFI data
650 * is wrong.
651 */
652 if (cfi->cfiq->BufWriteTimeoutTyp &&
653 cfi->cfiq->BufWriteTimeoutMax)
654 cfi->chips[i].buffer_write_time_max =
655 1 << (cfi->cfiq->BufWriteTimeoutTyp +
656 cfi->cfiq->BufWriteTimeoutMax);
657 else
658 cfi->chips[i].buffer_write_time_max = 0;
659
660 cfi->chips[i].buffer_write_time_max =
661 max(cfi->chips[i].buffer_write_time_max, 2000);
662
663 cfi->chips[i].ref_point_counter = 0;
664 init_waitqueue_head(&(cfi->chips[i].wq));
665 }
666
667 map->fldrv = &cfi_amdstd_chipdrv;
668
669 return cfi_amdstd_setup(mtd);
670 }
671 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
672 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
673 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
674 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
675 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
676
677 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
678 {
679 struct map_info *map = mtd->priv;
680 struct cfi_private *cfi = map->fldrv_priv;
681 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
682 unsigned long offset = 0;
683 int i,j;
684
685 printk(KERN_NOTICE "number of %s chips: %d\n",
686 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
687 /* Select the correct geometry setup */
688 mtd->size = devsize * cfi->numchips;
689
690 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
691 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
692 * mtd->numeraseregions, GFP_KERNEL);
693 if (!mtd->eraseregions)
694 goto setup_err;
695
696 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
697 unsigned long ernum, ersize;
698 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
699 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
700
701 if (mtd->erasesize < ersize) {
702 mtd->erasesize = ersize;
703 }
704 for (j=0; j<cfi->numchips; j++) {
705 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
706 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
707 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
708 }
709 offset += (ersize * ernum);
710 }
711 if (offset != devsize) {
712 /* Argh */
713 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
714 goto setup_err;
715 }
716
717 __module_get(THIS_MODULE);
718 register_reboot_notifier(&mtd->reboot_notifier);
719 return mtd;
720
721 setup_err:
722 kfree(mtd->eraseregions);
723 kfree(mtd);
724 kfree(cfi->cmdset_priv);
725 kfree(cfi->cfiq);
726 return NULL;
727 }
728
729 /*
730 * Return true if the chip is ready.
731 *
732 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
733 * non-suspended sector) and is indicated by no toggle bits toggling.
734 *
735 * Note that anything more complicated than checking if no bits are toggling
736 * (including checking DQ5 for an error status) is tricky to get working
737 * correctly and is therefore not done (particularly with interleaved chips
738 * as each chip must be checked independently of the others).
739 */
740 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
741 {
742 map_word d, t;
743
744 d = map_read(map, addr);
745 t = map_read(map, addr);
746
747 return map_word_equal(map, d, t);
748 }
749
750 /*
751 * Return true if the chip is ready and has the correct value.
752 *
753 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
754 * non-suspended sector) and it is indicated by no bits toggling.
755 *
756 * Error are indicated by toggling bits or bits held with the wrong value,
757 * or with bits toggling.
758 *
759 * Note that anything more complicated than checking if no bits are toggling
760 * (including checking DQ5 for an error status) is tricky to get working
761 * correctly and is therefore not done (particularly with interleaved chips
762 * as each chip must be checked independently of the others).
763 *
764 */
765 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
766 {
767 map_word oldd, curd;
768
769 oldd = map_read(map, addr);
770 curd = map_read(map, addr);
771
772 return map_word_equal(map, oldd, curd) &&
773 map_word_equal(map, curd, expected);
774 }
775
776 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
777 {
778 DECLARE_WAITQUEUE(wait, current);
779 struct cfi_private *cfi = map->fldrv_priv;
780 unsigned long timeo;
781 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
782
783 resettime:
784 timeo = jiffies + HZ;
785 retry:
786 switch (chip->state) {
787
788 case FL_STATUS:
789 for (;;) {
790 if (chip_ready(map, adr))
791 break;
792
793 if (time_after(jiffies, timeo)) {
794 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
795 return -EIO;
796 }
797 mutex_unlock(&chip->mutex);
798 cfi_udelay(1);
799 mutex_lock(&chip->mutex);
800 /* Someone else might have been playing with it. */
801 goto retry;
802 }
803
804 case FL_READY:
805 case FL_CFI_QUERY:
806 case FL_JEDEC_QUERY:
807 return 0;
808
809 case FL_ERASING:
810 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
811 !(mode == FL_READY || mode == FL_POINT ||
812 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
813 goto sleep;
814
815 /* We could check to see if we're trying to access the sector
816 * that is currently being erased. However, no user will try
817 * anything like that so we just wait for the timeout. */
818
819 /* Erase suspend */
820 /* It's harmless to issue the Erase-Suspend and Erase-Resume
821 * commands when the erase algorithm isn't in progress. */
822 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
823 chip->oldstate = FL_ERASING;
824 chip->state = FL_ERASE_SUSPENDING;
825 chip->erase_suspended = 1;
826 for (;;) {
827 if (chip_ready(map, adr))
828 break;
829
830 if (time_after(jiffies, timeo)) {
831 /* Should have suspended the erase by now.
832 * Send an Erase-Resume command as either
833 * there was an error (so leave the erase
834 * routine to recover from it) or we trying to
835 * use the erase-in-progress sector. */
836 put_chip(map, chip, adr);
837 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
838 return -EIO;
839 }
840
841 mutex_unlock(&chip->mutex);
842 cfi_udelay(1);
843 mutex_lock(&chip->mutex);
844 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
845 So we can just loop here. */
846 }
847 chip->state = FL_READY;
848 return 0;
849
850 case FL_XIP_WHILE_ERASING:
851 if (mode != FL_READY && mode != FL_POINT &&
852 (!cfip || !(cfip->EraseSuspend&2)))
853 goto sleep;
854 chip->oldstate = chip->state;
855 chip->state = FL_READY;
856 return 0;
857
858 case FL_SHUTDOWN:
859 /* The machine is rebooting */
860 return -EIO;
861
862 case FL_POINT:
863 /* Only if there's no operation suspended... */
864 if (mode == FL_READY && chip->oldstate == FL_READY)
865 return 0;
866
867 default:
868 sleep:
869 set_current_state(TASK_UNINTERRUPTIBLE);
870 add_wait_queue(&chip->wq, &wait);
871 mutex_unlock(&chip->mutex);
872 schedule();
873 remove_wait_queue(&chip->wq, &wait);
874 mutex_lock(&chip->mutex);
875 goto resettime;
876 }
877 }
878
879
880 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
881 {
882 struct cfi_private *cfi = map->fldrv_priv;
883
884 switch(chip->oldstate) {
885 case FL_ERASING:
886 cfi_fixup_m29ew_erase_suspend(map,
887 chip->in_progress_block_addr);
888 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
889 cfi_fixup_m29ew_delay_after_resume(cfi);
890 chip->oldstate = FL_READY;
891 chip->state = FL_ERASING;
892 break;
893
894 case FL_XIP_WHILE_ERASING:
895 chip->state = chip->oldstate;
896 chip->oldstate = FL_READY;
897 break;
898
899 case FL_READY:
900 case FL_STATUS:
901 break;
902 default:
903 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
904 }
905 wake_up(&chip->wq);
906 }
907
908 #ifdef CONFIG_MTD_XIP
909
910 /*
911 * No interrupt what so ever can be serviced while the flash isn't in array
912 * mode. This is ensured by the xip_disable() and xip_enable() functions
913 * enclosing any code path where the flash is known not to be in array mode.
914 * And within a XIP disabled code path, only functions marked with __xipram
915 * may be called and nothing else (it's a good thing to inspect generated
916 * assembly to make sure inline functions were actually inlined and that gcc
917 * didn't emit calls to its own support functions). Also configuring MTD CFI
918 * support to a single buswidth and a single interleave is also recommended.
919 */
920
921 static void xip_disable(struct map_info *map, struct flchip *chip,
922 unsigned long adr)
923 {
924 /* TODO: chips with no XIP use should ignore and return */
925 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
926 local_irq_disable();
927 }
928
929 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
930 unsigned long adr)
931 {
932 struct cfi_private *cfi = map->fldrv_priv;
933
934 if (chip->state != FL_POINT && chip->state != FL_READY) {
935 map_write(map, CMD(0xf0), adr);
936 chip->state = FL_READY;
937 }
938 (void) map_read(map, adr);
939 xip_iprefetch();
940 local_irq_enable();
941 }
942
943 /*
944 * When a delay is required for the flash operation to complete, the
945 * xip_udelay() function is polling for both the given timeout and pending
946 * (but still masked) hardware interrupts. Whenever there is an interrupt
947 * pending then the flash erase operation is suspended, array mode restored
948 * and interrupts unmasked. Task scheduling might also happen at that
949 * point. The CPU eventually returns from the interrupt or the call to
950 * schedule() and the suspended flash operation is resumed for the remaining
951 * of the delay period.
952 *
953 * Warning: this function _will_ fool interrupt latency tracing tools.
954 */
955
956 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
957 unsigned long adr, int usec)
958 {
959 struct cfi_private *cfi = map->fldrv_priv;
960 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
961 map_word status, OK = CMD(0x80);
962 unsigned long suspended, start = xip_currtime();
963 flstate_t oldstate;
964
965 do {
966 cpu_relax();
967 if (xip_irqpending() && extp &&
968 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
969 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
970 /*
971 * Let's suspend the erase operation when supported.
972 * Note that we currently don't try to suspend
973 * interleaved chips if there is already another
974 * operation suspended (imagine what happens
975 * when one chip was already done with the current
976 * operation while another chip suspended it, then
977 * we resume the whole thing at once). Yes, it
978 * can happen!
979 */
980 map_write(map, CMD(0xb0), adr);
981 usec -= xip_elapsed_since(start);
982 suspended = xip_currtime();
983 do {
984 if (xip_elapsed_since(suspended) > 100000) {
985 /*
986 * The chip doesn't want to suspend
987 * after waiting for 100 msecs.
988 * This is a critical error but there
989 * is not much we can do here.
990 */
991 return;
992 }
993 status = map_read(map, adr);
994 } while (!map_word_andequal(map, status, OK, OK));
995
996 /* Suspend succeeded */
997 oldstate = chip->state;
998 if (!map_word_bitsset(map, status, CMD(0x40)))
999 break;
1000 chip->state = FL_XIP_WHILE_ERASING;
1001 chip->erase_suspended = 1;
1002 map_write(map, CMD(0xf0), adr);
1003 (void) map_read(map, adr);
1004 xip_iprefetch();
1005 local_irq_enable();
1006 mutex_unlock(&chip->mutex);
1007 xip_iprefetch();
1008 cond_resched();
1009
1010 /*
1011 * We're back. However someone else might have
1012 * decided to go write to the chip if we are in
1013 * a suspended erase state. If so let's wait
1014 * until it's done.
1015 */
1016 mutex_lock(&chip->mutex);
1017 while (chip->state != FL_XIP_WHILE_ERASING) {
1018 DECLARE_WAITQUEUE(wait, current);
1019 set_current_state(TASK_UNINTERRUPTIBLE);
1020 add_wait_queue(&chip->wq, &wait);
1021 mutex_unlock(&chip->mutex);
1022 schedule();
1023 remove_wait_queue(&chip->wq, &wait);
1024 mutex_lock(&chip->mutex);
1025 }
1026 /* Disallow XIP again */
1027 local_irq_disable();
1028
1029 /* Correct Erase Suspend Hangups for M29EW */
1030 cfi_fixup_m29ew_erase_suspend(map, adr);
1031 /* Resume the write or erase operation */
1032 map_write(map, cfi->sector_erase_cmd, adr);
1033 chip->state = oldstate;
1034 start = xip_currtime();
1035 } else if (usec >= 1000000/HZ) {
1036 /*
1037 * Try to save on CPU power when waiting delay
1038 * is at least a system timer tick period.
1039 * No need to be extremely accurate here.
1040 */
1041 xip_cpu_idle();
1042 }
1043 status = map_read(map, adr);
1044 } while (!map_word_andequal(map, status, OK, OK)
1045 && xip_elapsed_since(start) < usec);
1046 }
1047
1048 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1049
1050 /*
1051 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1052 * the flash is actively programming or erasing since we have to poll for
1053 * the operation to complete anyway. We can't do that in a generic way with
1054 * a XIP setup so do it before the actual flash operation in this case
1055 * and stub it out from INVALIDATE_CACHE_UDELAY.
1056 */
1057 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1058 INVALIDATE_CACHED_RANGE(map, from, size)
1059
1060 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1061 UDELAY(map, chip, adr, usec)
1062
1063 /*
1064 * Extra notes:
1065 *
1066 * Activating this XIP support changes the way the code works a bit. For
1067 * example the code to suspend the current process when concurrent access
1068 * happens is never executed because xip_udelay() will always return with the
1069 * same chip state as it was entered with. This is why there is no care for
1070 * the presence of add_wait_queue() or schedule() calls from within a couple
1071 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1072 * The queueing and scheduling are always happening within xip_udelay().
1073 *
1074 * Similarly, get_chip() and put_chip() just happen to always be executed
1075 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1076 * is in array mode, therefore never executing many cases therein and not
1077 * causing any problem with XIP.
1078 */
1079
1080 #else
1081
1082 #define xip_disable(map, chip, adr)
1083 #define xip_enable(map, chip, adr)
1084 #define XIP_INVAL_CACHED_RANGE(x...)
1085
1086 #define UDELAY(map, chip, adr, usec) \
1087 do { \
1088 mutex_unlock(&chip->mutex); \
1089 cfi_udelay(usec); \
1090 mutex_lock(&chip->mutex); \
1091 } while (0)
1092
1093 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1094 do { \
1095 mutex_unlock(&chip->mutex); \
1096 INVALIDATE_CACHED_RANGE(map, adr, len); \
1097 cfi_udelay(usec); \
1098 mutex_lock(&chip->mutex); \
1099 } while (0)
1100
1101 #endif
1102
1103 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1104 {
1105 unsigned long cmd_addr;
1106 struct cfi_private *cfi = map->fldrv_priv;
1107 int ret;
1108
1109 adr += chip->start;
1110
1111 /* Ensure cmd read/writes are aligned. */
1112 cmd_addr = adr & ~(map_bankwidth(map)-1);
1113
1114 mutex_lock(&chip->mutex);
1115 ret = get_chip(map, chip, cmd_addr, FL_READY);
1116 if (ret) {
1117 mutex_unlock(&chip->mutex);
1118 return ret;
1119 }
1120
1121 if (chip->state != FL_POINT && chip->state != FL_READY) {
1122 map_write(map, CMD(0xf0), cmd_addr);
1123 chip->state = FL_READY;
1124 }
1125
1126 map_copy_from(map, buf, adr, len);
1127
1128 put_chip(map, chip, cmd_addr);
1129
1130 mutex_unlock(&chip->mutex);
1131 return 0;
1132 }
1133
1134
1135 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1136 {
1137 struct map_info *map = mtd->priv;
1138 struct cfi_private *cfi = map->fldrv_priv;
1139 unsigned long ofs;
1140 int chipnum;
1141 int ret = 0;
1142
1143 /* ofs: offset within the first chip that the first read should start */
1144 chipnum = (from >> cfi->chipshift);
1145 ofs = from - (chipnum << cfi->chipshift);
1146
1147 while (len) {
1148 unsigned long thislen;
1149
1150 if (chipnum >= cfi->numchips)
1151 break;
1152
1153 if ((len + ofs -1) >> cfi->chipshift)
1154 thislen = (1<<cfi->chipshift) - ofs;
1155 else
1156 thislen = len;
1157
1158 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1159 if (ret)
1160 break;
1161
1162 *retlen += thislen;
1163 len -= thislen;
1164 buf += thislen;
1165
1166 ofs = 0;
1167 chipnum++;
1168 }
1169 return ret;
1170 }
1171
1172 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1173 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1174
1175 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1176 loff_t adr, size_t len)
1177 {
1178 struct cfi_private *cfi = map->fldrv_priv;
1179
1180 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1181 cfi->device_type, NULL);
1182 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1183 cfi->device_type, NULL);
1184 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1185 cfi->device_type, NULL);
1186
1187 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1188 }
1189
1190 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1191 loff_t adr, size_t len)
1192 {
1193 struct cfi_private *cfi = map->fldrv_priv;
1194
1195 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1196 cfi->device_type, NULL);
1197 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1198 cfi->device_type, NULL);
1199 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1200 cfi->device_type, NULL);
1201 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1202 cfi->device_type, NULL);
1203
1204 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1205 }
1206
1207 static inline int do_read_secsi_onechip(struct map_info *map,
1208 struct flchip *chip, loff_t adr,
1209 size_t len, u_char *buf,
1210 size_t grouplen)
1211 {
1212 DECLARE_WAITQUEUE(wait, current);
1213 unsigned long timeo = jiffies + HZ;
1214
1215 retry:
1216 mutex_lock(&chip->mutex);
1217
1218 if (chip->state != FL_READY){
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 add_wait_queue(&chip->wq, &wait);
1221
1222 mutex_unlock(&chip->mutex);
1223
1224 schedule();
1225 remove_wait_queue(&chip->wq, &wait);
1226 timeo = jiffies + HZ;
1227
1228 goto retry;
1229 }
1230
1231 adr += chip->start;
1232
1233 chip->state = FL_READY;
1234
1235 otp_enter(map, chip, adr, len);
1236 map_copy_from(map, buf, adr, len);
1237 otp_exit(map, chip, adr, len);
1238
1239 wake_up(&chip->wq);
1240 mutex_unlock(&chip->mutex);
1241
1242 return 0;
1243 }
1244
1245 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1246 {
1247 struct map_info *map = mtd->priv;
1248 struct cfi_private *cfi = map->fldrv_priv;
1249 unsigned long ofs;
1250 int chipnum;
1251 int ret = 0;
1252
1253 /* ofs: offset within the first chip that the first read should start */
1254 /* 8 secsi bytes per chip */
1255 chipnum=from>>3;
1256 ofs=from & 7;
1257
1258 while (len) {
1259 unsigned long thislen;
1260
1261 if (chipnum >= cfi->numchips)
1262 break;
1263
1264 if ((len + ofs -1) >> 3)
1265 thislen = (1<<3) - ofs;
1266 else
1267 thislen = len;
1268
1269 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1270 thislen, buf, 0);
1271 if (ret)
1272 break;
1273
1274 *retlen += thislen;
1275 len -= thislen;
1276 buf += thislen;
1277
1278 ofs = 0;
1279 chipnum++;
1280 }
1281 return ret;
1282 }
1283
1284 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1285 unsigned long adr, map_word datum,
1286 int mode);
1287
1288 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1289 size_t len, u_char *buf, size_t grouplen)
1290 {
1291 int ret;
1292 while (len) {
1293 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1294 int gap = adr - bus_ofs;
1295 int n = min_t(int, len, map_bankwidth(map) - gap);
1296 map_word datum = map_word_ff(map);
1297
1298 if (n != map_bankwidth(map)) {
1299 /* partial write of a word, load old contents */
1300 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1301 datum = map_read(map, bus_ofs);
1302 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1303 }
1304
1305 datum = map_word_load_partial(map, datum, buf, gap, n);
1306 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1307 if (ret)
1308 return ret;
1309
1310 adr += n;
1311 buf += n;
1312 len -= n;
1313 }
1314
1315 return 0;
1316 }
1317
1318 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1319 size_t len, u_char *buf, size_t grouplen)
1320 {
1321 struct cfi_private *cfi = map->fldrv_priv;
1322 uint8_t lockreg;
1323 unsigned long timeo;
1324 int ret;
1325
1326 /* make sure area matches group boundaries */
1327 if ((adr != 0) || (len != grouplen))
1328 return -EINVAL;
1329
1330 mutex_lock(&chip->mutex);
1331 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1332 if (ret) {
1333 mutex_unlock(&chip->mutex);
1334 return ret;
1335 }
1336 chip->state = FL_LOCKING;
1337
1338 /* Enter lock register command */
1339 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1340 cfi->device_type, NULL);
1341 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1342 cfi->device_type, NULL);
1343 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1344 cfi->device_type, NULL);
1345
1346 /* read lock register */
1347 lockreg = cfi_read_query(map, 0);
1348
1349 /* set bit 0 to protect extended memory block */
1350 lockreg &= ~0x01;
1351
1352 /* set bit 0 to protect extended memory block */
1353 /* write lock register */
1354 map_write(map, CMD(0xA0), chip->start);
1355 map_write(map, CMD(lockreg), chip->start);
1356
1357 /* wait for chip to become ready */
1358 timeo = jiffies + msecs_to_jiffies(2);
1359 for (;;) {
1360 if (chip_ready(map, adr))
1361 break;
1362
1363 if (time_after(jiffies, timeo)) {
1364 pr_err("Waiting for chip to be ready timed out.\n");
1365 ret = -EIO;
1366 break;
1367 }
1368 UDELAY(map, chip, 0, 1);
1369 }
1370
1371 /* exit protection commands */
1372 map_write(map, CMD(0x90), chip->start);
1373 map_write(map, CMD(0x00), chip->start);
1374
1375 chip->state = FL_READY;
1376 put_chip(map, chip, chip->start);
1377 mutex_unlock(&chip->mutex);
1378
1379 return ret;
1380 }
1381
1382 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1383 size_t *retlen, u_char *buf,
1384 otp_op_t action, int user_regs)
1385 {
1386 struct map_info *map = mtd->priv;
1387 struct cfi_private *cfi = map->fldrv_priv;
1388 int ofs_factor = cfi->interleave * cfi->device_type;
1389 unsigned long base;
1390 int chipnum;
1391 struct flchip *chip;
1392 uint8_t otp, lockreg;
1393 int ret;
1394
1395 size_t user_size, factory_size, otpsize;
1396 loff_t user_offset, factory_offset, otpoffset;
1397 int user_locked = 0, otplocked;
1398
1399 *retlen = 0;
1400
1401 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1402 chip = &cfi->chips[chipnum];
1403 factory_size = 0;
1404 user_size = 0;
1405
1406 /* Micron M29EW family */
1407 if (is_m29ew(cfi)) {
1408 base = chip->start;
1409
1410 /* check whether secsi area is factory locked
1411 or user lockable */
1412 mutex_lock(&chip->mutex);
1413 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1414 if (ret) {
1415 mutex_unlock(&chip->mutex);
1416 return ret;
1417 }
1418 cfi_qry_mode_on(base, map, cfi);
1419 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1420 cfi_qry_mode_off(base, map, cfi);
1421 put_chip(map, chip, base);
1422 mutex_unlock(&chip->mutex);
1423
1424 if (otp & 0x80) {
1425 /* factory locked */
1426 factory_offset = 0;
1427 factory_size = 0x100;
1428 } else {
1429 /* customer lockable */
1430 user_offset = 0;
1431 user_size = 0x100;
1432
1433 mutex_lock(&chip->mutex);
1434 ret = get_chip(map, chip, base, FL_LOCKING);
1435 if (ret) {
1436 mutex_unlock(&chip->mutex);
1437 return ret;
1438 }
1439
1440 /* Enter lock register command */
1441 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1442 chip->start, map, cfi,
1443 cfi->device_type, NULL);
1444 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1445 chip->start, map, cfi,
1446 cfi->device_type, NULL);
1447 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1448 chip->start, map, cfi,
1449 cfi->device_type, NULL);
1450 /* read lock register */
1451 lockreg = cfi_read_query(map, 0);
1452 /* exit protection commands */
1453 map_write(map, CMD(0x90), chip->start);
1454 map_write(map, CMD(0x00), chip->start);
1455 put_chip(map, chip, chip->start);
1456 mutex_unlock(&chip->mutex);
1457
1458 user_locked = ((lockreg & 0x01) == 0x00);
1459 }
1460 }
1461
1462 otpsize = user_regs ? user_size : factory_size;
1463 if (!otpsize)
1464 continue;
1465 otpoffset = user_regs ? user_offset : factory_offset;
1466 otplocked = user_regs ? user_locked : 1;
1467
1468 if (!action) {
1469 /* return otpinfo */
1470 struct otp_info *otpinfo;
1471 len -= sizeof(*otpinfo);
1472 if (len <= 0)
1473 return -ENOSPC;
1474 otpinfo = (struct otp_info *)buf;
1475 otpinfo->start = from;
1476 otpinfo->length = otpsize;
1477 otpinfo->locked = otplocked;
1478 buf += sizeof(*otpinfo);
1479 *retlen += sizeof(*otpinfo);
1480 from += otpsize;
1481 } else if ((from < otpsize) && (len > 0)) {
1482 size_t size;
1483 size = (len < otpsize - from) ? len : otpsize - from;
1484 ret = action(map, chip, otpoffset + from, size, buf,
1485 otpsize);
1486 if (ret < 0)
1487 return ret;
1488
1489 buf += size;
1490 len -= size;
1491 *retlen += size;
1492 from = 0;
1493 } else {
1494 from -= otpsize;
1495 }
1496 }
1497 return 0;
1498 }
1499
1500 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1501 size_t *retlen, struct otp_info *buf)
1502 {
1503 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1504 NULL, 0);
1505 }
1506
1507 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1508 size_t *retlen, struct otp_info *buf)
1509 {
1510 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1511 NULL, 1);
1512 }
1513
1514 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1515 size_t len, size_t *retlen,
1516 u_char *buf)
1517 {
1518 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1519 buf, do_read_secsi_onechip, 0);
1520 }
1521
1522 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1523 size_t len, size_t *retlen,
1524 u_char *buf)
1525 {
1526 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1527 buf, do_read_secsi_onechip, 1);
1528 }
1529
1530 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1531 size_t len, size_t *retlen,
1532 u_char *buf)
1533 {
1534 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1535 do_otp_write, 1);
1536 }
1537
1538 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1539 size_t len)
1540 {
1541 size_t retlen;
1542 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1543 do_otp_lock, 1);
1544 }
1545
1546 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1547 unsigned long adr, map_word datum,
1548 int mode)
1549 {
1550 struct cfi_private *cfi = map->fldrv_priv;
1551 unsigned long timeo = jiffies + HZ;
1552 /*
1553 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1554 * have a max write time of a few hundreds usec). However, we should
1555 * use the maximum timeout value given by the chip at probe time
1556 * instead. Unfortunately, struct flchip does have a field for
1557 * maximum timeout, only for typical which can be far too short
1558 * depending of the conditions. The ' + 1' is to avoid having a
1559 * timeout of 0 jiffies if HZ is smaller than 1000.
1560 */
1561 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1562 int ret = 0;
1563 map_word oldd;
1564 int retry_cnt = 0;
1565
1566 adr += chip->start;
1567
1568 mutex_lock(&chip->mutex);
1569 ret = get_chip(map, chip, adr, mode);
1570 if (ret) {
1571 mutex_unlock(&chip->mutex);
1572 return ret;
1573 }
1574
1575 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1576 __func__, adr, datum.x[0] );
1577
1578 if (mode == FL_OTP_WRITE)
1579 otp_enter(map, chip, adr, map_bankwidth(map));
1580
1581 /*
1582 * Check for a NOP for the case when the datum to write is already
1583 * present - it saves time and works around buggy chips that corrupt
1584 * data at other locations when 0xff is written to a location that
1585 * already contains 0xff.
1586 */
1587 oldd = map_read(map, adr);
1588 if (map_word_equal(map, oldd, datum)) {
1589 pr_debug("MTD %s(): NOP\n",
1590 __func__);
1591 goto op_done;
1592 }
1593
1594 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1595 ENABLE_VPP(map);
1596 xip_disable(map, chip, adr);
1597
1598 retry:
1599 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1601 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 map_write(map, datum, adr);
1603 chip->state = mode;
1604
1605 INVALIDATE_CACHE_UDELAY(map, chip,
1606 adr, map_bankwidth(map),
1607 chip->word_write_time);
1608
1609 /* See comment above for timeout value. */
1610 timeo = jiffies + uWriteTimeout;
1611 for (;;) {
1612 if (chip->state != mode) {
1613 /* Someone's suspended the write. Sleep */
1614 DECLARE_WAITQUEUE(wait, current);
1615
1616 set_current_state(TASK_UNINTERRUPTIBLE);
1617 add_wait_queue(&chip->wq, &wait);
1618 mutex_unlock(&chip->mutex);
1619 schedule();
1620 remove_wait_queue(&chip->wq, &wait);
1621 timeo = jiffies + (HZ / 2); /* FIXME */
1622 mutex_lock(&chip->mutex);
1623 continue;
1624 }
1625
1626 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1627 xip_enable(map, chip, adr);
1628 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1629 xip_disable(map, chip, adr);
1630 break;
1631 }
1632
1633 if (chip_ready(map, adr))
1634 break;
1635
1636 /* Latency issues. Drop the lock, wait a while and retry */
1637 UDELAY(map, chip, adr, 1);
1638 }
1639 /* Did we succeed? */
1640 if (!chip_good(map, adr, datum)) {
1641 /* reset on all failures. */
1642 map_write( map, CMD(0xF0), chip->start );
1643 /* FIXME - should have reset delay before continuing */
1644
1645 if (++retry_cnt <= MAX_WORD_RETRIES)
1646 goto retry;
1647
1648 ret = -EIO;
1649 }
1650 xip_enable(map, chip, adr);
1651 op_done:
1652 if (mode == FL_OTP_WRITE)
1653 otp_exit(map, chip, adr, map_bankwidth(map));
1654 chip->state = FL_READY;
1655 DISABLE_VPP(map);
1656 put_chip(map, chip, adr);
1657 mutex_unlock(&chip->mutex);
1658
1659 return ret;
1660 }
1661
1662
1663 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1664 size_t *retlen, const u_char *buf)
1665 {
1666 struct map_info *map = mtd->priv;
1667 struct cfi_private *cfi = map->fldrv_priv;
1668 int ret = 0;
1669 int chipnum;
1670 unsigned long ofs, chipstart;
1671 DECLARE_WAITQUEUE(wait, current);
1672
1673 chipnum = to >> cfi->chipshift;
1674 ofs = to - (chipnum << cfi->chipshift);
1675 chipstart = cfi->chips[chipnum].start;
1676
1677 /* If it's not bus-aligned, do the first byte write */
1678 if (ofs & (map_bankwidth(map)-1)) {
1679 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1680 int i = ofs - bus_ofs;
1681 int n = 0;
1682 map_word tmp_buf;
1683
1684 retry:
1685 mutex_lock(&cfi->chips[chipnum].mutex);
1686
1687 if (cfi->chips[chipnum].state != FL_READY) {
1688 set_current_state(TASK_UNINTERRUPTIBLE);
1689 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1690
1691 mutex_unlock(&cfi->chips[chipnum].mutex);
1692
1693 schedule();
1694 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1695 goto retry;
1696 }
1697
1698 /* Load 'tmp_buf' with old contents of flash */
1699 tmp_buf = map_read(map, bus_ofs+chipstart);
1700
1701 mutex_unlock(&cfi->chips[chipnum].mutex);
1702
1703 /* Number of bytes to copy from buffer */
1704 n = min_t(int, len, map_bankwidth(map)-i);
1705
1706 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1707
1708 ret = do_write_oneword(map, &cfi->chips[chipnum],
1709 bus_ofs, tmp_buf, FL_WRITING);
1710 if (ret)
1711 return ret;
1712
1713 ofs += n;
1714 buf += n;
1715 (*retlen) += n;
1716 len -= n;
1717
1718 if (ofs >> cfi->chipshift) {
1719 chipnum ++;
1720 ofs = 0;
1721 if (chipnum == cfi->numchips)
1722 return 0;
1723 }
1724 }
1725
1726 /* We are now aligned, write as much as possible */
1727 while(len >= map_bankwidth(map)) {
1728 map_word datum;
1729
1730 datum = map_word_load(map, buf);
1731
1732 ret = do_write_oneword(map, &cfi->chips[chipnum],
1733 ofs, datum, FL_WRITING);
1734 if (ret)
1735 return ret;
1736
1737 ofs += map_bankwidth(map);
1738 buf += map_bankwidth(map);
1739 (*retlen) += map_bankwidth(map);
1740 len -= map_bankwidth(map);
1741
1742 if (ofs >> cfi->chipshift) {
1743 chipnum ++;
1744 ofs = 0;
1745 if (chipnum == cfi->numchips)
1746 return 0;
1747 chipstart = cfi->chips[chipnum].start;
1748 }
1749 }
1750
1751 /* Write the trailing bytes if any */
1752 if (len & (map_bankwidth(map)-1)) {
1753 map_word tmp_buf;
1754
1755 retry1:
1756 mutex_lock(&cfi->chips[chipnum].mutex);
1757
1758 if (cfi->chips[chipnum].state != FL_READY) {
1759 set_current_state(TASK_UNINTERRUPTIBLE);
1760 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1761
1762 mutex_unlock(&cfi->chips[chipnum].mutex);
1763
1764 schedule();
1765 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1766 goto retry1;
1767 }
1768
1769 tmp_buf = map_read(map, ofs + chipstart);
1770
1771 mutex_unlock(&cfi->chips[chipnum].mutex);
1772
1773 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1774
1775 ret = do_write_oneword(map, &cfi->chips[chipnum],
1776 ofs, tmp_buf, FL_WRITING);
1777 if (ret)
1778 return ret;
1779
1780 (*retlen) += len;
1781 }
1782
1783 return 0;
1784 }
1785
1786
1787 /*
1788 * FIXME: interleaved mode not tested, and probably not supported!
1789 */
1790 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1791 unsigned long adr, const u_char *buf,
1792 int len)
1793 {
1794 struct cfi_private *cfi = map->fldrv_priv;
1795 unsigned long timeo = jiffies + HZ;
1796 /*
1797 * Timeout is calculated according to CFI data, if available.
1798 * See more comments in cfi_cmdset_0002().
1799 */
1800 unsigned long uWriteTimeout =
1801 usecs_to_jiffies(chip->buffer_write_time_max);
1802 int ret = -EIO;
1803 unsigned long cmd_adr;
1804 int z, words;
1805 map_word datum;
1806
1807 adr += chip->start;
1808 cmd_adr = adr;
1809
1810 mutex_lock(&chip->mutex);
1811 ret = get_chip(map, chip, adr, FL_WRITING);
1812 if (ret) {
1813 mutex_unlock(&chip->mutex);
1814 return ret;
1815 }
1816
1817 datum = map_word_load(map, buf);
1818
1819 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1820 __func__, adr, datum.x[0] );
1821
1822 XIP_INVAL_CACHED_RANGE(map, adr, len);
1823 ENABLE_VPP(map);
1824 xip_disable(map, chip, cmd_adr);
1825
1826 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1827 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1828
1829 /* Write Buffer Load */
1830 map_write(map, CMD(0x25), cmd_adr);
1831
1832 chip->state = FL_WRITING_TO_BUFFER;
1833
1834 /* Write length of data to come */
1835 words = len / map_bankwidth(map);
1836 map_write(map, CMD(words - 1), cmd_adr);
1837 /* Write data */
1838 z = 0;
1839 while(z < words * map_bankwidth(map)) {
1840 datum = map_word_load(map, buf);
1841 map_write(map, datum, adr + z);
1842
1843 z += map_bankwidth(map);
1844 buf += map_bankwidth(map);
1845 }
1846 z -= map_bankwidth(map);
1847
1848 adr += z;
1849
1850 /* Write Buffer Program Confirm: GO GO GO */
1851 map_write(map, CMD(0x29), cmd_adr);
1852 chip->state = FL_WRITING;
1853
1854 INVALIDATE_CACHE_UDELAY(map, chip,
1855 adr, map_bankwidth(map),
1856 chip->word_write_time);
1857
1858 timeo = jiffies + uWriteTimeout;
1859
1860 for (;;) {
1861 if (chip->state != FL_WRITING) {
1862 /* Someone's suspended the write. Sleep */
1863 DECLARE_WAITQUEUE(wait, current);
1864
1865 set_current_state(TASK_UNINTERRUPTIBLE);
1866 add_wait_queue(&chip->wq, &wait);
1867 mutex_unlock(&chip->mutex);
1868 schedule();
1869 remove_wait_queue(&chip->wq, &wait);
1870 timeo = jiffies + (HZ / 2); /* FIXME */
1871 mutex_lock(&chip->mutex);
1872 continue;
1873 }
1874
1875 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1876 break;
1877
1878 if (chip_ready(map, adr)) {
1879 xip_enable(map, chip, adr);
1880 goto op_done;
1881 }
1882
1883 /* Latency issues. Drop the lock, wait a while and retry */
1884 UDELAY(map, chip, adr, 1);
1885 }
1886
1887 /*
1888 * Recovery from write-buffer programming failures requires
1889 * the write-to-buffer-reset sequence. Since the last part
1890 * of the sequence also works as a normal reset, we can run
1891 * the same commands regardless of why we are here.
1892 * See e.g.
1893 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1894 */
1895 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1896 cfi->device_type, NULL);
1897 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1898 cfi->device_type, NULL);
1899 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1900 cfi->device_type, NULL);
1901 xip_enable(map, chip, adr);
1902 /* FIXME - should have reset delay before continuing */
1903
1904 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1905 __func__, adr);
1906
1907 ret = -EIO;
1908 op_done:
1909 chip->state = FL_READY;
1910 DISABLE_VPP(map);
1911 put_chip(map, chip, adr);
1912 mutex_unlock(&chip->mutex);
1913
1914 return ret;
1915 }
1916
1917
1918 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1919 size_t *retlen, const u_char *buf)
1920 {
1921 struct map_info *map = mtd->priv;
1922 struct cfi_private *cfi = map->fldrv_priv;
1923 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1924 int ret = 0;
1925 int chipnum;
1926 unsigned long ofs;
1927
1928 chipnum = to >> cfi->chipshift;
1929 ofs = to - (chipnum << cfi->chipshift);
1930
1931 /* If it's not bus-aligned, do the first word write */
1932 if (ofs & (map_bankwidth(map)-1)) {
1933 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1934 if (local_len > len)
1935 local_len = len;
1936 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1937 local_len, retlen, buf);
1938 if (ret)
1939 return ret;
1940 ofs += local_len;
1941 buf += local_len;
1942 len -= local_len;
1943
1944 if (ofs >> cfi->chipshift) {
1945 chipnum ++;
1946 ofs = 0;
1947 if (chipnum == cfi->numchips)
1948 return 0;
1949 }
1950 }
1951
1952 /* Write buffer is worth it only if more than one word to write... */
1953 while (len >= map_bankwidth(map) * 2) {
1954 /* We must not cross write block boundaries */
1955 int size = wbufsize - (ofs & (wbufsize-1));
1956
1957 if (size > len)
1958 size = len;
1959 if (size % map_bankwidth(map))
1960 size -= size % map_bankwidth(map);
1961
1962 ret = do_write_buffer(map, &cfi->chips[chipnum],
1963 ofs, buf, size);
1964 if (ret)
1965 return ret;
1966
1967 ofs += size;
1968 buf += size;
1969 (*retlen) += size;
1970 len -= size;
1971
1972 if (ofs >> cfi->chipshift) {
1973 chipnum ++;
1974 ofs = 0;
1975 if (chipnum == cfi->numchips)
1976 return 0;
1977 }
1978 }
1979
1980 if (len) {
1981 size_t retlen_dregs = 0;
1982
1983 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1984 len, &retlen_dregs, buf);
1985
1986 *retlen += retlen_dregs;
1987 return ret;
1988 }
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * Wait for the flash chip to become ready to write data
1995 *
1996 * This is only called during the panic_write() path. When panic_write()
1997 * is called, the kernel is in the process of a panic, and will soon be
1998 * dead. Therefore we don't take any locks, and attempt to get access
1999 * to the chip as soon as possible.
2000 */
2001 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2002 unsigned long adr)
2003 {
2004 struct cfi_private *cfi = map->fldrv_priv;
2005 int retries = 10;
2006 int i;
2007
2008 /*
2009 * If the driver thinks the chip is idle, and no toggle bits
2010 * are changing, then the chip is actually idle for sure.
2011 */
2012 if (chip->state == FL_READY && chip_ready(map, adr))
2013 return 0;
2014
2015 /*
2016 * Try several times to reset the chip and then wait for it
2017 * to become idle. The upper limit of a few milliseconds of
2018 * delay isn't a big problem: the kernel is dying anyway. It
2019 * is more important to save the messages.
2020 */
2021 while (retries > 0) {
2022 const unsigned long timeo = (HZ / 1000) + 1;
2023
2024 /* send the reset command */
2025 map_write(map, CMD(0xF0), chip->start);
2026
2027 /* wait for the chip to become ready */
2028 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2029 if (chip_ready(map, adr))
2030 return 0;
2031
2032 udelay(1);
2033 }
2034
2035 retries--;
2036 }
2037
2038 /* the chip never became ready */
2039 return -EBUSY;
2040 }
2041
2042 /*
2043 * Write out one word of data to a single flash chip during a kernel panic
2044 *
2045 * This is only called during the panic_write() path. When panic_write()
2046 * is called, the kernel is in the process of a panic, and will soon be
2047 * dead. Therefore we don't take any locks, and attempt to get access
2048 * to the chip as soon as possible.
2049 *
2050 * The implementation of this routine is intentionally similar to
2051 * do_write_oneword(), in order to ease code maintenance.
2052 */
2053 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2054 unsigned long adr, map_word datum)
2055 {
2056 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2057 struct cfi_private *cfi = map->fldrv_priv;
2058 int retry_cnt = 0;
2059 map_word oldd;
2060 int ret = 0;
2061 int i;
2062
2063 adr += chip->start;
2064
2065 ret = cfi_amdstd_panic_wait(map, chip, adr);
2066 if (ret)
2067 return ret;
2068
2069 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2070 __func__, adr, datum.x[0]);
2071
2072 /*
2073 * Check for a NOP for the case when the datum to write is already
2074 * present - it saves time and works around buggy chips that corrupt
2075 * data at other locations when 0xff is written to a location that
2076 * already contains 0xff.
2077 */
2078 oldd = map_read(map, adr);
2079 if (map_word_equal(map, oldd, datum)) {
2080 pr_debug("MTD %s(): NOP\n", __func__);
2081 goto op_done;
2082 }
2083
2084 ENABLE_VPP(map);
2085
2086 retry:
2087 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2088 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2089 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2090 map_write(map, datum, adr);
2091
2092 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2093 if (chip_ready(map, adr))
2094 break;
2095
2096 udelay(1);
2097 }
2098
2099 if (!chip_good(map, adr, datum)) {
2100 /* reset on all failures. */
2101 map_write(map, CMD(0xF0), chip->start);
2102 /* FIXME - should have reset delay before continuing */
2103
2104 if (++retry_cnt <= MAX_WORD_RETRIES)
2105 goto retry;
2106
2107 ret = -EIO;
2108 }
2109
2110 op_done:
2111 DISABLE_VPP(map);
2112 return ret;
2113 }
2114
2115 /*
2116 * Write out some data during a kernel panic
2117 *
2118 * This is used by the mtdoops driver to save the dying messages from a
2119 * kernel which has panic'd.
2120 *
2121 * This routine ignores all of the locking used throughout the rest of the
2122 * driver, in order to ensure that the data gets written out no matter what
2123 * state this driver (and the flash chip itself) was in when the kernel crashed.
2124 *
2125 * The implementation of this routine is intentionally similar to
2126 * cfi_amdstd_write_words(), in order to ease code maintenance.
2127 */
2128 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2129 size_t *retlen, const u_char *buf)
2130 {
2131 struct map_info *map = mtd->priv;
2132 struct cfi_private *cfi = map->fldrv_priv;
2133 unsigned long ofs, chipstart;
2134 int ret = 0;
2135 int chipnum;
2136
2137 chipnum = to >> cfi->chipshift;
2138 ofs = to - (chipnum << cfi->chipshift);
2139 chipstart = cfi->chips[chipnum].start;
2140
2141 /* If it's not bus aligned, do the first byte write */
2142 if (ofs & (map_bankwidth(map) - 1)) {
2143 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2144 int i = ofs - bus_ofs;
2145 int n = 0;
2146 map_word tmp_buf;
2147
2148 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2149 if (ret)
2150 return ret;
2151
2152 /* Load 'tmp_buf' with old contents of flash */
2153 tmp_buf = map_read(map, bus_ofs + chipstart);
2154
2155 /* Number of bytes to copy from buffer */
2156 n = min_t(int, len, map_bankwidth(map) - i);
2157
2158 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2159
2160 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2161 bus_ofs, tmp_buf);
2162 if (ret)
2163 return ret;
2164
2165 ofs += n;
2166 buf += n;
2167 (*retlen) += n;
2168 len -= n;
2169
2170 if (ofs >> cfi->chipshift) {
2171 chipnum++;
2172 ofs = 0;
2173 if (chipnum == cfi->numchips)
2174 return 0;
2175 }
2176 }
2177
2178 /* We are now aligned, write as much as possible */
2179 while (len >= map_bankwidth(map)) {
2180 map_word datum;
2181
2182 datum = map_word_load(map, buf);
2183
2184 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2185 ofs, datum);
2186 if (ret)
2187 return ret;
2188
2189 ofs += map_bankwidth(map);
2190 buf += map_bankwidth(map);
2191 (*retlen) += map_bankwidth(map);
2192 len -= map_bankwidth(map);
2193
2194 if (ofs >> cfi->chipshift) {
2195 chipnum++;
2196 ofs = 0;
2197 if (chipnum == cfi->numchips)
2198 return 0;
2199
2200 chipstart = cfi->chips[chipnum].start;
2201 }
2202 }
2203
2204 /* Write the trailing bytes if any */
2205 if (len & (map_bankwidth(map) - 1)) {
2206 map_word tmp_buf;
2207
2208 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2209 if (ret)
2210 return ret;
2211
2212 tmp_buf = map_read(map, ofs + chipstart);
2213
2214 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2215
2216 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2217 ofs, tmp_buf);
2218 if (ret)
2219 return ret;
2220
2221 (*retlen) += len;
2222 }
2223
2224 return 0;
2225 }
2226
2227
2228 /*
2229 * Handle devices with one erase region, that only implement
2230 * the chip erase command.
2231 */
2232 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2233 {
2234 struct cfi_private *cfi = map->fldrv_priv;
2235 unsigned long timeo = jiffies + HZ;
2236 unsigned long int adr;
2237 DECLARE_WAITQUEUE(wait, current);
2238 int ret = 0;
2239
2240 adr = cfi->addr_unlock1;
2241
2242 mutex_lock(&chip->mutex);
2243 ret = get_chip(map, chip, adr, FL_WRITING);
2244 if (ret) {
2245 mutex_unlock(&chip->mutex);
2246 return ret;
2247 }
2248
2249 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2250 __func__, chip->start );
2251
2252 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2253 ENABLE_VPP(map);
2254 xip_disable(map, chip, adr);
2255
2256 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2257 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2258 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2259 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2260 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2261 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2262
2263 chip->state = FL_ERASING;
2264 chip->erase_suspended = 0;
2265 chip->in_progress_block_addr = adr;
2266
2267 INVALIDATE_CACHE_UDELAY(map, chip,
2268 adr, map->size,
2269 chip->erase_time*500);
2270
2271 timeo = jiffies + (HZ*20);
2272
2273 for (;;) {
2274 if (chip->state != FL_ERASING) {
2275 /* Someone's suspended the erase. Sleep */
2276 set_current_state(TASK_UNINTERRUPTIBLE);
2277 add_wait_queue(&chip->wq, &wait);
2278 mutex_unlock(&chip->mutex);
2279 schedule();
2280 remove_wait_queue(&chip->wq, &wait);
2281 mutex_lock(&chip->mutex);
2282 continue;
2283 }
2284 if (chip->erase_suspended) {
2285 /* This erase was suspended and resumed.
2286 Adjust the timeout */
2287 timeo = jiffies + (HZ*20); /* FIXME */
2288 chip->erase_suspended = 0;
2289 }
2290
2291 if (chip_ready(map, adr))
2292 break;
2293
2294 if (time_after(jiffies, timeo)) {
2295 printk(KERN_WARNING "MTD %s(): software timeout\n",
2296 __func__ );
2297 break;
2298 }
2299
2300 /* Latency issues. Drop the lock, wait a while and retry */
2301 UDELAY(map, chip, adr, 1000000/HZ);
2302 }
2303 /* Did we succeed? */
2304 if (!chip_good(map, adr, map_word_ff(map))) {
2305 /* reset on all failures. */
2306 map_write( map, CMD(0xF0), chip->start );
2307 /* FIXME - should have reset delay before continuing */
2308
2309 ret = -EIO;
2310 }
2311
2312 chip->state = FL_READY;
2313 xip_enable(map, chip, adr);
2314 DISABLE_VPP(map);
2315 put_chip(map, chip, adr);
2316 mutex_unlock(&chip->mutex);
2317
2318 return ret;
2319 }
2320
2321
2322 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2323 {
2324 struct cfi_private *cfi = map->fldrv_priv;
2325 unsigned long timeo = jiffies + HZ;
2326 DECLARE_WAITQUEUE(wait, current);
2327 int ret = 0;
2328
2329 adr += chip->start;
2330
2331 mutex_lock(&chip->mutex);
2332 ret = get_chip(map, chip, adr, FL_ERASING);
2333 if (ret) {
2334 mutex_unlock(&chip->mutex);
2335 return ret;
2336 }
2337
2338 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2339 __func__, adr );
2340
2341 XIP_INVAL_CACHED_RANGE(map, adr, len);
2342 ENABLE_VPP(map);
2343 xip_disable(map, chip, adr);
2344
2345 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2346 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2347 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2348 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2349 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2350 map_write(map, cfi->sector_erase_cmd, adr);
2351
2352 chip->state = FL_ERASING;
2353 chip->erase_suspended = 0;
2354 chip->in_progress_block_addr = adr;
2355
2356 INVALIDATE_CACHE_UDELAY(map, chip,
2357 adr, len,
2358 chip->erase_time*500);
2359
2360 timeo = jiffies + (HZ*20);
2361
2362 for (;;) {
2363 if (chip->state != FL_ERASING) {
2364 /* Someone's suspended the erase. Sleep */
2365 set_current_state(TASK_UNINTERRUPTIBLE);
2366 add_wait_queue(&chip->wq, &wait);
2367 mutex_unlock(&chip->mutex);
2368 schedule();
2369 remove_wait_queue(&chip->wq, &wait);
2370 mutex_lock(&chip->mutex);
2371 continue;
2372 }
2373 if (chip->erase_suspended) {
2374 /* This erase was suspended and resumed.
2375 Adjust the timeout */
2376 timeo = jiffies + (HZ*20); /* FIXME */
2377 chip->erase_suspended = 0;
2378 }
2379
2380 if (chip_ready(map, adr)) {
2381 xip_enable(map, chip, adr);
2382 break;
2383 }
2384
2385 if (time_after(jiffies, timeo)) {
2386 xip_enable(map, chip, adr);
2387 printk(KERN_WARNING "MTD %s(): software timeout\n",
2388 __func__ );
2389 break;
2390 }
2391
2392 /* Latency issues. Drop the lock, wait a while and retry */
2393 UDELAY(map, chip, adr, 1000000/HZ);
2394 }
2395 /* Did we succeed? */
2396 if (!chip_good(map, adr, map_word_ff(map))) {
2397 /* reset on all failures. */
2398 map_write( map, CMD(0xF0), chip->start );
2399 /* FIXME - should have reset delay before continuing */
2400
2401 ret = -EIO;
2402 }
2403
2404 chip->state = FL_READY;
2405 DISABLE_VPP(map);
2406 put_chip(map, chip, adr);
2407 mutex_unlock(&chip->mutex);
2408 return ret;
2409 }
2410
2411
2412 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2413 {
2414 unsigned long ofs, len;
2415 int ret;
2416
2417 ofs = instr->addr;
2418 len = instr->len;
2419
2420 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2421 if (ret)
2422 return ret;
2423
2424 instr->state = MTD_ERASE_DONE;
2425 mtd_erase_callback(instr);
2426
2427 return 0;
2428 }
2429
2430
2431 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2432 {
2433 struct map_info *map = mtd->priv;
2434 struct cfi_private *cfi = map->fldrv_priv;
2435 int ret = 0;
2436
2437 if (instr->addr != 0)
2438 return -EINVAL;
2439
2440 if (instr->len != mtd->size)
2441 return -EINVAL;
2442
2443 ret = do_erase_chip(map, &cfi->chips[0]);
2444 if (ret)
2445 return ret;
2446
2447 instr->state = MTD_ERASE_DONE;
2448 mtd_erase_callback(instr);
2449
2450 return 0;
2451 }
2452
2453 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2454 unsigned long adr, int len, void *thunk)
2455 {
2456 struct cfi_private *cfi = map->fldrv_priv;
2457 int ret;
2458
2459 mutex_lock(&chip->mutex);
2460 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2461 if (ret)
2462 goto out_unlock;
2463 chip->state = FL_LOCKING;
2464
2465 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2466
2467 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2468 cfi->device_type, NULL);
2469 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2470 cfi->device_type, NULL);
2471 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2472 cfi->device_type, NULL);
2473 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2474 cfi->device_type, NULL);
2475 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2476 cfi->device_type, NULL);
2477 map_write(map, CMD(0x40), chip->start + adr);
2478
2479 chip->state = FL_READY;
2480 put_chip(map, chip, adr + chip->start);
2481 ret = 0;
2482
2483 out_unlock:
2484 mutex_unlock(&chip->mutex);
2485 return ret;
2486 }
2487
2488 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2489 unsigned long adr, int len, void *thunk)
2490 {
2491 struct cfi_private *cfi = map->fldrv_priv;
2492 int ret;
2493
2494 mutex_lock(&chip->mutex);
2495 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2496 if (ret)
2497 goto out_unlock;
2498 chip->state = FL_UNLOCKING;
2499
2500 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2501
2502 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2503 cfi->device_type, NULL);
2504 map_write(map, CMD(0x70), adr);
2505
2506 chip->state = FL_READY;
2507 put_chip(map, chip, adr + chip->start);
2508 ret = 0;
2509
2510 out_unlock:
2511 mutex_unlock(&chip->mutex);
2512 return ret;
2513 }
2514
2515 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2516 {
2517 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2518 }
2519
2520 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2521 {
2522 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2523 }
2524
2525 /*
2526 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2527 */
2528
2529 struct ppb_lock {
2530 struct flchip *chip;
2531 loff_t offset;
2532 int locked;
2533 };
2534
2535 #define MAX_SECTORS 512
2536
2537 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2538 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2539 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2540
2541 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2542 struct flchip *chip,
2543 unsigned long adr, int len, void *thunk)
2544 {
2545 struct cfi_private *cfi = map->fldrv_priv;
2546 unsigned long timeo;
2547 int ret;
2548
2549 mutex_lock(&chip->mutex);
2550 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2551 if (ret) {
2552 mutex_unlock(&chip->mutex);
2553 return ret;
2554 }
2555
2556 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2557
2558 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2559 cfi->device_type, NULL);
2560 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2561 cfi->device_type, NULL);
2562 /* PPB entry command */
2563 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2564 cfi->device_type, NULL);
2565
2566 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2567 chip->state = FL_LOCKING;
2568 map_write(map, CMD(0xA0), chip->start + adr);
2569 map_write(map, CMD(0x00), chip->start + adr);
2570 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2571 /*
2572 * Unlocking of one specific sector is not supported, so we
2573 * have to unlock all sectors of this device instead
2574 */
2575 chip->state = FL_UNLOCKING;
2576 map_write(map, CMD(0x80), chip->start);
2577 map_write(map, CMD(0x30), chip->start);
2578 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2579 chip->state = FL_JEDEC_QUERY;
2580 /* Return locked status: 0->locked, 1->unlocked */
2581 ret = !cfi_read_query(map, adr);
2582 } else
2583 BUG();
2584
2585 /*
2586 * Wait for some time as unlocking of all sectors takes quite long
2587 */
2588 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2589 for (;;) {
2590 if (chip_ready(map, adr))
2591 break;
2592
2593 if (time_after(jiffies, timeo)) {
2594 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2595 ret = -EIO;
2596 break;
2597 }
2598
2599 UDELAY(map, chip, adr, 1);
2600 }
2601
2602 /* Exit BC commands */
2603 map_write(map, CMD(0x90), chip->start);
2604 map_write(map, CMD(0x00), chip->start);
2605
2606 chip->state = FL_READY;
2607 put_chip(map, chip, adr + chip->start);
2608 mutex_unlock(&chip->mutex);
2609
2610 return ret;
2611 }
2612
2613 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2614 uint64_t len)
2615 {
2616 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2617 DO_XXLOCK_ONEBLOCK_LOCK);
2618 }
2619
2620 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2621 uint64_t len)
2622 {
2623 struct mtd_erase_region_info *regions = mtd->eraseregions;
2624 struct map_info *map = mtd->priv;
2625 struct cfi_private *cfi = map->fldrv_priv;
2626 struct ppb_lock *sect;
2627 unsigned long adr;
2628 loff_t offset;
2629 uint64_t length;
2630 int chipnum;
2631 int i;
2632 int sectors;
2633 int ret;
2634
2635 /*
2636 * PPB unlocking always unlocks all sectors of the flash chip.
2637 * We need to re-lock all previously locked sectors. So lets
2638 * first check the locking status of all sectors and save
2639 * it for future use.
2640 */
2641 sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2642 if (!sect)
2643 return -ENOMEM;
2644
2645 /*
2646 * This code to walk all sectors is a slightly modified version
2647 * of the cfi_varsize_frob() code.
2648 */
2649 i = 0;
2650 chipnum = 0;
2651 adr = 0;
2652 sectors = 0;
2653 offset = 0;
2654 length = mtd->size;
2655
2656 while (length) {
2657 int size = regions[i].erasesize;
2658
2659 /*
2660 * Only test sectors that shall not be unlocked. The other
2661 * sectors shall be unlocked, so lets keep their locking
2662 * status at "unlocked" (locked=0) for the final re-locking.
2663 */
2664 if ((adr < ofs) || (adr >= (ofs + len))) {
2665 sect[sectors].chip = &cfi->chips[chipnum];
2666 sect[sectors].offset = offset;
2667 sect[sectors].locked = do_ppb_xxlock(
2668 map, &cfi->chips[chipnum], adr, 0,
2669 DO_XXLOCK_ONEBLOCK_GETLOCK);
2670 }
2671
2672 adr += size;
2673 offset += size;
2674 length -= size;
2675
2676 if (offset == regions[i].offset + size * regions[i].numblocks)
2677 i++;
2678
2679 if (adr >> cfi->chipshift) {
2680 adr = 0;
2681 chipnum++;
2682
2683 if (chipnum >= cfi->numchips)
2684 break;
2685 }
2686
2687 sectors++;
2688 if (sectors >= MAX_SECTORS) {
2689 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2690 MAX_SECTORS);
2691 kfree(sect);
2692 return -EINVAL;
2693 }
2694 }
2695
2696 /* Now unlock the whole chip */
2697 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2698 DO_XXLOCK_ONEBLOCK_UNLOCK);
2699 if (ret) {
2700 kfree(sect);
2701 return ret;
2702 }
2703
2704 /*
2705 * PPB unlocking always unlocks all sectors of the flash chip.
2706 * We need to re-lock all previously locked sectors.
2707 */
2708 for (i = 0; i < sectors; i++) {
2709 if (sect[i].locked)
2710 do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2711 DO_XXLOCK_ONEBLOCK_LOCK);
2712 }
2713
2714 kfree(sect);
2715 return ret;
2716 }
2717
2718 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2719 uint64_t len)
2720 {
2721 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2722 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2723 }
2724
2725 static void cfi_amdstd_sync (struct mtd_info *mtd)
2726 {
2727 struct map_info *map = mtd->priv;
2728 struct cfi_private *cfi = map->fldrv_priv;
2729 int i;
2730 struct flchip *chip;
2731 int ret = 0;
2732 DECLARE_WAITQUEUE(wait, current);
2733
2734 for (i=0; !ret && i<cfi->numchips; i++) {
2735 chip = &cfi->chips[i];
2736
2737 retry:
2738 mutex_lock(&chip->mutex);
2739
2740 switch(chip->state) {
2741 case FL_READY:
2742 case FL_STATUS:
2743 case FL_CFI_QUERY:
2744 case FL_JEDEC_QUERY:
2745 chip->oldstate = chip->state;
2746 chip->state = FL_SYNCING;
2747 /* No need to wake_up() on this state change -
2748 * as the whole point is that nobody can do anything
2749 * with the chip now anyway.
2750 */
2751 case FL_SYNCING:
2752 mutex_unlock(&chip->mutex);
2753 break;
2754
2755 default:
2756 /* Not an idle state */
2757 set_current_state(TASK_UNINTERRUPTIBLE);
2758 add_wait_queue(&chip->wq, &wait);
2759
2760 mutex_unlock(&chip->mutex);
2761
2762 schedule();
2763
2764 remove_wait_queue(&chip->wq, &wait);
2765
2766 goto retry;
2767 }
2768 }
2769
2770 /* Unlock the chips again */
2771
2772 for (i--; i >=0; i--) {
2773 chip = &cfi->chips[i];
2774
2775 mutex_lock(&chip->mutex);
2776
2777 if (chip->state == FL_SYNCING) {
2778 chip->state = chip->oldstate;
2779 wake_up(&chip->wq);
2780 }
2781 mutex_unlock(&chip->mutex);
2782 }
2783 }
2784
2785
2786 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2787 {
2788 struct map_info *map = mtd->priv;
2789 struct cfi_private *cfi = map->fldrv_priv;
2790 int i;
2791 struct flchip *chip;
2792 int ret = 0;
2793
2794 for (i=0; !ret && i<cfi->numchips; i++) {
2795 chip = &cfi->chips[i];
2796
2797 mutex_lock(&chip->mutex);
2798
2799 switch(chip->state) {
2800 case FL_READY:
2801 case FL_STATUS:
2802 case FL_CFI_QUERY:
2803 case FL_JEDEC_QUERY:
2804 chip->oldstate = chip->state;
2805 chip->state = FL_PM_SUSPENDED;
2806 /* No need to wake_up() on this state change -
2807 * as the whole point is that nobody can do anything
2808 * with the chip now anyway.
2809 */
2810 case FL_PM_SUSPENDED:
2811 break;
2812
2813 default:
2814 ret = -EAGAIN;
2815 break;
2816 }
2817 mutex_unlock(&chip->mutex);
2818 }
2819
2820 /* Unlock the chips again */
2821
2822 if (ret) {
2823 for (i--; i >=0; i--) {
2824 chip = &cfi->chips[i];
2825
2826 mutex_lock(&chip->mutex);
2827
2828 if (chip->state == FL_PM_SUSPENDED) {
2829 chip->state = chip->oldstate;
2830 wake_up(&chip->wq);
2831 }
2832 mutex_unlock(&chip->mutex);
2833 }
2834 }
2835
2836 return ret;
2837 }
2838
2839
2840 static void cfi_amdstd_resume(struct mtd_info *mtd)
2841 {
2842 struct map_info *map = mtd->priv;
2843 struct cfi_private *cfi = map->fldrv_priv;
2844 int i;
2845 struct flchip *chip;
2846
2847 for (i=0; i<cfi->numchips; i++) {
2848
2849 chip = &cfi->chips[i];
2850
2851 mutex_lock(&chip->mutex);
2852
2853 if (chip->state == FL_PM_SUSPENDED) {
2854 chip->state = FL_READY;
2855 map_write(map, CMD(0xF0), chip->start);
2856 wake_up(&chip->wq);
2857 }
2858 else
2859 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2860
2861 mutex_unlock(&chip->mutex);
2862 }
2863 }
2864
2865
2866 /*
2867 * Ensure that the flash device is put back into read array mode before
2868 * unloading the driver or rebooting. On some systems, rebooting while
2869 * the flash is in query/program/erase mode will prevent the CPU from
2870 * fetching the bootloader code, requiring a hard reset or power cycle.
2871 */
2872 static int cfi_amdstd_reset(struct mtd_info *mtd)
2873 {
2874 struct map_info *map = mtd->priv;
2875 struct cfi_private *cfi = map->fldrv_priv;
2876 int i, ret;
2877 struct flchip *chip;
2878
2879 for (i = 0; i < cfi->numchips; i++) {
2880
2881 chip = &cfi->chips[i];
2882
2883 mutex_lock(&chip->mutex);
2884
2885 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2886 if (!ret) {
2887 map_write(map, CMD(0xF0), chip->start);
2888 chip->state = FL_SHUTDOWN;
2889 put_chip(map, chip, chip->start);
2890 }
2891
2892 mutex_unlock(&chip->mutex);
2893 }
2894
2895 return 0;
2896 }
2897
2898
2899 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2900 void *v)
2901 {
2902 struct mtd_info *mtd;
2903
2904 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2905 cfi_amdstd_reset(mtd);
2906 return NOTIFY_DONE;
2907 }
2908
2909
2910 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2911 {
2912 struct map_info *map = mtd->priv;
2913 struct cfi_private *cfi = map->fldrv_priv;
2914
2915 cfi_amdstd_reset(mtd);
2916 unregister_reboot_notifier(&mtd->reboot_notifier);
2917 kfree(cfi->cmdset_priv);
2918 kfree(cfi->cfiq);
2919 kfree(cfi);
2920 kfree(mtd->eraseregions);
2921 }
2922
2923 MODULE_LICENSE("GPL");
2924 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2925 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2926 MODULE_ALIAS("cfi_cmdset_0006");
2927 MODULE_ALIAS("cfi_cmdset_0701");