]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/mtdchar.c
Merge tag 'block-5.11-2021-02-05' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / mtdchar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
4 */
5
6 #include <linux/device.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/mutex.h>
16 #include <linux/backing-dev.h>
17 #include <linux/compat.h>
18 #include <linux/mount.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/major.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/partitions.h>
24 #include <linux/mtd/map.h>
25
26 #include <linux/uaccess.h>
27
28 #include "mtdcore.h"
29
30 static DEFINE_MUTEX(mtd_mutex);
31
32 /*
33 * Data structure to hold the pointer to the mtd device as well
34 * as mode information of various use cases.
35 */
36 struct mtd_file_info {
37 struct mtd_info *mtd;
38 enum mtd_file_modes mode;
39 };
40
41 static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
42 {
43 struct mtd_file_info *mfi = file->private_data;
44 return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
45 }
46
47 static int mtdchar_open(struct inode *inode, struct file *file)
48 {
49 int minor = iminor(inode);
50 int devnum = minor >> 1;
51 int ret = 0;
52 struct mtd_info *mtd;
53 struct mtd_file_info *mfi;
54
55 pr_debug("MTD_open\n");
56
57 /* You can't open the RO devices RW */
58 if ((file->f_mode & FMODE_WRITE) && (minor & 1))
59 return -EACCES;
60
61 mutex_lock(&mtd_mutex);
62 mtd = get_mtd_device(NULL, devnum);
63
64 if (IS_ERR(mtd)) {
65 ret = PTR_ERR(mtd);
66 goto out;
67 }
68
69 if (mtd->type == MTD_ABSENT) {
70 ret = -ENODEV;
71 goto out1;
72 }
73
74 /* You can't open it RW if it's not a writeable device */
75 if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
76 ret = -EACCES;
77 goto out1;
78 }
79
80 mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
81 if (!mfi) {
82 ret = -ENOMEM;
83 goto out1;
84 }
85 mfi->mtd = mtd;
86 file->private_data = mfi;
87 mutex_unlock(&mtd_mutex);
88 return 0;
89
90 out1:
91 put_mtd_device(mtd);
92 out:
93 mutex_unlock(&mtd_mutex);
94 return ret;
95 } /* mtdchar_open */
96
97 /*====================================================================*/
98
99 static int mtdchar_close(struct inode *inode, struct file *file)
100 {
101 struct mtd_file_info *mfi = file->private_data;
102 struct mtd_info *mtd = mfi->mtd;
103
104 pr_debug("MTD_close\n");
105
106 /* Only sync if opened RW */
107 if ((file->f_mode & FMODE_WRITE))
108 mtd_sync(mtd);
109
110 put_mtd_device(mtd);
111 file->private_data = NULL;
112 kfree(mfi);
113
114 return 0;
115 } /* mtdchar_close */
116
117 /* Back in June 2001, dwmw2 wrote:
118 *
119 * FIXME: This _really_ needs to die. In 2.5, we should lock the
120 * userspace buffer down and use it directly with readv/writev.
121 *
122 * The implementation below, using mtd_kmalloc_up_to, mitigates
123 * allocation failures when the system is under low-memory situations
124 * or if memory is highly fragmented at the cost of reducing the
125 * performance of the requested transfer due to a smaller buffer size.
126 *
127 * A more complex but more memory-efficient implementation based on
128 * get_user_pages and iovecs to cover extents of those pages is a
129 * longer-term goal, as intimated by dwmw2 above. However, for the
130 * write case, this requires yet more complex head and tail transfer
131 * handling when those head and tail offsets and sizes are such that
132 * alignment requirements are not met in the NAND subdriver.
133 */
134
135 static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
136 loff_t *ppos)
137 {
138 struct mtd_file_info *mfi = file->private_data;
139 struct mtd_info *mtd = mfi->mtd;
140 size_t retlen;
141 size_t total_retlen=0;
142 int ret=0;
143 int len;
144 size_t size = count;
145 char *kbuf;
146
147 pr_debug("MTD_read\n");
148
149 if (*ppos + count > mtd->size) {
150 if (*ppos < mtd->size)
151 count = mtd->size - *ppos;
152 else
153 count = 0;
154 }
155
156 if (!count)
157 return 0;
158
159 kbuf = mtd_kmalloc_up_to(mtd, &size);
160 if (!kbuf)
161 return -ENOMEM;
162
163 while (count) {
164 len = min_t(size_t, count, size);
165
166 switch (mfi->mode) {
167 case MTD_FILE_MODE_OTP_FACTORY:
168 ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
169 &retlen, kbuf);
170 break;
171 case MTD_FILE_MODE_OTP_USER:
172 ret = mtd_read_user_prot_reg(mtd, *ppos, len,
173 &retlen, kbuf);
174 break;
175 case MTD_FILE_MODE_RAW:
176 {
177 struct mtd_oob_ops ops = {};
178
179 ops.mode = MTD_OPS_RAW;
180 ops.datbuf = kbuf;
181 ops.oobbuf = NULL;
182 ops.len = len;
183
184 ret = mtd_read_oob(mtd, *ppos, &ops);
185 retlen = ops.retlen;
186 break;
187 }
188 default:
189 ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
190 }
191 /* Nand returns -EBADMSG on ECC errors, but it returns
192 * the data. For our userspace tools it is important
193 * to dump areas with ECC errors!
194 * For kernel internal usage it also might return -EUCLEAN
195 * to signal the caller that a bitflip has occurred and has
196 * been corrected by the ECC algorithm.
197 * Userspace software which accesses NAND this way
198 * must be aware of the fact that it deals with NAND
199 */
200 if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
201 *ppos += retlen;
202 if (copy_to_user(buf, kbuf, retlen)) {
203 kfree(kbuf);
204 return -EFAULT;
205 }
206 else
207 total_retlen += retlen;
208
209 count -= retlen;
210 buf += retlen;
211 if (retlen == 0)
212 count = 0;
213 }
214 else {
215 kfree(kbuf);
216 return ret;
217 }
218
219 }
220
221 kfree(kbuf);
222 return total_retlen;
223 } /* mtdchar_read */
224
225 static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
226 loff_t *ppos)
227 {
228 struct mtd_file_info *mfi = file->private_data;
229 struct mtd_info *mtd = mfi->mtd;
230 size_t size = count;
231 char *kbuf;
232 size_t retlen;
233 size_t total_retlen=0;
234 int ret=0;
235 int len;
236
237 pr_debug("MTD_write\n");
238
239 if (*ppos >= mtd->size)
240 return -ENOSPC;
241
242 if (*ppos + count > mtd->size)
243 count = mtd->size - *ppos;
244
245 if (!count)
246 return 0;
247
248 kbuf = mtd_kmalloc_up_to(mtd, &size);
249 if (!kbuf)
250 return -ENOMEM;
251
252 while (count) {
253 len = min_t(size_t, count, size);
254
255 if (copy_from_user(kbuf, buf, len)) {
256 kfree(kbuf);
257 return -EFAULT;
258 }
259
260 switch (mfi->mode) {
261 case MTD_FILE_MODE_OTP_FACTORY:
262 ret = -EROFS;
263 break;
264 case MTD_FILE_MODE_OTP_USER:
265 ret = mtd_write_user_prot_reg(mtd, *ppos, len,
266 &retlen, kbuf);
267 break;
268
269 case MTD_FILE_MODE_RAW:
270 {
271 struct mtd_oob_ops ops = {};
272
273 ops.mode = MTD_OPS_RAW;
274 ops.datbuf = kbuf;
275 ops.oobbuf = NULL;
276 ops.ooboffs = 0;
277 ops.len = len;
278
279 ret = mtd_write_oob(mtd, *ppos, &ops);
280 retlen = ops.retlen;
281 break;
282 }
283
284 default:
285 ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
286 }
287
288 /*
289 * Return -ENOSPC only if no data could be written at all.
290 * Otherwise just return the number of bytes that actually
291 * have been written.
292 */
293 if ((ret == -ENOSPC) && (total_retlen))
294 break;
295
296 if (!ret) {
297 *ppos += retlen;
298 total_retlen += retlen;
299 count -= retlen;
300 buf += retlen;
301 }
302 else {
303 kfree(kbuf);
304 return ret;
305 }
306 }
307
308 kfree(kbuf);
309 return total_retlen;
310 } /* mtdchar_write */
311
312 /*======================================================================
313
314 IOCTL calls for getting device parameters.
315
316 ======================================================================*/
317
318 static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
319 {
320 struct mtd_info *mtd = mfi->mtd;
321 size_t retlen;
322
323 switch (mode) {
324 case MTD_OTP_FACTORY:
325 if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
326 -EOPNOTSUPP)
327 return -EOPNOTSUPP;
328
329 mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
330 break;
331 case MTD_OTP_USER:
332 if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
333 -EOPNOTSUPP)
334 return -EOPNOTSUPP;
335
336 mfi->mode = MTD_FILE_MODE_OTP_USER;
337 break;
338 case MTD_OTP_OFF:
339 mfi->mode = MTD_FILE_MODE_NORMAL;
340 break;
341 default:
342 return -EINVAL;
343 }
344
345 return 0;
346 }
347
348 static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
349 uint64_t start, uint32_t length, void __user *ptr,
350 uint32_t __user *retp)
351 {
352 struct mtd_info *master = mtd_get_master(mtd);
353 struct mtd_file_info *mfi = file->private_data;
354 struct mtd_oob_ops ops = {};
355 uint32_t retlen;
356 int ret = 0;
357
358 if (length > 4096)
359 return -EINVAL;
360
361 if (!master->_write_oob)
362 return -EOPNOTSUPP;
363
364 ops.ooblen = length;
365 ops.ooboffs = start & (mtd->writesize - 1);
366 ops.datbuf = NULL;
367 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
368 MTD_OPS_PLACE_OOB;
369
370 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
371 return -EINVAL;
372
373 ops.oobbuf = memdup_user(ptr, length);
374 if (IS_ERR(ops.oobbuf))
375 return PTR_ERR(ops.oobbuf);
376
377 start &= ~((uint64_t)mtd->writesize - 1);
378 ret = mtd_write_oob(mtd, start, &ops);
379
380 if (ops.oobretlen > 0xFFFFFFFFU)
381 ret = -EOVERFLOW;
382 retlen = ops.oobretlen;
383 if (copy_to_user(retp, &retlen, sizeof(length)))
384 ret = -EFAULT;
385
386 kfree(ops.oobbuf);
387 return ret;
388 }
389
390 static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
391 uint64_t start, uint32_t length, void __user *ptr,
392 uint32_t __user *retp)
393 {
394 struct mtd_file_info *mfi = file->private_data;
395 struct mtd_oob_ops ops = {};
396 int ret = 0;
397
398 if (length > 4096)
399 return -EINVAL;
400
401 ops.ooblen = length;
402 ops.ooboffs = start & (mtd->writesize - 1);
403 ops.datbuf = NULL;
404 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
405 MTD_OPS_PLACE_OOB;
406
407 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
408 return -EINVAL;
409
410 ops.oobbuf = kmalloc(length, GFP_KERNEL);
411 if (!ops.oobbuf)
412 return -ENOMEM;
413
414 start &= ~((uint64_t)mtd->writesize - 1);
415 ret = mtd_read_oob(mtd, start, &ops);
416
417 if (put_user(ops.oobretlen, retp))
418 ret = -EFAULT;
419 else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
420 ops.oobretlen))
421 ret = -EFAULT;
422
423 kfree(ops.oobbuf);
424
425 /*
426 * NAND returns -EBADMSG on ECC errors, but it returns the OOB
427 * data. For our userspace tools it is important to dump areas
428 * with ECC errors!
429 * For kernel internal usage it also might return -EUCLEAN
430 * to signal the caller that a bitflip has occurred and has
431 * been corrected by the ECC algorithm.
432 *
433 * Note: currently the standard NAND function, nand_read_oob_std,
434 * does not calculate ECC for the OOB area, so do not rely on
435 * this behavior unless you have replaced it with your own.
436 */
437 if (mtd_is_bitflip_or_eccerr(ret))
438 return 0;
439
440 return ret;
441 }
442
443 /*
444 * Copies (and truncates, if necessary) OOB layout information to the
445 * deprecated layout struct, nand_ecclayout_user. This is necessary only to
446 * support the deprecated API ioctl ECCGETLAYOUT while allowing all new
447 * functionality to use mtd_ooblayout_ops flexibly (i.e. mtd_ooblayout_ops
448 * can describe any kind of OOB layout with almost zero overhead from a
449 * memory usage point of view).
450 */
451 static int shrink_ecclayout(struct mtd_info *mtd,
452 struct nand_ecclayout_user *to)
453 {
454 struct mtd_oob_region oobregion;
455 int i, section = 0, ret;
456
457 if (!mtd || !to)
458 return -EINVAL;
459
460 memset(to, 0, sizeof(*to));
461
462 to->eccbytes = 0;
463 for (i = 0; i < MTD_MAX_ECCPOS_ENTRIES;) {
464 u32 eccpos;
465
466 ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
467 if (ret < 0) {
468 if (ret != -ERANGE)
469 return ret;
470
471 break;
472 }
473
474 eccpos = oobregion.offset;
475 for (; i < MTD_MAX_ECCPOS_ENTRIES &&
476 eccpos < oobregion.offset + oobregion.length; i++) {
477 to->eccpos[i] = eccpos++;
478 to->eccbytes++;
479 }
480 }
481
482 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
483 ret = mtd_ooblayout_free(mtd, i, &oobregion);
484 if (ret < 0) {
485 if (ret != -ERANGE)
486 return ret;
487
488 break;
489 }
490
491 to->oobfree[i].offset = oobregion.offset;
492 to->oobfree[i].length = oobregion.length;
493 to->oobavail += to->oobfree[i].length;
494 }
495
496 return 0;
497 }
498
499 static int get_oobinfo(struct mtd_info *mtd, struct nand_oobinfo *to)
500 {
501 struct mtd_oob_region oobregion;
502 int i, section = 0, ret;
503
504 if (!mtd || !to)
505 return -EINVAL;
506
507 memset(to, 0, sizeof(*to));
508
509 to->eccbytes = 0;
510 for (i = 0; i < ARRAY_SIZE(to->eccpos);) {
511 u32 eccpos;
512
513 ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
514 if (ret < 0) {
515 if (ret != -ERANGE)
516 return ret;
517
518 break;
519 }
520
521 if (oobregion.length + i > ARRAY_SIZE(to->eccpos))
522 return -EINVAL;
523
524 eccpos = oobregion.offset;
525 for (; eccpos < oobregion.offset + oobregion.length; i++) {
526 to->eccpos[i] = eccpos++;
527 to->eccbytes++;
528 }
529 }
530
531 for (i = 0; i < 8; i++) {
532 ret = mtd_ooblayout_free(mtd, i, &oobregion);
533 if (ret < 0) {
534 if (ret != -ERANGE)
535 return ret;
536
537 break;
538 }
539
540 to->oobfree[i][0] = oobregion.offset;
541 to->oobfree[i][1] = oobregion.length;
542 }
543
544 to->useecc = MTD_NANDECC_AUTOPLACE;
545
546 return 0;
547 }
548
549 static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
550 struct blkpg_ioctl_arg *arg)
551 {
552 struct blkpg_partition p;
553
554 if (!capable(CAP_SYS_ADMIN))
555 return -EPERM;
556
557 if (copy_from_user(&p, arg->data, sizeof(p)))
558 return -EFAULT;
559
560 switch (arg->op) {
561 case BLKPG_ADD_PARTITION:
562
563 /* Only master mtd device must be used to add partitions */
564 if (mtd_is_partition(mtd))
565 return -EINVAL;
566
567 /* Sanitize user input */
568 p.devname[BLKPG_DEVNAMELTH - 1] = '\0';
569
570 return mtd_add_partition(mtd, p.devname, p.start, p.length);
571
572 case BLKPG_DEL_PARTITION:
573
574 if (p.pno < 0)
575 return -EINVAL;
576
577 return mtd_del_partition(mtd, p.pno);
578
579 default:
580 return -EINVAL;
581 }
582 }
583
584 static int mtdchar_write_ioctl(struct mtd_info *mtd,
585 struct mtd_write_req __user *argp)
586 {
587 struct mtd_info *master = mtd_get_master(mtd);
588 struct mtd_write_req req;
589 struct mtd_oob_ops ops = {};
590 const void __user *usr_data, *usr_oob;
591 int ret;
592
593 if (copy_from_user(&req, argp, sizeof(req)))
594 return -EFAULT;
595
596 usr_data = (const void __user *)(uintptr_t)req.usr_data;
597 usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
598
599 if (!master->_write_oob)
600 return -EOPNOTSUPP;
601 ops.mode = req.mode;
602 ops.len = (size_t)req.len;
603 ops.ooblen = (size_t)req.ooblen;
604 ops.ooboffs = 0;
605
606 if (usr_data) {
607 ops.datbuf = memdup_user(usr_data, ops.len);
608 if (IS_ERR(ops.datbuf))
609 return PTR_ERR(ops.datbuf);
610 } else {
611 ops.datbuf = NULL;
612 }
613
614 if (usr_oob) {
615 ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
616 if (IS_ERR(ops.oobbuf)) {
617 kfree(ops.datbuf);
618 return PTR_ERR(ops.oobbuf);
619 }
620 } else {
621 ops.oobbuf = NULL;
622 }
623
624 ret = mtd_write_oob(mtd, (loff_t)req.start, &ops);
625
626 kfree(ops.datbuf);
627 kfree(ops.oobbuf);
628
629 return ret;
630 }
631
632 static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
633 {
634 struct mtd_file_info *mfi = file->private_data;
635 struct mtd_info *mtd = mfi->mtd;
636 struct mtd_info *master = mtd_get_master(mtd);
637 void __user *argp = (void __user *)arg;
638 int ret = 0;
639 struct mtd_info_user info;
640
641 pr_debug("MTD_ioctl\n");
642
643 /*
644 * Check the file mode to require "dangerous" commands to have write
645 * permissions.
646 */
647 switch (cmd) {
648 /* "safe" commands */
649 case MEMGETREGIONCOUNT:
650 case MEMGETREGIONINFO:
651 case MEMGETINFO:
652 case MEMREADOOB:
653 case MEMREADOOB64:
654 case MEMLOCK:
655 case MEMUNLOCK:
656 case MEMISLOCKED:
657 case MEMGETOOBSEL:
658 case MEMGETBADBLOCK:
659 case MEMSETBADBLOCK:
660 case OTPSELECT:
661 case OTPGETREGIONCOUNT:
662 case OTPGETREGIONINFO:
663 case OTPLOCK:
664 case ECCGETLAYOUT:
665 case ECCGETSTATS:
666 case MTDFILEMODE:
667 case BLKPG:
668 case BLKRRPART:
669 break;
670
671 /* "dangerous" commands */
672 case MEMERASE:
673 case MEMERASE64:
674 case MEMWRITEOOB:
675 case MEMWRITEOOB64:
676 case MEMWRITE:
677 if (!(file->f_mode & FMODE_WRITE))
678 return -EPERM;
679 break;
680
681 default:
682 return -ENOTTY;
683 }
684
685 switch (cmd) {
686 case MEMGETREGIONCOUNT:
687 if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
688 return -EFAULT;
689 break;
690
691 case MEMGETREGIONINFO:
692 {
693 uint32_t ur_idx;
694 struct mtd_erase_region_info *kr;
695 struct region_info_user __user *ur = argp;
696
697 if (get_user(ur_idx, &(ur->regionindex)))
698 return -EFAULT;
699
700 if (ur_idx >= mtd->numeraseregions)
701 return -EINVAL;
702
703 kr = &(mtd->eraseregions[ur_idx]);
704
705 if (put_user(kr->offset, &(ur->offset))
706 || put_user(kr->erasesize, &(ur->erasesize))
707 || put_user(kr->numblocks, &(ur->numblocks)))
708 return -EFAULT;
709
710 break;
711 }
712
713 case MEMGETINFO:
714 memset(&info, 0, sizeof(info));
715 info.type = mtd->type;
716 info.flags = mtd->flags;
717 info.size = mtd->size;
718 info.erasesize = mtd->erasesize;
719 info.writesize = mtd->writesize;
720 info.oobsize = mtd->oobsize;
721 /* The below field is obsolete */
722 info.padding = 0;
723 if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
724 return -EFAULT;
725 break;
726
727 case MEMERASE:
728 case MEMERASE64:
729 {
730 struct erase_info *erase;
731
732 erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
733 if (!erase)
734 ret = -ENOMEM;
735 else {
736 if (cmd == MEMERASE64) {
737 struct erase_info_user64 einfo64;
738
739 if (copy_from_user(&einfo64, argp,
740 sizeof(struct erase_info_user64))) {
741 kfree(erase);
742 return -EFAULT;
743 }
744 erase->addr = einfo64.start;
745 erase->len = einfo64.length;
746 } else {
747 struct erase_info_user einfo32;
748
749 if (copy_from_user(&einfo32, argp,
750 sizeof(struct erase_info_user))) {
751 kfree(erase);
752 return -EFAULT;
753 }
754 erase->addr = einfo32.start;
755 erase->len = einfo32.length;
756 }
757
758 ret = mtd_erase(mtd, erase);
759 kfree(erase);
760 }
761 break;
762 }
763
764 case MEMWRITEOOB:
765 {
766 struct mtd_oob_buf buf;
767 struct mtd_oob_buf __user *buf_user = argp;
768
769 /* NOTE: writes return length to buf_user->length */
770 if (copy_from_user(&buf, argp, sizeof(buf)))
771 ret = -EFAULT;
772 else
773 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
774 buf.ptr, &buf_user->length);
775 break;
776 }
777
778 case MEMREADOOB:
779 {
780 struct mtd_oob_buf buf;
781 struct mtd_oob_buf __user *buf_user = argp;
782
783 /* NOTE: writes return length to buf_user->start */
784 if (copy_from_user(&buf, argp, sizeof(buf)))
785 ret = -EFAULT;
786 else
787 ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
788 buf.ptr, &buf_user->start);
789 break;
790 }
791
792 case MEMWRITEOOB64:
793 {
794 struct mtd_oob_buf64 buf;
795 struct mtd_oob_buf64 __user *buf_user = argp;
796
797 if (copy_from_user(&buf, argp, sizeof(buf)))
798 ret = -EFAULT;
799 else
800 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
801 (void __user *)(uintptr_t)buf.usr_ptr,
802 &buf_user->length);
803 break;
804 }
805
806 case MEMREADOOB64:
807 {
808 struct mtd_oob_buf64 buf;
809 struct mtd_oob_buf64 __user *buf_user = argp;
810
811 if (copy_from_user(&buf, argp, sizeof(buf)))
812 ret = -EFAULT;
813 else
814 ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
815 (void __user *)(uintptr_t)buf.usr_ptr,
816 &buf_user->length);
817 break;
818 }
819
820 case MEMWRITE:
821 {
822 ret = mtdchar_write_ioctl(mtd,
823 (struct mtd_write_req __user *)arg);
824 break;
825 }
826
827 case MEMLOCK:
828 {
829 struct erase_info_user einfo;
830
831 if (copy_from_user(&einfo, argp, sizeof(einfo)))
832 return -EFAULT;
833
834 ret = mtd_lock(mtd, einfo.start, einfo.length);
835 break;
836 }
837
838 case MEMUNLOCK:
839 {
840 struct erase_info_user einfo;
841
842 if (copy_from_user(&einfo, argp, sizeof(einfo)))
843 return -EFAULT;
844
845 ret = mtd_unlock(mtd, einfo.start, einfo.length);
846 break;
847 }
848
849 case MEMISLOCKED:
850 {
851 struct erase_info_user einfo;
852
853 if (copy_from_user(&einfo, argp, sizeof(einfo)))
854 return -EFAULT;
855
856 ret = mtd_is_locked(mtd, einfo.start, einfo.length);
857 break;
858 }
859
860 /* Legacy interface */
861 case MEMGETOOBSEL:
862 {
863 struct nand_oobinfo oi;
864
865 if (!master->ooblayout)
866 return -EOPNOTSUPP;
867
868 ret = get_oobinfo(mtd, &oi);
869 if (ret)
870 return ret;
871
872 if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
873 return -EFAULT;
874 break;
875 }
876
877 case MEMGETBADBLOCK:
878 {
879 loff_t offs;
880
881 if (copy_from_user(&offs, argp, sizeof(loff_t)))
882 return -EFAULT;
883 return mtd_block_isbad(mtd, offs);
884 }
885
886 case MEMSETBADBLOCK:
887 {
888 loff_t offs;
889
890 if (copy_from_user(&offs, argp, sizeof(loff_t)))
891 return -EFAULT;
892 return mtd_block_markbad(mtd, offs);
893 }
894
895 case OTPSELECT:
896 {
897 int mode;
898 if (copy_from_user(&mode, argp, sizeof(int)))
899 return -EFAULT;
900
901 mfi->mode = MTD_FILE_MODE_NORMAL;
902
903 ret = otp_select_filemode(mfi, mode);
904
905 file->f_pos = 0;
906 break;
907 }
908
909 case OTPGETREGIONCOUNT:
910 case OTPGETREGIONINFO:
911 {
912 struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
913 size_t retlen;
914 if (!buf)
915 return -ENOMEM;
916 switch (mfi->mode) {
917 case MTD_FILE_MODE_OTP_FACTORY:
918 ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf);
919 break;
920 case MTD_FILE_MODE_OTP_USER:
921 ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf);
922 break;
923 default:
924 ret = -EINVAL;
925 break;
926 }
927 if (!ret) {
928 if (cmd == OTPGETREGIONCOUNT) {
929 int nbr = retlen / sizeof(struct otp_info);
930 ret = copy_to_user(argp, &nbr, sizeof(int));
931 } else
932 ret = copy_to_user(argp, buf, retlen);
933 if (ret)
934 ret = -EFAULT;
935 }
936 kfree(buf);
937 break;
938 }
939
940 case OTPLOCK:
941 {
942 struct otp_info oinfo;
943
944 if (mfi->mode != MTD_FILE_MODE_OTP_USER)
945 return -EINVAL;
946 if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
947 return -EFAULT;
948 ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
949 break;
950 }
951
952 /* This ioctl is being deprecated - it truncates the ECC layout */
953 case ECCGETLAYOUT:
954 {
955 struct nand_ecclayout_user *usrlay;
956
957 if (!master->ooblayout)
958 return -EOPNOTSUPP;
959
960 usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
961 if (!usrlay)
962 return -ENOMEM;
963
964 shrink_ecclayout(mtd, usrlay);
965
966 if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
967 ret = -EFAULT;
968 kfree(usrlay);
969 break;
970 }
971
972 case ECCGETSTATS:
973 {
974 if (copy_to_user(argp, &mtd->ecc_stats,
975 sizeof(struct mtd_ecc_stats)))
976 return -EFAULT;
977 break;
978 }
979
980 case MTDFILEMODE:
981 {
982 mfi->mode = 0;
983
984 switch(arg) {
985 case MTD_FILE_MODE_OTP_FACTORY:
986 case MTD_FILE_MODE_OTP_USER:
987 ret = otp_select_filemode(mfi, arg);
988 break;
989
990 case MTD_FILE_MODE_RAW:
991 if (!mtd_has_oob(mtd))
992 return -EOPNOTSUPP;
993 mfi->mode = arg;
994
995 case MTD_FILE_MODE_NORMAL:
996 break;
997 default:
998 ret = -EINVAL;
999 }
1000 file->f_pos = 0;
1001 break;
1002 }
1003
1004 case BLKPG:
1005 {
1006 struct blkpg_ioctl_arg __user *blk_arg = argp;
1007 struct blkpg_ioctl_arg a;
1008
1009 if (copy_from_user(&a, blk_arg, sizeof(a)))
1010 ret = -EFAULT;
1011 else
1012 ret = mtdchar_blkpg_ioctl(mtd, &a);
1013 break;
1014 }
1015
1016 case BLKRRPART:
1017 {
1018 /* No reread partition feature. Just return ok */
1019 ret = 0;
1020 break;
1021 }
1022 }
1023
1024 return ret;
1025 } /* memory_ioctl */
1026
1027 static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
1028 {
1029 int ret;
1030
1031 mutex_lock(&mtd_mutex);
1032 ret = mtdchar_ioctl(file, cmd, arg);
1033 mutex_unlock(&mtd_mutex);
1034
1035 return ret;
1036 }
1037
1038 #ifdef CONFIG_COMPAT
1039
1040 struct mtd_oob_buf32 {
1041 u_int32_t start;
1042 u_int32_t length;
1043 compat_caddr_t ptr; /* unsigned char* */
1044 };
1045
1046 #define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32)
1047 #define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32)
1048
1049 static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
1050 unsigned long arg)
1051 {
1052 struct mtd_file_info *mfi = file->private_data;
1053 struct mtd_info *mtd = mfi->mtd;
1054 void __user *argp = compat_ptr(arg);
1055 int ret = 0;
1056
1057 mutex_lock(&mtd_mutex);
1058
1059 switch (cmd) {
1060 case MEMWRITEOOB32:
1061 {
1062 struct mtd_oob_buf32 buf;
1063 struct mtd_oob_buf32 __user *buf_user = argp;
1064
1065 if (!(file->f_mode & FMODE_WRITE)) {
1066 ret = -EPERM;
1067 break;
1068 }
1069
1070 if (copy_from_user(&buf, argp, sizeof(buf)))
1071 ret = -EFAULT;
1072 else
1073 ret = mtdchar_writeoob(file, mtd, buf.start,
1074 buf.length, compat_ptr(buf.ptr),
1075 &buf_user->length);
1076 break;
1077 }
1078
1079 case MEMREADOOB32:
1080 {
1081 struct mtd_oob_buf32 buf;
1082 struct mtd_oob_buf32 __user *buf_user = argp;
1083
1084 /* NOTE: writes return length to buf->start */
1085 if (copy_from_user(&buf, argp, sizeof(buf)))
1086 ret = -EFAULT;
1087 else
1088 ret = mtdchar_readoob(file, mtd, buf.start,
1089 buf.length, compat_ptr(buf.ptr),
1090 &buf_user->start);
1091 break;
1092 }
1093
1094 case BLKPG:
1095 {
1096 /* Convert from blkpg_compat_ioctl_arg to blkpg_ioctl_arg */
1097 struct blkpg_compat_ioctl_arg __user *uarg = argp;
1098 struct blkpg_compat_ioctl_arg compat_arg;
1099 struct blkpg_ioctl_arg a;
1100
1101 if (copy_from_user(&compat_arg, uarg, sizeof(compat_arg))) {
1102 ret = -EFAULT;
1103 break;
1104 }
1105
1106 memset(&a, 0, sizeof(a));
1107 a.op = compat_arg.op;
1108 a.flags = compat_arg.flags;
1109 a.datalen = compat_arg.datalen;
1110 a.data = compat_ptr(compat_arg.data);
1111
1112 ret = mtdchar_blkpg_ioctl(mtd, &a);
1113 break;
1114 }
1115
1116 default:
1117 ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
1118 }
1119
1120 mutex_unlock(&mtd_mutex);
1121
1122 return ret;
1123 }
1124
1125 #endif /* CONFIG_COMPAT */
1126
1127 /*
1128 * try to determine where a shared mapping can be made
1129 * - only supported for NOMMU at the moment (MMU can't doesn't copy private
1130 * mappings)
1131 */
1132 #ifndef CONFIG_MMU
1133 static unsigned long mtdchar_get_unmapped_area(struct file *file,
1134 unsigned long addr,
1135 unsigned long len,
1136 unsigned long pgoff,
1137 unsigned long flags)
1138 {
1139 struct mtd_file_info *mfi = file->private_data;
1140 struct mtd_info *mtd = mfi->mtd;
1141 unsigned long offset;
1142 int ret;
1143
1144 if (addr != 0)
1145 return (unsigned long) -EINVAL;
1146
1147 if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
1148 return (unsigned long) -EINVAL;
1149
1150 offset = pgoff << PAGE_SHIFT;
1151 if (offset > mtd->size - len)
1152 return (unsigned long) -EINVAL;
1153
1154 ret = mtd_get_unmapped_area(mtd, len, offset, flags);
1155 return ret == -EOPNOTSUPP ? -ENODEV : ret;
1156 }
1157
1158 static unsigned mtdchar_mmap_capabilities(struct file *file)
1159 {
1160 struct mtd_file_info *mfi = file->private_data;
1161
1162 return mtd_mmap_capabilities(mfi->mtd);
1163 }
1164 #endif
1165
1166 /*
1167 * set up a mapping for shared memory segments
1168 */
1169 static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
1170 {
1171 #ifdef CONFIG_MMU
1172 struct mtd_file_info *mfi = file->private_data;
1173 struct mtd_info *mtd = mfi->mtd;
1174 struct map_info *map = mtd->priv;
1175
1176 /* This is broken because it assumes the MTD device is map-based
1177 and that mtd->priv is a valid struct map_info. It should be
1178 replaced with something that uses the mtd_get_unmapped_area()
1179 operation properly. */
1180 if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
1181 #ifdef pgprot_noncached
1182 if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
1183 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1184 #endif
1185 return vm_iomap_memory(vma, map->phys, map->size);
1186 }
1187 return -ENODEV;
1188 #else
1189 return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
1190 #endif
1191 }
1192
1193 static const struct file_operations mtd_fops = {
1194 .owner = THIS_MODULE,
1195 .llseek = mtdchar_lseek,
1196 .read = mtdchar_read,
1197 .write = mtdchar_write,
1198 .unlocked_ioctl = mtdchar_unlocked_ioctl,
1199 #ifdef CONFIG_COMPAT
1200 .compat_ioctl = mtdchar_compat_ioctl,
1201 #endif
1202 .open = mtdchar_open,
1203 .release = mtdchar_close,
1204 .mmap = mtdchar_mmap,
1205 #ifndef CONFIG_MMU
1206 .get_unmapped_area = mtdchar_get_unmapped_area,
1207 .mmap_capabilities = mtdchar_mmap_capabilities,
1208 #endif
1209 };
1210
1211 int __init init_mtdchar(void)
1212 {
1213 int ret;
1214
1215 ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
1216 "mtd", &mtd_fops);
1217 if (ret < 0) {
1218 pr_err("Can't allocate major number %d for MTD\n",
1219 MTD_CHAR_MAJOR);
1220 return ret;
1221 }
1222
1223 return ret;
1224 }
1225
1226 void __exit cleanup_mtdchar(void)
1227 {
1228 __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1229 }
1230
1231 MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);