]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/inftlmount.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / inftlmount.c
1 /*
2 * inftlmount.c -- INFTL mount code with extensive checks.
3 *
4 * Author: Greg Ungerer (gerg@snapgear.com)
5 * (C) Copyright 2002-2003, Greg Ungerer (gerg@snapgear.com)
6 *
7 * Based heavily on the nftlmount.c code which is:
8 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
9 * Copyright (C) 2000 Netgem S.A.
10 *
11 * $Id: inftlmount.c,v 1.18 2005/11/07 11:14:20 gleixner Exp $
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <asm/errno.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/slab.h>
36 #include <linux/init.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/nftl.h>
39 #include <linux/mtd/inftl.h>
40 #include <linux/mtd/compatmac.h>
41
42 char inftlmountrev[]="$Revision: 1.18 $";
43
44 /*
45 * find_boot_record: Find the INFTL Media Header and its Spare copy which
46 * contains the various device information of the INFTL partition and
47 * Bad Unit Table. Update the PUtable[] table according to the Bad
48 * Unit Table. PUtable[] is used for management of Erase Unit in
49 * other routines in inftlcore.c and inftlmount.c.
50 */
51 static int find_boot_record(struct INFTLrecord *inftl)
52 {
53 struct inftl_unittail h1;
54 //struct inftl_oob oob;
55 unsigned int i, block;
56 u8 buf[SECTORSIZE];
57 struct INFTLMediaHeader *mh = &inftl->MediaHdr;
58 struct mtd_info *mtd = inftl->mbd.mtd;
59 struct INFTLPartition *ip;
60 size_t retlen;
61
62 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: find_boot_record(inftl=%p)\n", inftl);
63
64 /*
65 * Assume logical EraseSize == physical erasesize for starting the
66 * scan. We'll sort it out later if we find a MediaHeader which says
67 * otherwise.
68 */
69 inftl->EraseSize = inftl->mbd.mtd->erasesize;
70 inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize;
71
72 inftl->MediaUnit = BLOCK_NIL;
73
74 /* Search for a valid boot record */
75 for (block = 0; block < inftl->nb_blocks; block++) {
76 int ret;
77
78 /*
79 * Check for BNAND header first. Then whinge if it's found
80 * but later checks fail.
81 */
82 ret = mtd->read(mtd, block * inftl->EraseSize,
83 SECTORSIZE, &retlen, buf);
84 /* We ignore ret in case the ECC of the MediaHeader is invalid
85 (which is apparently acceptable) */
86 if (retlen != SECTORSIZE) {
87 static int warncount = 5;
88
89 if (warncount) {
90 printk(KERN_WARNING "INFTL: block read at 0x%x "
91 "of mtd%d failed: %d\n",
92 block * inftl->EraseSize,
93 inftl->mbd.mtd->index, ret);
94 if (!--warncount)
95 printk(KERN_WARNING "INFTL: further "
96 "failures for this block will "
97 "not be printed\n");
98 }
99 continue;
100 }
101
102 if (retlen < 6 || memcmp(buf, "BNAND", 6)) {
103 /* BNAND\0 not found. Continue */
104 continue;
105 }
106
107 /* To be safer with BIOS, also use erase mark as discriminant */
108 if ((ret = inftl_read_oob(mtd, block * inftl->EraseSize +
109 SECTORSIZE + 8, 8, &retlen,
110 (char *)&h1) < 0)) {
111 printk(KERN_WARNING "INFTL: ANAND header found at "
112 "0x%x in mtd%d, but OOB data read failed "
113 "(err %d)\n", block * inftl->EraseSize,
114 inftl->mbd.mtd->index, ret);
115 continue;
116 }
117
118
119 /*
120 * This is the first we've seen.
121 * Copy the media header structure into place.
122 */
123 memcpy(mh, buf, sizeof(struct INFTLMediaHeader));
124
125 /* Read the spare media header at offset 4096 */
126 mtd->read(mtd, block * inftl->EraseSize + 4096,
127 SECTORSIZE, &retlen, buf);
128 if (retlen != SECTORSIZE) {
129 printk(KERN_WARNING "INFTL: Unable to read spare "
130 "Media Header\n");
131 return -1;
132 }
133 /* Check if this one is the same as the first one we found. */
134 if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) {
135 printk(KERN_WARNING "INFTL: Primary and spare Media "
136 "Headers disagree.\n");
137 return -1;
138 }
139
140 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
141 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
142 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
143 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
144 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
145 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
146
147 #ifdef CONFIG_MTD_DEBUG_VERBOSE
148 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
149 printk("INFTL: Media Header ->\n"
150 " bootRecordID = %s\n"
151 " NoOfBootImageBlocks = %d\n"
152 " NoOfBinaryPartitions = %d\n"
153 " NoOfBDTLPartitions = %d\n"
154 " BlockMultiplerBits = %d\n"
155 " FormatFlgs = %d\n"
156 " OsakVersion = 0x%x\n"
157 " PercentUsed = %d\n",
158 mh->bootRecordID, mh->NoOfBootImageBlocks,
159 mh->NoOfBinaryPartitions,
160 mh->NoOfBDTLPartitions,
161 mh->BlockMultiplierBits, mh->FormatFlags,
162 mh->OsakVersion, mh->PercentUsed);
163 }
164 #endif
165
166 if (mh->NoOfBDTLPartitions == 0) {
167 printk(KERN_WARNING "INFTL: Media Header sanity check "
168 "failed: NoOfBDTLPartitions (%d) == 0, "
169 "must be at least 1\n", mh->NoOfBDTLPartitions);
170 return -1;
171 }
172
173 if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) {
174 printk(KERN_WARNING "INFTL: Media Header sanity check "
175 "failed: Total Partitions (%d) > 4, "
176 "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions +
177 mh->NoOfBinaryPartitions,
178 mh->NoOfBDTLPartitions,
179 mh->NoOfBinaryPartitions);
180 return -1;
181 }
182
183 if (mh->BlockMultiplierBits > 1) {
184 printk(KERN_WARNING "INFTL: sorry, we don't support "
185 "UnitSizeFactor 0x%02x\n",
186 mh->BlockMultiplierBits);
187 return -1;
188 } else if (mh->BlockMultiplierBits == 1) {
189 printk(KERN_WARNING "INFTL: support for INFTL with "
190 "UnitSizeFactor 0x%02x is experimental\n",
191 mh->BlockMultiplierBits);
192 inftl->EraseSize = inftl->mbd.mtd->erasesize <<
193 mh->BlockMultiplierBits;
194 inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize;
195 block >>= mh->BlockMultiplierBits;
196 }
197
198 /* Scan the partitions */
199 for (i = 0; (i < 4); i++) {
200 ip = &mh->Partitions[i];
201 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
202 ip->firstUnit = le32_to_cpu(ip->firstUnit);
203 ip->lastUnit = le32_to_cpu(ip->lastUnit);
204 ip->flags = le32_to_cpu(ip->flags);
205 ip->spareUnits = le32_to_cpu(ip->spareUnits);
206 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
207
208 #ifdef CONFIG_MTD_DEBUG_VERBOSE
209 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
210 printk(" PARTITION[%d] ->\n"
211 " virtualUnits = %d\n"
212 " firstUnit = %d\n"
213 " lastUnit = %d\n"
214 " flags = 0x%x\n"
215 " spareUnits = %d\n",
216 i, ip->virtualUnits, ip->firstUnit,
217 ip->lastUnit, ip->flags,
218 ip->spareUnits);
219 }
220 #endif
221
222 if (ip->Reserved0 != ip->firstUnit) {
223 struct erase_info *instr = &inftl->instr;
224
225 instr->mtd = inftl->mbd.mtd;
226
227 /*
228 * Most likely this is using the
229 * undocumented qiuck mount feature.
230 * We don't support that, we will need
231 * to erase the hidden block for full
232 * compatibility.
233 */
234 instr->addr = ip->Reserved0 * inftl->EraseSize;
235 instr->len = inftl->EraseSize;
236 mtd->erase(mtd, instr);
237 }
238 if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) {
239 printk(KERN_WARNING "INFTL: Media Header "
240 "Partition %d sanity check failed\n"
241 " firstUnit %d : lastUnit %d > "
242 "virtualUnits %d\n", i, ip->lastUnit,
243 ip->firstUnit, ip->Reserved0);
244 return -1;
245 }
246 if (ip->Reserved1 != 0) {
247 printk(KERN_WARNING "INFTL: Media Header "
248 "Partition %d sanity check failed: "
249 "Reserved1 %d != 0\n",
250 i, ip->Reserved1);
251 return -1;
252 }
253
254 if (ip->flags & INFTL_BDTL)
255 break;
256 }
257
258 if (i >= 4) {
259 printk(KERN_WARNING "INFTL: Media Header Partition "
260 "sanity check failed:\n No partition "
261 "marked as Disk Partition\n");
262 return -1;
263 }
264
265 inftl->nb_boot_blocks = ip->firstUnit;
266 inftl->numvunits = ip->virtualUnits;
267 if (inftl->numvunits > (inftl->nb_blocks -
268 inftl->nb_boot_blocks - 2)) {
269 printk(KERN_WARNING "INFTL: Media Header sanity check "
270 "failed:\n numvunits (%d) > nb_blocks "
271 "(%d) - nb_boot_blocks(%d) - 2\n",
272 inftl->numvunits, inftl->nb_blocks,
273 inftl->nb_boot_blocks);
274 return -1;
275 }
276
277 inftl->mbd.size = inftl->numvunits *
278 (inftl->EraseSize / SECTORSIZE);
279
280 /*
281 * Block count is set to last used EUN (we won't need to keep
282 * any meta-data past that point).
283 */
284 inftl->firstEUN = ip->firstUnit;
285 inftl->lastEUN = ip->lastUnit;
286 inftl->nb_blocks = ip->lastUnit + 1;
287
288 /* Memory alloc */
289 inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
290 if (!inftl->PUtable) {
291 printk(KERN_WARNING "INFTL: allocation of PUtable "
292 "failed (%zd bytes)\n",
293 inftl->nb_blocks * sizeof(u16));
294 return -ENOMEM;
295 }
296
297 inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
298 if (!inftl->VUtable) {
299 kfree(inftl->PUtable);
300 printk(KERN_WARNING "INFTL: allocation of VUtable "
301 "failed (%zd bytes)\n",
302 inftl->nb_blocks * sizeof(u16));
303 return -ENOMEM;
304 }
305
306 /* Mark the blocks before INFTL MediaHeader as reserved */
307 for (i = 0; i < inftl->nb_boot_blocks; i++)
308 inftl->PUtable[i] = BLOCK_RESERVED;
309 /* Mark all remaining blocks as potentially containing data */
310 for (; i < inftl->nb_blocks; i++)
311 inftl->PUtable[i] = BLOCK_NOTEXPLORED;
312
313 /* Mark this boot record (NFTL MediaHeader) block as reserved */
314 inftl->PUtable[block] = BLOCK_RESERVED;
315
316 /* Read Bad Erase Unit Table and modify PUtable[] accordingly */
317 for (i = 0; i < inftl->nb_blocks; i++) {
318 int physblock;
319 /* If any of the physical eraseblocks are bad, don't
320 use the unit. */
321 for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) {
322 if (inftl->mbd.mtd->block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock))
323 inftl->PUtable[i] = BLOCK_RESERVED;
324 }
325 }
326
327 inftl->MediaUnit = block;
328 return 0;
329 }
330
331 /* Not found. */
332 return -1;
333 }
334
335 static int memcmpb(void *a, int c, int n)
336 {
337 int i;
338 for (i = 0; i < n; i++) {
339 if (c != ((unsigned char *)a)[i])
340 return 1;
341 }
342 return 0;
343 }
344
345 /*
346 * check_free_sector: check if a free sector is actually FREE,
347 * i.e. All 0xff in data and oob area.
348 */
349 static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address,
350 int len, int check_oob)
351 {
352 u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize];
353 struct mtd_info *mtd = inftl->mbd.mtd;
354 size_t retlen;
355 int i;
356
357 for (i = 0; i < len; i += SECTORSIZE) {
358 if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
359 return -1;
360 if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
361 return -1;
362
363 if (check_oob) {
364 if(inftl_read_oob(mtd, address, mtd->oobsize,
365 &retlen, &buf[SECTORSIZE]) < 0)
366 return -1;
367 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
368 return -1;
369 }
370 address += SECTORSIZE;
371 }
372
373 return 0;
374 }
375
376 /*
377 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase
378 * Unit and Update INFTL metadata. Each erase operation is
379 * checked with check_free_sectors.
380 *
381 * Return: 0 when succeed, -1 on error.
382 *
383 * ToDo: 1. Is it neceressary to check_free_sector after erasing ??
384 */
385 int INFTL_formatblock(struct INFTLrecord *inftl, int block)
386 {
387 size_t retlen;
388 struct inftl_unittail uci;
389 struct erase_info *instr = &inftl->instr;
390 struct mtd_info *mtd = inftl->mbd.mtd;
391 int physblock;
392
393 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_formatblock(inftl=%p,"
394 "block=%d)\n", inftl, block);
395
396 memset(instr, 0, sizeof(struct erase_info));
397
398 /* FIXME: Shouldn't we be setting the 'discarded' flag to zero
399 _first_? */
400
401 /* Use async erase interface, test return code */
402 instr->mtd = inftl->mbd.mtd;
403 instr->addr = block * inftl->EraseSize;
404 instr->len = inftl->mbd.mtd->erasesize;
405 /* Erase one physical eraseblock at a time, even though the NAND api
406 allows us to group them. This way we if we have a failure, we can
407 mark only the failed block in the bbt. */
408 for (physblock = 0; physblock < inftl->EraseSize;
409 physblock += instr->len, instr->addr += instr->len) {
410 mtd->erase(inftl->mbd.mtd, instr);
411
412 if (instr->state == MTD_ERASE_FAILED) {
413 printk(KERN_WARNING "INFTL: error while formatting block %d\n",
414 block);
415 goto fail;
416 }
417
418 /*
419 * Check the "freeness" of Erase Unit before updating metadata.
420 * FixMe: is this check really necessary? Since we have check
421 * the return code after the erase operation.
422 */
423 if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0)
424 goto fail;
425 }
426
427 uci.EraseMark = cpu_to_le16(ERASE_MARK);
428 uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
429 uci.Reserved[0] = 0;
430 uci.Reserved[1] = 0;
431 uci.Reserved[2] = 0;
432 uci.Reserved[3] = 0;
433 instr->addr = block * inftl->EraseSize + SECTORSIZE * 2;
434 if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0)
435 goto fail;
436 return 0;
437 fail:
438 /* could not format, update the bad block table (caller is responsible
439 for setting the PUtable to BLOCK_RESERVED on failure) */
440 inftl->mbd.mtd->block_markbad(inftl->mbd.mtd, instr->addr);
441 return -1;
442 }
443
444 /*
445 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase
446 * Units in a Virtual Unit Chain, i.e. all the units are disconnected.
447 *
448 * Since the chain is invalid then we will have to erase it from its
449 * head (normally for INFTL we go from the oldest). But if it has a
450 * loop then there is no oldest...
451 */
452 static void format_chain(struct INFTLrecord *inftl, unsigned int first_block)
453 {
454 unsigned int block = first_block, block1;
455
456 printk(KERN_WARNING "INFTL: formatting chain at block %d\n",
457 first_block);
458
459 for (;;) {
460 block1 = inftl->PUtable[block];
461
462 printk(KERN_WARNING "INFTL: formatting block %d\n", block);
463 if (INFTL_formatblock(inftl, block) < 0) {
464 /*
465 * Cannot format !!!! Mark it as Bad Unit,
466 */
467 inftl->PUtable[block] = BLOCK_RESERVED;
468 } else {
469 inftl->PUtable[block] = BLOCK_FREE;
470 }
471
472 /* Goto next block on the chain */
473 block = block1;
474
475 if (block == BLOCK_NIL || block >= inftl->lastEUN)
476 break;
477 }
478 }
479
480 void INFTL_dumptables(struct INFTLrecord *s)
481 {
482 int i;
483
484 printk("-------------------------------------------"
485 "----------------------------------\n");
486
487 printk("VUtable[%d] ->", s->nb_blocks);
488 for (i = 0; i < s->nb_blocks; i++) {
489 if ((i % 8) == 0)
490 printk("\n%04x: ", i);
491 printk("%04x ", s->VUtable[i]);
492 }
493
494 printk("\n-------------------------------------------"
495 "----------------------------------\n");
496
497 printk("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks);
498 for (i = 0; i <= s->lastEUN; i++) {
499 if ((i % 8) == 0)
500 printk("\n%04x: ", i);
501 printk("%04x ", s->PUtable[i]);
502 }
503
504 printk("\n-------------------------------------------"
505 "----------------------------------\n");
506
507 printk("INFTL ->\n"
508 " EraseSize = %d\n"
509 " h/s/c = %d/%d/%d\n"
510 " numvunits = %d\n"
511 " firstEUN = %d\n"
512 " lastEUN = %d\n"
513 " numfreeEUNs = %d\n"
514 " LastFreeEUN = %d\n"
515 " nb_blocks = %d\n"
516 " nb_boot_blocks = %d",
517 s->EraseSize, s->heads, s->sectors, s->cylinders,
518 s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs,
519 s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks);
520
521 printk("\n-------------------------------------------"
522 "----------------------------------\n");
523 }
524
525 void INFTL_dumpVUchains(struct INFTLrecord *s)
526 {
527 int logical, block, i;
528
529 printk("-------------------------------------------"
530 "----------------------------------\n");
531
532 printk("INFTL Virtual Unit Chains:\n");
533 for (logical = 0; logical < s->nb_blocks; logical++) {
534 block = s->VUtable[logical];
535 if (block > s->nb_blocks)
536 continue;
537 printk(" LOGICAL %d --> %d ", logical, block);
538 for (i = 0; i < s->nb_blocks; i++) {
539 if (s->PUtable[block] == BLOCK_NIL)
540 break;
541 block = s->PUtable[block];
542 printk("%d ", block);
543 }
544 printk("\n");
545 }
546
547 printk("-------------------------------------------"
548 "----------------------------------\n");
549 }
550
551 int INFTL_mount(struct INFTLrecord *s)
552 {
553 struct mtd_info *mtd = s->mbd.mtd;
554 unsigned int block, first_block, prev_block, last_block;
555 unsigned int first_logical_block, logical_block, erase_mark;
556 int chain_length, do_format_chain;
557 struct inftl_unithead1 h0;
558 struct inftl_unittail h1;
559 size_t retlen;
560 int i;
561 u8 *ANACtable, ANAC;
562
563 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_mount(inftl=%p)\n", s);
564
565 /* Search for INFTL MediaHeader and Spare INFTL Media Header */
566 if (find_boot_record(s) < 0) {
567 printk(KERN_WARNING "INFTL: could not find valid boot record?\n");
568 return -ENXIO;
569 }
570
571 /* Init the logical to physical table */
572 for (i = 0; i < s->nb_blocks; i++)
573 s->VUtable[i] = BLOCK_NIL;
574
575 logical_block = block = BLOCK_NIL;
576
577 /* Temporary buffer to store ANAC numbers. */
578 ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL);
579 if (!ANACtable) {
580 printk(KERN_WARNING "INFTL: allocation of ANACtable "
581 "failed (%zd bytes)\n",
582 s->nb_blocks * sizeof(u8));
583 return -ENOMEM;
584 }
585
586 /*
587 * First pass is to explore each physical unit, and construct the
588 * virtual chains that exist (newest physical unit goes into VUtable).
589 * Any block that is in any way invalid will be left in the
590 * NOTEXPLORED state. Then at the end we will try to format it and
591 * mark it as free.
592 */
593 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 1, explore each unit\n");
594 for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) {
595 if (s->PUtable[first_block] != BLOCK_NOTEXPLORED)
596 continue;
597
598 do_format_chain = 0;
599 first_logical_block = BLOCK_NIL;
600 last_block = BLOCK_NIL;
601 block = first_block;
602
603 for (chain_length = 0; ; chain_length++) {
604
605 if ((chain_length == 0) &&
606 (s->PUtable[block] != BLOCK_NOTEXPLORED)) {
607 /* Nothing to do here, onto next block */
608 break;
609 }
610
611 if (inftl_read_oob(mtd, block * s->EraseSize + 8,
612 8, &retlen, (char *)&h0) < 0 ||
613 inftl_read_oob(mtd, block * s->EraseSize +
614 2 * SECTORSIZE + 8, 8, &retlen,
615 (char *)&h1) < 0) {
616 /* Should never happen? */
617 do_format_chain++;
618 break;
619 }
620
621 logical_block = le16_to_cpu(h0.virtualUnitNo);
622 prev_block = le16_to_cpu(h0.prevUnitNo);
623 erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1));
624 ANACtable[block] = h0.ANAC;
625
626 /* Previous block is relative to start of Partition */
627 if (prev_block < s->nb_blocks)
628 prev_block += s->firstEUN;
629
630 /* Already explored partial chain? */
631 if (s->PUtable[block] != BLOCK_NOTEXPLORED) {
632 /* Check if chain for this logical */
633 if (logical_block == first_logical_block) {
634 if (last_block != BLOCK_NIL)
635 s->PUtable[last_block] = block;
636 }
637 break;
638 }
639
640 /* Check for invalid block */
641 if (erase_mark != ERASE_MARK) {
642 printk(KERN_WARNING "INFTL: corrupt block %d "
643 "in chain %d, chain length %d, erase "
644 "mark 0x%x?\n", block, first_block,
645 chain_length, erase_mark);
646 /*
647 * Assume end of chain, probably incomplete
648 * fold/erase...
649 */
650 if (chain_length == 0)
651 do_format_chain++;
652 break;
653 }
654
655 /* Check for it being free already then... */
656 if ((logical_block == BLOCK_FREE) ||
657 (logical_block == BLOCK_NIL)) {
658 s->PUtable[block] = BLOCK_FREE;
659 break;
660 }
661
662 /* Sanity checks on block numbers */
663 if ((logical_block >= s->nb_blocks) ||
664 ((prev_block >= s->nb_blocks) &&
665 (prev_block != BLOCK_NIL))) {
666 if (chain_length > 0) {
667 printk(KERN_WARNING "INFTL: corrupt "
668 "block %d in chain %d?\n",
669 block, first_block);
670 do_format_chain++;
671 }
672 break;
673 }
674
675 if (first_logical_block == BLOCK_NIL) {
676 first_logical_block = logical_block;
677 } else {
678 if (first_logical_block != logical_block) {
679 /* Normal for folded chain... */
680 break;
681 }
682 }
683
684 /*
685 * Current block is valid, so if we followed a virtual
686 * chain to get here then we can set the previous
687 * block pointer in our PUtable now. Then move onto
688 * the previous block in the chain.
689 */
690 s->PUtable[block] = BLOCK_NIL;
691 if (last_block != BLOCK_NIL)
692 s->PUtable[last_block] = block;
693 last_block = block;
694 block = prev_block;
695
696 /* Check for end of chain */
697 if (block == BLOCK_NIL)
698 break;
699
700 /* Validate next block before following it... */
701 if (block > s->lastEUN) {
702 printk(KERN_WARNING "INFTL: invalid previous "
703 "block %d in chain %d?\n", block,
704 first_block);
705 do_format_chain++;
706 break;
707 }
708 }
709
710 if (do_format_chain) {
711 format_chain(s, first_block);
712 continue;
713 }
714
715 /*
716 * Looks like a valid chain then. It may not really be the
717 * newest block in the chain, but it is the newest we have
718 * found so far. We might update it in later iterations of
719 * this loop if we find something newer.
720 */
721 s->VUtable[first_logical_block] = first_block;
722 logical_block = BLOCK_NIL;
723 }
724
725 #ifdef CONFIG_MTD_DEBUG_VERBOSE
726 if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
727 INFTL_dumptables(s);
728 #endif
729
730 /*
731 * Second pass, check for infinite loops in chains. These are
732 * possible because we don't update the previous pointers when
733 * we fold chains. No big deal, just fix them up in PUtable.
734 */
735 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 2, validate virtual chains\n");
736 for (logical_block = 0; logical_block < s->numvunits; logical_block++) {
737 block = s->VUtable[logical_block];
738 last_block = BLOCK_NIL;
739
740 /* Check for free/reserved/nil */
741 if (block >= BLOCK_RESERVED)
742 continue;
743
744 ANAC = ANACtable[block];
745 for (i = 0; i < s->numvunits; i++) {
746 if (s->PUtable[block] == BLOCK_NIL)
747 break;
748 if (s->PUtable[block] > s->lastEUN) {
749 printk(KERN_WARNING "INFTL: invalid prev %d, "
750 "in virtual chain %d\n",
751 s->PUtable[block], logical_block);
752 s->PUtable[block] = BLOCK_NIL;
753
754 }
755 if (ANACtable[block] != ANAC) {
756 /*
757 * Chain must point back to itself. This is ok,
758 * but we will need adjust the tables with this
759 * newest block and oldest block.
760 */
761 s->VUtable[logical_block] = block;
762 s->PUtable[last_block] = BLOCK_NIL;
763 break;
764 }
765
766 ANAC--;
767 last_block = block;
768 block = s->PUtable[block];
769 }
770
771 if (i >= s->nb_blocks) {
772 /*
773 * Uhoo, infinite chain with valid ANACS!
774 * Format whole chain...
775 */
776 format_chain(s, first_block);
777 }
778 }
779
780 #ifdef CONFIG_MTD_DEBUG_VERBOSE
781 if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
782 INFTL_dumptables(s);
783 if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
784 INFTL_dumpVUchains(s);
785 #endif
786
787 /*
788 * Third pass, format unreferenced blocks and init free block count.
789 */
790 s->numfreeEUNs = 0;
791 s->LastFreeEUN = BLOCK_NIL;
792
793 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 3, format unused blocks\n");
794 for (block = s->firstEUN; block <= s->lastEUN; block++) {
795 if (s->PUtable[block] == BLOCK_NOTEXPLORED) {
796 printk("INFTL: unreferenced block %d, formatting it\n",
797 block);
798 if (INFTL_formatblock(s, block) < 0)
799 s->PUtable[block] = BLOCK_RESERVED;
800 else
801 s->PUtable[block] = BLOCK_FREE;
802 }
803 if (s->PUtable[block] == BLOCK_FREE) {
804 s->numfreeEUNs++;
805 if (s->LastFreeEUN == BLOCK_NIL)
806 s->LastFreeEUN = block;
807 }
808 }
809
810 kfree(ANACtable);
811 return 0;
812 }