]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/mtdconcat.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdconcat.c
1 /*
2 * MTD device concatenation layer
3 *
4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6 *
7 * NAND support by Christian Gan <cgan@iders.ca>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34
35 #include <asm/div64.h>
36
37 /*
38 * Our storage structure:
39 * Subdev points to an array of pointers to struct mtd_info objects
40 * which is allocated along with this structure
41 *
42 */
43 struct mtd_concat {
44 struct mtd_info mtd;
45 int num_subdev;
46 struct mtd_info **subdev;
47 };
48
49 /*
50 * how to calculate the size required for the above structure,
51 * including the pointer array subdev points to:
52 */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55
56 /*
57 * Given a pointer to the MTD object in the mtd_concat structure,
58 * we can retrieve the pointer to that structure with this macro.
59 */
60 #define CONCAT(x) ((struct mtd_concat *)(x))
61
62 /*
63 * MTD methods which look up the relevant subdevice, translate the
64 * effective address and pass through to the subdevice.
65 */
66
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 size_t * retlen, u_char * buf)
70 {
71 struct mtd_concat *concat = CONCAT(mtd);
72 int ret = 0, err;
73 int i;
74
75 *retlen = 0;
76
77 for (i = 0; i < concat->num_subdev; i++) {
78 struct mtd_info *subdev = concat->subdev[i];
79 size_t size, retsize;
80
81 if (from >= subdev->size) {
82 /* Not destined for this subdev */
83 size = 0;
84 from -= subdev->size;
85 continue;
86 }
87 if (from + len > subdev->size)
88 /* First part goes into this subdev */
89 size = subdev->size - from;
90 else
91 /* Entire transaction goes into this subdev */
92 size = len;
93
94 err = mtd_read(subdev, from, size, &retsize, buf);
95
96 /* Save information about bitflips! */
97 if (unlikely(err)) {
98 if (mtd_is_eccerr(err)) {
99 mtd->ecc_stats.failed++;
100 ret = err;
101 } else if (mtd_is_bitflip(err)) {
102 mtd->ecc_stats.corrected++;
103 /* Do not overwrite -EBADMSG !! */
104 if (!ret)
105 ret = err;
106 } else
107 return err;
108 }
109
110 *retlen += retsize;
111 len -= size;
112 if (len == 0)
113 return ret;
114
115 buf += size;
116 from = 0;
117 }
118 return -EINVAL;
119 }
120
121 static int
122 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
123 size_t * retlen, const u_char * buf)
124 {
125 struct mtd_concat *concat = CONCAT(mtd);
126 int err = -EINVAL;
127 int i;
128
129 if (!(mtd->flags & MTD_WRITEABLE))
130 return -EROFS;
131
132 *retlen = 0;
133
134 for (i = 0; i < concat->num_subdev; i++) {
135 struct mtd_info *subdev = concat->subdev[i];
136 size_t size, retsize;
137
138 if (to >= subdev->size) {
139 size = 0;
140 to -= subdev->size;
141 continue;
142 }
143 if (to + len > subdev->size)
144 size = subdev->size - to;
145 else
146 size = len;
147
148 if (!(subdev->flags & MTD_WRITEABLE))
149 err = -EROFS;
150 else
151 err = mtd_write(subdev, to, size, &retsize, buf);
152
153 if (err)
154 break;
155
156 *retlen += retsize;
157 len -= size;
158 if (len == 0)
159 break;
160
161 err = -EINVAL;
162 buf += size;
163 to = 0;
164 }
165 return err;
166 }
167
168 static int
169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
170 unsigned long count, loff_t to, size_t * retlen)
171 {
172 struct mtd_concat *concat = CONCAT(mtd);
173 struct kvec *vecs_copy;
174 unsigned long entry_low, entry_high;
175 size_t total_len = 0;
176 int i;
177 int err = -EINVAL;
178
179 if (!(mtd->flags & MTD_WRITEABLE))
180 return -EROFS;
181
182 *retlen = 0;
183
184 /* Calculate total length of data */
185 for (i = 0; i < count; i++)
186 total_len += vecs[i].iov_len;
187
188 /* Do not allow write past end of device */
189 if ((to + total_len) > mtd->size)
190 return -EINVAL;
191
192 /* Check alignment */
193 if (mtd->writesize > 1) {
194 uint64_t __to = to;
195 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
196 return -EINVAL;
197 }
198
199 /* make a copy of vecs */
200 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
201 if (!vecs_copy)
202 return -ENOMEM;
203
204 entry_low = 0;
205 for (i = 0; i < concat->num_subdev; i++) {
206 struct mtd_info *subdev = concat->subdev[i];
207 size_t size, wsize, retsize, old_iov_len;
208
209 if (to >= subdev->size) {
210 to -= subdev->size;
211 continue;
212 }
213
214 size = min_t(uint64_t, total_len, subdev->size - to);
215 wsize = size; /* store for future use */
216
217 entry_high = entry_low;
218 while (entry_high < count) {
219 if (size <= vecs_copy[entry_high].iov_len)
220 break;
221 size -= vecs_copy[entry_high++].iov_len;
222 }
223
224 old_iov_len = vecs_copy[entry_high].iov_len;
225 vecs_copy[entry_high].iov_len = size;
226
227 if (!(subdev->flags & MTD_WRITEABLE))
228 err = -EROFS;
229 else
230 err = mtd_writev(subdev, &vecs_copy[entry_low],
231 entry_high - entry_low + 1, to,
232 &retsize);
233
234 vecs_copy[entry_high].iov_len = old_iov_len - size;
235 vecs_copy[entry_high].iov_base += size;
236
237 entry_low = entry_high;
238
239 if (err)
240 break;
241
242 *retlen += retsize;
243 total_len -= wsize;
244
245 if (total_len == 0)
246 break;
247
248 err = -EINVAL;
249 to = 0;
250 }
251
252 kfree(vecs_copy);
253 return err;
254 }
255
256 static int
257 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
258 {
259 struct mtd_concat *concat = CONCAT(mtd);
260 struct mtd_oob_ops devops = *ops;
261 int i, err, ret = 0;
262
263 ops->retlen = ops->oobretlen = 0;
264
265 for (i = 0; i < concat->num_subdev; i++) {
266 struct mtd_info *subdev = concat->subdev[i];
267
268 if (from >= subdev->size) {
269 from -= subdev->size;
270 continue;
271 }
272
273 /* partial read ? */
274 if (from + devops.len > subdev->size)
275 devops.len = subdev->size - from;
276
277 err = mtd_read_oob(subdev, from, &devops);
278 ops->retlen += devops.retlen;
279 ops->oobretlen += devops.oobretlen;
280
281 /* Save information about bitflips! */
282 if (unlikely(err)) {
283 if (mtd_is_eccerr(err)) {
284 mtd->ecc_stats.failed++;
285 ret = err;
286 } else if (mtd_is_bitflip(err)) {
287 mtd->ecc_stats.corrected++;
288 /* Do not overwrite -EBADMSG !! */
289 if (!ret)
290 ret = err;
291 } else
292 return err;
293 }
294
295 if (devops.datbuf) {
296 devops.len = ops->len - ops->retlen;
297 if (!devops.len)
298 return ret;
299 devops.datbuf += devops.retlen;
300 }
301 if (devops.oobbuf) {
302 devops.ooblen = ops->ooblen - ops->oobretlen;
303 if (!devops.ooblen)
304 return ret;
305 devops.oobbuf += ops->oobretlen;
306 }
307
308 from = 0;
309 }
310 return -EINVAL;
311 }
312
313 static int
314 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
315 {
316 struct mtd_concat *concat = CONCAT(mtd);
317 struct mtd_oob_ops devops = *ops;
318 int i, err;
319
320 if (!(mtd->flags & MTD_WRITEABLE))
321 return -EROFS;
322
323 ops->retlen = ops->oobretlen = 0;
324
325 for (i = 0; i < concat->num_subdev; i++) {
326 struct mtd_info *subdev = concat->subdev[i];
327
328 if (to >= subdev->size) {
329 to -= subdev->size;
330 continue;
331 }
332
333 /* partial write ? */
334 if (to + devops.len > subdev->size)
335 devops.len = subdev->size - to;
336
337 err = mtd_write_oob(subdev, to, &devops);
338 ops->retlen += devops.oobretlen;
339 if (err)
340 return err;
341
342 if (devops.datbuf) {
343 devops.len = ops->len - ops->retlen;
344 if (!devops.len)
345 return 0;
346 devops.datbuf += devops.retlen;
347 }
348 if (devops.oobbuf) {
349 devops.ooblen = ops->ooblen - ops->oobretlen;
350 if (!devops.ooblen)
351 return 0;
352 devops.oobbuf += devops.oobretlen;
353 }
354 to = 0;
355 }
356 return -EINVAL;
357 }
358
359 static void concat_erase_callback(struct erase_info *instr)
360 {
361 wake_up((wait_queue_head_t *) instr->priv);
362 }
363
364 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
365 {
366 int err;
367 wait_queue_head_t waitq;
368 DECLARE_WAITQUEUE(wait, current);
369
370 /*
371 * This code was stol^H^H^H^Hinspired by mtdchar.c
372 */
373 init_waitqueue_head(&waitq);
374
375 erase->mtd = mtd;
376 erase->callback = concat_erase_callback;
377 erase->priv = (unsigned long) &waitq;
378
379 /*
380 * FIXME: Allow INTERRUPTIBLE. Which means
381 * not having the wait_queue head on the stack.
382 */
383 err = mtd_erase(mtd, erase);
384 if (!err) {
385 set_current_state(TASK_UNINTERRUPTIBLE);
386 add_wait_queue(&waitq, &wait);
387 if (erase->state != MTD_ERASE_DONE
388 && erase->state != MTD_ERASE_FAILED)
389 schedule();
390 remove_wait_queue(&waitq, &wait);
391 set_current_state(TASK_RUNNING);
392
393 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
394 }
395 return err;
396 }
397
398 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
399 {
400 struct mtd_concat *concat = CONCAT(mtd);
401 struct mtd_info *subdev;
402 int i, err;
403 uint64_t length, offset = 0;
404 struct erase_info *erase;
405
406 if (!(mtd->flags & MTD_WRITEABLE))
407 return -EROFS;
408
409 if (instr->addr > concat->mtd.size)
410 return -EINVAL;
411
412 if (instr->len + instr->addr > concat->mtd.size)
413 return -EINVAL;
414
415 /*
416 * Check for proper erase block alignment of the to-be-erased area.
417 * It is easier to do this based on the super device's erase
418 * region info rather than looking at each particular sub-device
419 * in turn.
420 */
421 if (!concat->mtd.numeraseregions) {
422 /* the easy case: device has uniform erase block size */
423 if (instr->addr & (concat->mtd.erasesize - 1))
424 return -EINVAL;
425 if (instr->len & (concat->mtd.erasesize - 1))
426 return -EINVAL;
427 } else {
428 /* device has variable erase size */
429 struct mtd_erase_region_info *erase_regions =
430 concat->mtd.eraseregions;
431
432 /*
433 * Find the erase region where the to-be-erased area begins:
434 */
435 for (i = 0; i < concat->mtd.numeraseregions &&
436 instr->addr >= erase_regions[i].offset; i++) ;
437 --i;
438
439 /*
440 * Now erase_regions[i] is the region in which the
441 * to-be-erased area begins. Verify that the starting
442 * offset is aligned to this region's erase size:
443 */
444 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
445 return -EINVAL;
446
447 /*
448 * now find the erase region where the to-be-erased area ends:
449 */
450 for (; i < concat->mtd.numeraseregions &&
451 (instr->addr + instr->len) >= erase_regions[i].offset;
452 ++i) ;
453 --i;
454 /*
455 * check if the ending offset is aligned to this region's erase size
456 */
457 if (i < 0 || ((instr->addr + instr->len) &
458 (erase_regions[i].erasesize - 1)))
459 return -EINVAL;
460 }
461
462 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
463
464 /* make a local copy of instr to avoid modifying the caller's struct */
465 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
466
467 if (!erase)
468 return -ENOMEM;
469
470 *erase = *instr;
471 length = instr->len;
472
473 /*
474 * find the subdevice where the to-be-erased area begins, adjust
475 * starting offset to be relative to the subdevice start
476 */
477 for (i = 0; i < concat->num_subdev; i++) {
478 subdev = concat->subdev[i];
479 if (subdev->size <= erase->addr) {
480 erase->addr -= subdev->size;
481 offset += subdev->size;
482 } else {
483 break;
484 }
485 }
486
487 /* must never happen since size limit has been verified above */
488 BUG_ON(i >= concat->num_subdev);
489
490 /* now do the erase: */
491 err = 0;
492 for (; length > 0; i++) {
493 /* loop for all subdevices affected by this request */
494 subdev = concat->subdev[i]; /* get current subdevice */
495
496 /* limit length to subdevice's size: */
497 if (erase->addr + length > subdev->size)
498 erase->len = subdev->size - erase->addr;
499 else
500 erase->len = length;
501
502 if (!(subdev->flags & MTD_WRITEABLE)) {
503 err = -EROFS;
504 break;
505 }
506 length -= erase->len;
507 if ((err = concat_dev_erase(subdev, erase))) {
508 /* sanity check: should never happen since
509 * block alignment has been checked above */
510 BUG_ON(err == -EINVAL);
511 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
512 instr->fail_addr = erase->fail_addr + offset;
513 break;
514 }
515 /*
516 * erase->addr specifies the offset of the area to be
517 * erased *within the current subdevice*. It can be
518 * non-zero only the first time through this loop, i.e.
519 * for the first subdevice where blocks need to be erased.
520 * All the following erases must begin at the start of the
521 * current subdevice, i.e. at offset zero.
522 */
523 erase->addr = 0;
524 offset += subdev->size;
525 }
526 instr->state = erase->state;
527 kfree(erase);
528 if (err)
529 return err;
530
531 if (instr->callback)
532 instr->callback(instr);
533 return 0;
534 }
535
536 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
537 {
538 struct mtd_concat *concat = CONCAT(mtd);
539 int i, err = -EINVAL;
540
541 if ((len + ofs) > mtd->size)
542 return -EINVAL;
543
544 for (i = 0; i < concat->num_subdev; i++) {
545 struct mtd_info *subdev = concat->subdev[i];
546 uint64_t size;
547
548 if (ofs >= subdev->size) {
549 size = 0;
550 ofs -= subdev->size;
551 continue;
552 }
553 if (ofs + len > subdev->size)
554 size = subdev->size - ofs;
555 else
556 size = len;
557
558 err = mtd_lock(subdev, ofs, size);
559 if (err)
560 break;
561
562 len -= size;
563 if (len == 0)
564 break;
565
566 err = -EINVAL;
567 ofs = 0;
568 }
569
570 return err;
571 }
572
573 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
574 {
575 struct mtd_concat *concat = CONCAT(mtd);
576 int i, err = 0;
577
578 if ((len + ofs) > mtd->size)
579 return -EINVAL;
580
581 for (i = 0; i < concat->num_subdev; i++) {
582 struct mtd_info *subdev = concat->subdev[i];
583 uint64_t size;
584
585 if (ofs >= subdev->size) {
586 size = 0;
587 ofs -= subdev->size;
588 continue;
589 }
590 if (ofs + len > subdev->size)
591 size = subdev->size - ofs;
592 else
593 size = len;
594
595 err = mtd_unlock(subdev, ofs, size);
596 if (err)
597 break;
598
599 len -= size;
600 if (len == 0)
601 break;
602
603 err = -EINVAL;
604 ofs = 0;
605 }
606
607 return err;
608 }
609
610 static void concat_sync(struct mtd_info *mtd)
611 {
612 struct mtd_concat *concat = CONCAT(mtd);
613 int i;
614
615 for (i = 0; i < concat->num_subdev; i++) {
616 struct mtd_info *subdev = concat->subdev[i];
617 mtd_sync(subdev);
618 }
619 }
620
621 static int concat_suspend(struct mtd_info *mtd)
622 {
623 struct mtd_concat *concat = CONCAT(mtd);
624 int i, rc = 0;
625
626 for (i = 0; i < concat->num_subdev; i++) {
627 struct mtd_info *subdev = concat->subdev[i];
628 if ((rc = mtd_suspend(subdev)) < 0)
629 return rc;
630 }
631 return rc;
632 }
633
634 static void concat_resume(struct mtd_info *mtd)
635 {
636 struct mtd_concat *concat = CONCAT(mtd);
637 int i;
638
639 for (i = 0; i < concat->num_subdev; i++) {
640 struct mtd_info *subdev = concat->subdev[i];
641 mtd_resume(subdev);
642 }
643 }
644
645 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
646 {
647 struct mtd_concat *concat = CONCAT(mtd);
648 int i, res = 0;
649
650 if (!mtd_can_have_bb(concat->subdev[0]))
651 return res;
652
653 if (ofs > mtd->size)
654 return -EINVAL;
655
656 for (i = 0; i < concat->num_subdev; i++) {
657 struct mtd_info *subdev = concat->subdev[i];
658
659 if (ofs >= subdev->size) {
660 ofs -= subdev->size;
661 continue;
662 }
663
664 res = mtd_block_isbad(subdev, ofs);
665 break;
666 }
667
668 return res;
669 }
670
671 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
672 {
673 struct mtd_concat *concat = CONCAT(mtd);
674 int i, err = -EINVAL;
675
676 if (!mtd_can_have_bb(concat->subdev[0]))
677 return 0;
678
679 if (ofs > mtd->size)
680 return -EINVAL;
681
682 for (i = 0; i < concat->num_subdev; i++) {
683 struct mtd_info *subdev = concat->subdev[i];
684
685 if (ofs >= subdev->size) {
686 ofs -= subdev->size;
687 continue;
688 }
689
690 err = mtd_block_markbad(subdev, ofs);
691 if (!err)
692 mtd->ecc_stats.badblocks++;
693 break;
694 }
695
696 return err;
697 }
698
699 /*
700 * try to support NOMMU mmaps on concatenated devices
701 * - we don't support subdev spanning as we can't guarantee it'll work
702 */
703 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
704 unsigned long len,
705 unsigned long offset,
706 unsigned long flags)
707 {
708 struct mtd_concat *concat = CONCAT(mtd);
709 int i;
710
711 for (i = 0; i < concat->num_subdev; i++) {
712 struct mtd_info *subdev = concat->subdev[i];
713
714 if (offset >= subdev->size) {
715 offset -= subdev->size;
716 continue;
717 }
718
719 /* we've found the subdev over which the mapping will reside */
720 if (offset + len > subdev->size)
721 return (unsigned long) -EINVAL;
722
723 return mtd_get_unmapped_area(subdev, len, offset, flags);
724 }
725
726 return (unsigned long) -ENOSYS;
727 }
728
729 /*
730 * This function constructs a virtual MTD device by concatenating
731 * num_devs MTD devices. A pointer to the new device object is
732 * stored to *new_dev upon success. This function does _not_
733 * register any devices: this is the caller's responsibility.
734 */
735 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
736 int num_devs, /* number of subdevices */
737 const char *name)
738 { /* name for the new device */
739 int i;
740 size_t size;
741 struct mtd_concat *concat;
742 uint32_t max_erasesize, curr_erasesize;
743 int num_erase_region;
744 int max_writebufsize = 0;
745
746 printk(KERN_NOTICE "Concatenating MTD devices:\n");
747 for (i = 0; i < num_devs; i++)
748 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
749 printk(KERN_NOTICE "into device \"%s\"\n", name);
750
751 /* allocate the device structure */
752 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
753 concat = kzalloc(size, GFP_KERNEL);
754 if (!concat) {
755 printk
756 ("memory allocation error while creating concatenated device \"%s\"\n",
757 name);
758 return NULL;
759 }
760 concat->subdev = (struct mtd_info **) (concat + 1);
761
762 /*
763 * Set up the new "super" device's MTD object structure, check for
764 * incompatibilities between the subdevices.
765 */
766 concat->mtd.type = subdev[0]->type;
767 concat->mtd.flags = subdev[0]->flags;
768 concat->mtd.size = subdev[0]->size;
769 concat->mtd.erasesize = subdev[0]->erasesize;
770 concat->mtd.writesize = subdev[0]->writesize;
771
772 for (i = 0; i < num_devs; i++)
773 if (max_writebufsize < subdev[i]->writebufsize)
774 max_writebufsize = subdev[i]->writebufsize;
775 concat->mtd.writebufsize = max_writebufsize;
776
777 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
778 concat->mtd.oobsize = subdev[0]->oobsize;
779 concat->mtd.oobavail = subdev[0]->oobavail;
780 if (subdev[0]->writev)
781 concat->mtd.writev = concat_writev;
782 if (subdev[0]->read_oob)
783 concat->mtd.read_oob = concat_read_oob;
784 if (subdev[0]->write_oob)
785 concat->mtd.write_oob = concat_write_oob;
786 if (subdev[0]->block_isbad)
787 concat->mtd.block_isbad = concat_block_isbad;
788 if (subdev[0]->block_markbad)
789 concat->mtd.block_markbad = concat_block_markbad;
790
791 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
792
793 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
794
795 concat->subdev[0] = subdev[0];
796
797 for (i = 1; i < num_devs; i++) {
798 if (concat->mtd.type != subdev[i]->type) {
799 kfree(concat);
800 printk("Incompatible device type on \"%s\"\n",
801 subdev[i]->name);
802 return NULL;
803 }
804 if (concat->mtd.flags != subdev[i]->flags) {
805 /*
806 * Expect all flags except MTD_WRITEABLE to be
807 * equal on all subdevices.
808 */
809 if ((concat->mtd.flags ^ subdev[i]->
810 flags) & ~MTD_WRITEABLE) {
811 kfree(concat);
812 printk("Incompatible device flags on \"%s\"\n",
813 subdev[i]->name);
814 return NULL;
815 } else
816 /* if writeable attribute differs,
817 make super device writeable */
818 concat->mtd.flags |=
819 subdev[i]->flags & MTD_WRITEABLE;
820 }
821
822 /* only permit direct mapping if the BDIs are all the same
823 * - copy-mapping is still permitted
824 */
825 if (concat->mtd.backing_dev_info !=
826 subdev[i]->backing_dev_info)
827 concat->mtd.backing_dev_info =
828 &default_backing_dev_info;
829
830 concat->mtd.size += subdev[i]->size;
831 concat->mtd.ecc_stats.badblocks +=
832 subdev[i]->ecc_stats.badblocks;
833 if (concat->mtd.writesize != subdev[i]->writesize ||
834 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
835 concat->mtd.oobsize != subdev[i]->oobsize ||
836 !concat->mtd.read_oob != !subdev[i]->read_oob ||
837 !concat->mtd.write_oob != !subdev[i]->write_oob) {
838 kfree(concat);
839 printk("Incompatible OOB or ECC data on \"%s\"\n",
840 subdev[i]->name);
841 return NULL;
842 }
843 concat->subdev[i] = subdev[i];
844
845 }
846
847 concat->mtd.ecclayout = subdev[0]->ecclayout;
848
849 concat->num_subdev = num_devs;
850 concat->mtd.name = name;
851
852 concat->mtd.erase = concat_erase;
853 concat->mtd.read = concat_read;
854 concat->mtd.write = concat_write;
855 concat->mtd.sync = concat_sync;
856 concat->mtd.lock = concat_lock;
857 concat->mtd.unlock = concat_unlock;
858 concat->mtd.suspend = concat_suspend;
859 concat->mtd.resume = concat_resume;
860 concat->mtd.get_unmapped_area = concat_get_unmapped_area;
861
862 /*
863 * Combine the erase block size info of the subdevices:
864 *
865 * first, walk the map of the new device and see how
866 * many changes in erase size we have
867 */
868 max_erasesize = curr_erasesize = subdev[0]->erasesize;
869 num_erase_region = 1;
870 for (i = 0; i < num_devs; i++) {
871 if (subdev[i]->numeraseregions == 0) {
872 /* current subdevice has uniform erase size */
873 if (subdev[i]->erasesize != curr_erasesize) {
874 /* if it differs from the last subdevice's erase size, count it */
875 ++num_erase_region;
876 curr_erasesize = subdev[i]->erasesize;
877 if (curr_erasesize > max_erasesize)
878 max_erasesize = curr_erasesize;
879 }
880 } else {
881 /* current subdevice has variable erase size */
882 int j;
883 for (j = 0; j < subdev[i]->numeraseregions; j++) {
884
885 /* walk the list of erase regions, count any changes */
886 if (subdev[i]->eraseregions[j].erasesize !=
887 curr_erasesize) {
888 ++num_erase_region;
889 curr_erasesize =
890 subdev[i]->eraseregions[j].
891 erasesize;
892 if (curr_erasesize > max_erasesize)
893 max_erasesize = curr_erasesize;
894 }
895 }
896 }
897 }
898
899 if (num_erase_region == 1) {
900 /*
901 * All subdevices have the same uniform erase size.
902 * This is easy:
903 */
904 concat->mtd.erasesize = curr_erasesize;
905 concat->mtd.numeraseregions = 0;
906 } else {
907 uint64_t tmp64;
908
909 /*
910 * erase block size varies across the subdevices: allocate
911 * space to store the data describing the variable erase regions
912 */
913 struct mtd_erase_region_info *erase_region_p;
914 uint64_t begin, position;
915
916 concat->mtd.erasesize = max_erasesize;
917 concat->mtd.numeraseregions = num_erase_region;
918 concat->mtd.eraseregions = erase_region_p =
919 kmalloc(num_erase_region *
920 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
921 if (!erase_region_p) {
922 kfree(concat);
923 printk
924 ("memory allocation error while creating erase region list"
925 " for device \"%s\"\n", name);
926 return NULL;
927 }
928
929 /*
930 * walk the map of the new device once more and fill in
931 * in erase region info:
932 */
933 curr_erasesize = subdev[0]->erasesize;
934 begin = position = 0;
935 for (i = 0; i < num_devs; i++) {
936 if (subdev[i]->numeraseregions == 0) {
937 /* current subdevice has uniform erase size */
938 if (subdev[i]->erasesize != curr_erasesize) {
939 /*
940 * fill in an mtd_erase_region_info structure for the area
941 * we have walked so far:
942 */
943 erase_region_p->offset = begin;
944 erase_region_p->erasesize =
945 curr_erasesize;
946 tmp64 = position - begin;
947 do_div(tmp64, curr_erasesize);
948 erase_region_p->numblocks = tmp64;
949 begin = position;
950
951 curr_erasesize = subdev[i]->erasesize;
952 ++erase_region_p;
953 }
954 position += subdev[i]->size;
955 } else {
956 /* current subdevice has variable erase size */
957 int j;
958 for (j = 0; j < subdev[i]->numeraseregions; j++) {
959 /* walk the list of erase regions, count any changes */
960 if (subdev[i]->eraseregions[j].
961 erasesize != curr_erasesize) {
962 erase_region_p->offset = begin;
963 erase_region_p->erasesize =
964 curr_erasesize;
965 tmp64 = position - begin;
966 do_div(tmp64, curr_erasesize);
967 erase_region_p->numblocks = tmp64;
968 begin = position;
969
970 curr_erasesize =
971 subdev[i]->eraseregions[j].
972 erasesize;
973 ++erase_region_p;
974 }
975 position +=
976 subdev[i]->eraseregions[j].
977 numblocks * (uint64_t)curr_erasesize;
978 }
979 }
980 }
981 /* Now write the final entry */
982 erase_region_p->offset = begin;
983 erase_region_p->erasesize = curr_erasesize;
984 tmp64 = position - begin;
985 do_div(tmp64, curr_erasesize);
986 erase_region_p->numblocks = tmp64;
987 }
988
989 return &concat->mtd;
990 }
991
992 /*
993 * This function destroys an MTD object obtained from concat_mtd_devs()
994 */
995
996 void mtd_concat_destroy(struct mtd_info *mtd)
997 {
998 struct mtd_concat *concat = CONCAT(mtd);
999 if (concat->mtd.numeraseregions)
1000 kfree(concat->mtd.eraseregions);
1001 kfree(concat);
1002 }
1003
1004 EXPORT_SYMBOL(mtd_concat_create);
1005 EXPORT_SYMBOL(mtd_concat_destroy);
1006
1007 MODULE_LICENSE("GPL");
1008 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
1009 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");