]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/mtdcore.c
11883bd26d9d35e8234cc7dc74f51b7ed57d7566
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/partitions.h>
44
45 #include "mtdcore.h"
46
47 static struct backing_dev_info mtd_bdi = {
48 };
49
50 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
51 static int mtd_cls_resume(struct device *dev);
52
53 static struct class mtd_class = {
54 .name = "mtd",
55 .owner = THIS_MODULE,
56 .suspend = mtd_cls_suspend,
57 .resume = mtd_cls_resume,
58 };
59
60 static DEFINE_IDR(mtd_idr);
61
62 /* These are exported solely for the purpose of mtd_blkdevs.c. You
63 should not use them for _anything_ else */
64 DEFINE_MUTEX(mtd_table_mutex);
65 EXPORT_SYMBOL_GPL(mtd_table_mutex);
66
67 struct mtd_info *__mtd_next_device(int i)
68 {
69 return idr_get_next(&mtd_idr, &i);
70 }
71 EXPORT_SYMBOL_GPL(__mtd_next_device);
72
73 static LIST_HEAD(mtd_notifiers);
74
75
76 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
77
78 /* REVISIT once MTD uses the driver model better, whoever allocates
79 * the mtd_info will probably want to use the release() hook...
80 */
81 static void mtd_release(struct device *dev)
82 {
83 struct mtd_info *mtd = dev_get_drvdata(dev);
84 dev_t index = MTD_DEVT(mtd->index);
85
86 /* remove /dev/mtdXro node */
87 device_destroy(&mtd_class, index + 1);
88 }
89
90 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93
94 return mtd ? mtd_suspend(mtd) : 0;
95 }
96
97 static int mtd_cls_resume(struct device *dev)
98 {
99 struct mtd_info *mtd = dev_get_drvdata(dev);
100
101 if (mtd)
102 mtd_resume(mtd);
103 return 0;
104 }
105
106 static ssize_t mtd_type_show(struct device *dev,
107 struct device_attribute *attr, char *buf)
108 {
109 struct mtd_info *mtd = dev_get_drvdata(dev);
110 char *type;
111
112 switch (mtd->type) {
113 case MTD_ABSENT:
114 type = "absent";
115 break;
116 case MTD_RAM:
117 type = "ram";
118 break;
119 case MTD_ROM:
120 type = "rom";
121 break;
122 case MTD_NORFLASH:
123 type = "nor";
124 break;
125 case MTD_NANDFLASH:
126 type = "nand";
127 break;
128 case MTD_DATAFLASH:
129 type = "dataflash";
130 break;
131 case MTD_UBIVOLUME:
132 type = "ubi";
133 break;
134 case MTD_MLCNANDFLASH:
135 type = "mlc-nand";
136 break;
137 default:
138 type = "unknown";
139 }
140
141 return snprintf(buf, PAGE_SIZE, "%s\n", type);
142 }
143 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
144
145 static ssize_t mtd_flags_show(struct device *dev,
146 struct device_attribute *attr, char *buf)
147 {
148 struct mtd_info *mtd = dev_get_drvdata(dev);
149
150 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
151
152 }
153 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
154
155 static ssize_t mtd_size_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157 {
158 struct mtd_info *mtd = dev_get_drvdata(dev);
159
160 return snprintf(buf, PAGE_SIZE, "%llu\n",
161 (unsigned long long)mtd->size);
162
163 }
164 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
165
166 static ssize_t mtd_erasesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168 {
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
172
173 }
174 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
175
176 static ssize_t mtd_writesize_show(struct device *dev,
177 struct device_attribute *attr, char *buf)
178 {
179 struct mtd_info *mtd = dev_get_drvdata(dev);
180
181 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
182
183 }
184 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
185
186 static ssize_t mtd_subpagesize_show(struct device *dev,
187 struct device_attribute *attr, char *buf)
188 {
189 struct mtd_info *mtd = dev_get_drvdata(dev);
190 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
191
192 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
193
194 }
195 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
196
197 static ssize_t mtd_oobsize_show(struct device *dev,
198 struct device_attribute *attr, char *buf)
199 {
200 struct mtd_info *mtd = dev_get_drvdata(dev);
201
202 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
203
204 }
205 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
206
207 static ssize_t mtd_numeraseregions_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
209 {
210 struct mtd_info *mtd = dev_get_drvdata(dev);
211
212 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
213
214 }
215 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
216 NULL);
217
218 static ssize_t mtd_name_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 struct mtd_info *mtd = dev_get_drvdata(dev);
222
223 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
224
225 }
226 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
227
228 static ssize_t mtd_ecc_strength_show(struct device *dev,
229 struct device_attribute *attr, char *buf)
230 {
231 struct mtd_info *mtd = dev_get_drvdata(dev);
232
233 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
234 }
235 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
236
237 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
238 struct device_attribute *attr,
239 char *buf)
240 {
241 struct mtd_info *mtd = dev_get_drvdata(dev);
242
243 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
244 }
245
246 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
247 struct device_attribute *attr,
248 const char *buf, size_t count)
249 {
250 struct mtd_info *mtd = dev_get_drvdata(dev);
251 unsigned int bitflip_threshold;
252 int retval;
253
254 retval = kstrtouint(buf, 0, &bitflip_threshold);
255 if (retval)
256 return retval;
257
258 mtd->bitflip_threshold = bitflip_threshold;
259 return count;
260 }
261 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
262 mtd_bitflip_threshold_show,
263 mtd_bitflip_threshold_store);
264
265 static ssize_t mtd_ecc_step_size_show(struct device *dev,
266 struct device_attribute *attr, char *buf)
267 {
268 struct mtd_info *mtd = dev_get_drvdata(dev);
269
270 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
271
272 }
273 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
274
275 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
276 struct device_attribute *attr, char *buf)
277 {
278 struct mtd_info *mtd = dev_get_drvdata(dev);
279 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
280
281 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
282 }
283 static DEVICE_ATTR(corrected_bits, S_IRUGO,
284 mtd_ecc_stats_corrected_show, NULL);
285
286 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
287 struct device_attribute *attr, char *buf)
288 {
289 struct mtd_info *mtd = dev_get_drvdata(dev);
290 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
291
292 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
293 }
294 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
295
296 static ssize_t mtd_badblocks_show(struct device *dev,
297 struct device_attribute *attr, char *buf)
298 {
299 struct mtd_info *mtd = dev_get_drvdata(dev);
300 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
301
302 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
303 }
304 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
305
306 static ssize_t mtd_bbtblocks_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct mtd_info *mtd = dev_get_drvdata(dev);
310 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
311
312 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
313 }
314 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
315
316 static struct attribute *mtd_attrs[] = {
317 &dev_attr_type.attr,
318 &dev_attr_flags.attr,
319 &dev_attr_size.attr,
320 &dev_attr_erasesize.attr,
321 &dev_attr_writesize.attr,
322 &dev_attr_subpagesize.attr,
323 &dev_attr_oobsize.attr,
324 &dev_attr_numeraseregions.attr,
325 &dev_attr_name.attr,
326 &dev_attr_ecc_strength.attr,
327 &dev_attr_ecc_step_size.attr,
328 &dev_attr_corrected_bits.attr,
329 &dev_attr_ecc_failures.attr,
330 &dev_attr_bad_blocks.attr,
331 &dev_attr_bbt_blocks.attr,
332 &dev_attr_bitflip_threshold.attr,
333 NULL,
334 };
335 ATTRIBUTE_GROUPS(mtd);
336
337 static struct device_type mtd_devtype = {
338 .name = "mtd",
339 .groups = mtd_groups,
340 .release = mtd_release,
341 };
342
343 #ifndef CONFIG_MMU
344 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
345 {
346 switch (mtd->type) {
347 case MTD_RAM:
348 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
349 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
350 case MTD_ROM:
351 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
352 NOMMU_MAP_READ;
353 default:
354 return NOMMU_MAP_COPY;
355 }
356 }
357 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
358 #endif
359
360 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
361 void *cmd)
362 {
363 struct mtd_info *mtd;
364
365 mtd = container_of(n, struct mtd_info, reboot_notifier);
366 mtd->_reboot(mtd);
367
368 return NOTIFY_DONE;
369 }
370
371 /**
372 * add_mtd_device - register an MTD device
373 * @mtd: pointer to new MTD device info structure
374 *
375 * Add a device to the list of MTD devices present in the system, and
376 * notify each currently active MTD 'user' of its arrival. Returns
377 * zero on success or 1 on failure, which currently will only happen
378 * if there is insufficient memory or a sysfs error.
379 */
380
381 int add_mtd_device(struct mtd_info *mtd)
382 {
383 struct mtd_notifier *not;
384 int i, error;
385
386 mtd->backing_dev_info = &mtd_bdi;
387
388 BUG_ON(mtd->writesize == 0);
389 mutex_lock(&mtd_table_mutex);
390
391 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
392 if (i < 0)
393 goto fail_locked;
394
395 mtd->index = i;
396 mtd->usecount = 0;
397
398 /* default value if not set by driver */
399 if (mtd->bitflip_threshold == 0)
400 mtd->bitflip_threshold = mtd->ecc_strength;
401
402 if (is_power_of_2(mtd->erasesize))
403 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
404 else
405 mtd->erasesize_shift = 0;
406
407 if (is_power_of_2(mtd->writesize))
408 mtd->writesize_shift = ffs(mtd->writesize) - 1;
409 else
410 mtd->writesize_shift = 0;
411
412 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
413 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
414
415 /* Some chips always power up locked. Unlock them now */
416 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
417 error = mtd_unlock(mtd, 0, mtd->size);
418 if (error && error != -EOPNOTSUPP)
419 printk(KERN_WARNING
420 "%s: unlock failed, writes may not work\n",
421 mtd->name);
422 }
423
424 /* Caller should have set dev.parent to match the
425 * physical device.
426 */
427 mtd->dev.type = &mtd_devtype;
428 mtd->dev.class = &mtd_class;
429 mtd->dev.devt = MTD_DEVT(i);
430 dev_set_name(&mtd->dev, "mtd%d", i);
431 dev_set_drvdata(&mtd->dev, mtd);
432 if (device_register(&mtd->dev) != 0)
433 goto fail_added;
434
435 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
436 "mtd%dro", i);
437
438 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
439 /* No need to get a refcount on the module containing
440 the notifier, since we hold the mtd_table_mutex */
441 list_for_each_entry(not, &mtd_notifiers, list)
442 not->add(mtd);
443
444 mutex_unlock(&mtd_table_mutex);
445 /* We _know_ we aren't being removed, because
446 our caller is still holding us here. So none
447 of this try_ nonsense, and no bitching about it
448 either. :) */
449 __module_get(THIS_MODULE);
450 return 0;
451
452 fail_added:
453 idr_remove(&mtd_idr, i);
454 fail_locked:
455 mutex_unlock(&mtd_table_mutex);
456 return 1;
457 }
458
459 /**
460 * del_mtd_device - unregister an MTD device
461 * @mtd: pointer to MTD device info structure
462 *
463 * Remove a device from the list of MTD devices present in the system,
464 * and notify each currently active MTD 'user' of its departure.
465 * Returns zero on success or 1 on failure, which currently will happen
466 * if the requested device does not appear to be present in the list.
467 */
468
469 int del_mtd_device(struct mtd_info *mtd)
470 {
471 int ret;
472 struct mtd_notifier *not;
473
474 mutex_lock(&mtd_table_mutex);
475
476 if (idr_find(&mtd_idr, mtd->index) != mtd) {
477 ret = -ENODEV;
478 goto out_error;
479 }
480
481 /* No need to get a refcount on the module containing
482 the notifier, since we hold the mtd_table_mutex */
483 list_for_each_entry(not, &mtd_notifiers, list)
484 not->remove(mtd);
485
486 if (mtd->usecount) {
487 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
488 mtd->index, mtd->name, mtd->usecount);
489 ret = -EBUSY;
490 } else {
491 device_unregister(&mtd->dev);
492
493 idr_remove(&mtd_idr, mtd->index);
494
495 module_put(THIS_MODULE);
496 ret = 0;
497 }
498
499 out_error:
500 mutex_unlock(&mtd_table_mutex);
501 return ret;
502 }
503
504 /**
505 * mtd_device_parse_register - parse partitions and register an MTD device.
506 *
507 * @mtd: the MTD device to register
508 * @types: the list of MTD partition probes to try, see
509 * 'parse_mtd_partitions()' for more information
510 * @parser_data: MTD partition parser-specific data
511 * @parts: fallback partition information to register, if parsing fails;
512 * only valid if %nr_parts > %0
513 * @nr_parts: the number of partitions in parts, if zero then the full
514 * MTD device is registered if no partition info is found
515 *
516 * This function aggregates MTD partitions parsing (done by
517 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
518 * basically follows the most common pattern found in many MTD drivers:
519 *
520 * * It first tries to probe partitions on MTD device @mtd using parsers
521 * specified in @types (if @types is %NULL, then the default list of parsers
522 * is used, see 'parse_mtd_partitions()' for more information). If none are
523 * found this functions tries to fallback to information specified in
524 * @parts/@nr_parts.
525 * * If any partitioning info was found, this function registers the found
526 * partitions.
527 * * If no partitions were found this function just registers the MTD device
528 * @mtd and exits.
529 *
530 * Returns zero in case of success and a negative error code in case of failure.
531 */
532 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
533 struct mtd_part_parser_data *parser_data,
534 const struct mtd_partition *parts,
535 int nr_parts)
536 {
537 int err;
538 struct mtd_partition *real_parts;
539
540 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
541 if (err <= 0 && nr_parts && parts) {
542 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
543 GFP_KERNEL);
544 if (!real_parts)
545 err = -ENOMEM;
546 else
547 err = nr_parts;
548 }
549
550 if (err > 0) {
551 err = add_mtd_partitions(mtd, real_parts, err);
552 kfree(real_parts);
553 } else if (err == 0) {
554 err = add_mtd_device(mtd);
555 if (err == 1)
556 err = -ENODEV;
557 }
558
559 /*
560 * FIXME: some drivers unfortunately call this function more than once.
561 * So we have to check if we've already assigned the reboot notifier.
562 *
563 * Generally, we can make multiple calls work for most cases, but it
564 * does cause problems with parse_mtd_partitions() above (e.g.,
565 * cmdlineparts will register partitions more than once).
566 */
567 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
568 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
569 register_reboot_notifier(&mtd->reboot_notifier);
570 }
571
572 return err;
573 }
574 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
575
576 /**
577 * mtd_device_unregister - unregister an existing MTD device.
578 *
579 * @master: the MTD device to unregister. This will unregister both the master
580 * and any partitions if registered.
581 */
582 int mtd_device_unregister(struct mtd_info *master)
583 {
584 int err;
585
586 if (master->_reboot)
587 unregister_reboot_notifier(&master->reboot_notifier);
588
589 err = del_mtd_partitions(master);
590 if (err)
591 return err;
592
593 if (!device_is_registered(&master->dev))
594 return 0;
595
596 return del_mtd_device(master);
597 }
598 EXPORT_SYMBOL_GPL(mtd_device_unregister);
599
600 /**
601 * register_mtd_user - register a 'user' of MTD devices.
602 * @new: pointer to notifier info structure
603 *
604 * Registers a pair of callbacks function to be called upon addition
605 * or removal of MTD devices. Causes the 'add' callback to be immediately
606 * invoked for each MTD device currently present in the system.
607 */
608 void register_mtd_user (struct mtd_notifier *new)
609 {
610 struct mtd_info *mtd;
611
612 mutex_lock(&mtd_table_mutex);
613
614 list_add(&new->list, &mtd_notifiers);
615
616 __module_get(THIS_MODULE);
617
618 mtd_for_each_device(mtd)
619 new->add(mtd);
620
621 mutex_unlock(&mtd_table_mutex);
622 }
623 EXPORT_SYMBOL_GPL(register_mtd_user);
624
625 /**
626 * unregister_mtd_user - unregister a 'user' of MTD devices.
627 * @old: pointer to notifier info structure
628 *
629 * Removes a callback function pair from the list of 'users' to be
630 * notified upon addition or removal of MTD devices. Causes the
631 * 'remove' callback to be immediately invoked for each MTD device
632 * currently present in the system.
633 */
634 int unregister_mtd_user (struct mtd_notifier *old)
635 {
636 struct mtd_info *mtd;
637
638 mutex_lock(&mtd_table_mutex);
639
640 module_put(THIS_MODULE);
641
642 mtd_for_each_device(mtd)
643 old->remove(mtd);
644
645 list_del(&old->list);
646 mutex_unlock(&mtd_table_mutex);
647 return 0;
648 }
649 EXPORT_SYMBOL_GPL(unregister_mtd_user);
650
651 /**
652 * get_mtd_device - obtain a validated handle for an MTD device
653 * @mtd: last known address of the required MTD device
654 * @num: internal device number of the required MTD device
655 *
656 * Given a number and NULL address, return the num'th entry in the device
657 * table, if any. Given an address and num == -1, search the device table
658 * for a device with that address and return if it's still present. Given
659 * both, return the num'th driver only if its address matches. Return
660 * error code if not.
661 */
662 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
663 {
664 struct mtd_info *ret = NULL, *other;
665 int err = -ENODEV;
666
667 mutex_lock(&mtd_table_mutex);
668
669 if (num == -1) {
670 mtd_for_each_device(other) {
671 if (other == mtd) {
672 ret = mtd;
673 break;
674 }
675 }
676 } else if (num >= 0) {
677 ret = idr_find(&mtd_idr, num);
678 if (mtd && mtd != ret)
679 ret = NULL;
680 }
681
682 if (!ret) {
683 ret = ERR_PTR(err);
684 goto out;
685 }
686
687 err = __get_mtd_device(ret);
688 if (err)
689 ret = ERR_PTR(err);
690 out:
691 mutex_unlock(&mtd_table_mutex);
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(get_mtd_device);
695
696
697 int __get_mtd_device(struct mtd_info *mtd)
698 {
699 int err;
700
701 if (!try_module_get(mtd->owner))
702 return -ENODEV;
703
704 if (mtd->_get_device) {
705 err = mtd->_get_device(mtd);
706
707 if (err) {
708 module_put(mtd->owner);
709 return err;
710 }
711 }
712 mtd->usecount++;
713 return 0;
714 }
715 EXPORT_SYMBOL_GPL(__get_mtd_device);
716
717 /**
718 * get_mtd_device_nm - obtain a validated handle for an MTD device by
719 * device name
720 * @name: MTD device name to open
721 *
722 * This function returns MTD device description structure in case of
723 * success and an error code in case of failure.
724 */
725 struct mtd_info *get_mtd_device_nm(const char *name)
726 {
727 int err = -ENODEV;
728 struct mtd_info *mtd = NULL, *other;
729
730 mutex_lock(&mtd_table_mutex);
731
732 mtd_for_each_device(other) {
733 if (!strcmp(name, other->name)) {
734 mtd = other;
735 break;
736 }
737 }
738
739 if (!mtd)
740 goto out_unlock;
741
742 err = __get_mtd_device(mtd);
743 if (err)
744 goto out_unlock;
745
746 mutex_unlock(&mtd_table_mutex);
747 return mtd;
748
749 out_unlock:
750 mutex_unlock(&mtd_table_mutex);
751 return ERR_PTR(err);
752 }
753 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
754
755 void put_mtd_device(struct mtd_info *mtd)
756 {
757 mutex_lock(&mtd_table_mutex);
758 __put_mtd_device(mtd);
759 mutex_unlock(&mtd_table_mutex);
760
761 }
762 EXPORT_SYMBOL_GPL(put_mtd_device);
763
764 void __put_mtd_device(struct mtd_info *mtd)
765 {
766 --mtd->usecount;
767 BUG_ON(mtd->usecount < 0);
768
769 if (mtd->_put_device)
770 mtd->_put_device(mtd);
771
772 module_put(mtd->owner);
773 }
774 EXPORT_SYMBOL_GPL(__put_mtd_device);
775
776 /*
777 * Erase is an asynchronous operation. Device drivers are supposed
778 * to call instr->callback() whenever the operation completes, even
779 * if it completes with a failure.
780 * Callers are supposed to pass a callback function and wait for it
781 * to be called before writing to the block.
782 */
783 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
784 {
785 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
786 return -EINVAL;
787 if (!(mtd->flags & MTD_WRITEABLE))
788 return -EROFS;
789 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
790 if (!instr->len) {
791 instr->state = MTD_ERASE_DONE;
792 mtd_erase_callback(instr);
793 return 0;
794 }
795 return mtd->_erase(mtd, instr);
796 }
797 EXPORT_SYMBOL_GPL(mtd_erase);
798
799 /*
800 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
801 */
802 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
803 void **virt, resource_size_t *phys)
804 {
805 *retlen = 0;
806 *virt = NULL;
807 if (phys)
808 *phys = 0;
809 if (!mtd->_point)
810 return -EOPNOTSUPP;
811 if (from < 0 || from >= mtd->size || len > mtd->size - from)
812 return -EINVAL;
813 if (!len)
814 return 0;
815 return mtd->_point(mtd, from, len, retlen, virt, phys);
816 }
817 EXPORT_SYMBOL_GPL(mtd_point);
818
819 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
820 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
821 {
822 if (!mtd->_point)
823 return -EOPNOTSUPP;
824 if (from < 0 || from >= mtd->size || len > mtd->size - from)
825 return -EINVAL;
826 if (!len)
827 return 0;
828 return mtd->_unpoint(mtd, from, len);
829 }
830 EXPORT_SYMBOL_GPL(mtd_unpoint);
831
832 /*
833 * Allow NOMMU mmap() to directly map the device (if not NULL)
834 * - return the address to which the offset maps
835 * - return -ENOSYS to indicate refusal to do the mapping
836 */
837 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
838 unsigned long offset, unsigned long flags)
839 {
840 if (!mtd->_get_unmapped_area)
841 return -EOPNOTSUPP;
842 if (offset >= mtd->size || len > mtd->size - offset)
843 return -EINVAL;
844 return mtd->_get_unmapped_area(mtd, len, offset, flags);
845 }
846 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
847
848 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
849 u_char *buf)
850 {
851 int ret_code;
852 *retlen = 0;
853 if (from < 0 || from >= mtd->size || len > mtd->size - from)
854 return -EINVAL;
855 if (!len)
856 return 0;
857
858 /*
859 * In the absence of an error, drivers return a non-negative integer
860 * representing the maximum number of bitflips that were corrected on
861 * any one ecc region (if applicable; zero otherwise).
862 */
863 ret_code = mtd->_read(mtd, from, len, retlen, buf);
864 if (unlikely(ret_code < 0))
865 return ret_code;
866 if (mtd->ecc_strength == 0)
867 return 0; /* device lacks ecc */
868 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
869 }
870 EXPORT_SYMBOL_GPL(mtd_read);
871
872 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
873 const u_char *buf)
874 {
875 *retlen = 0;
876 if (to < 0 || to >= mtd->size || len > mtd->size - to)
877 return -EINVAL;
878 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
879 return -EROFS;
880 if (!len)
881 return 0;
882 return mtd->_write(mtd, to, len, retlen, buf);
883 }
884 EXPORT_SYMBOL_GPL(mtd_write);
885
886 /*
887 * In blackbox flight recorder like scenarios we want to make successful writes
888 * in interrupt context. panic_write() is only intended to be called when its
889 * known the kernel is about to panic and we need the write to succeed. Since
890 * the kernel is not going to be running for much longer, this function can
891 * break locks and delay to ensure the write succeeds (but not sleep).
892 */
893 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
894 const u_char *buf)
895 {
896 *retlen = 0;
897 if (!mtd->_panic_write)
898 return -EOPNOTSUPP;
899 if (to < 0 || to >= mtd->size || len > mtd->size - to)
900 return -EINVAL;
901 if (!(mtd->flags & MTD_WRITEABLE))
902 return -EROFS;
903 if (!len)
904 return 0;
905 return mtd->_panic_write(mtd, to, len, retlen, buf);
906 }
907 EXPORT_SYMBOL_GPL(mtd_panic_write);
908
909 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
910 {
911 int ret_code;
912 ops->retlen = ops->oobretlen = 0;
913 if (!mtd->_read_oob)
914 return -EOPNOTSUPP;
915 /*
916 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
917 * similar to mtd->_read(), returning a non-negative integer
918 * representing max bitflips. In other cases, mtd->_read_oob() may
919 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
920 */
921 ret_code = mtd->_read_oob(mtd, from, ops);
922 if (unlikely(ret_code < 0))
923 return ret_code;
924 if (mtd->ecc_strength == 0)
925 return 0; /* device lacks ecc */
926 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
927 }
928 EXPORT_SYMBOL_GPL(mtd_read_oob);
929
930 /*
931 * Method to access the protection register area, present in some flash
932 * devices. The user data is one time programmable but the factory data is read
933 * only.
934 */
935 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
936 struct otp_info *buf)
937 {
938 if (!mtd->_get_fact_prot_info)
939 return -EOPNOTSUPP;
940 if (!len)
941 return 0;
942 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
943 }
944 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
945
946 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
947 size_t *retlen, u_char *buf)
948 {
949 *retlen = 0;
950 if (!mtd->_read_fact_prot_reg)
951 return -EOPNOTSUPP;
952 if (!len)
953 return 0;
954 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
955 }
956 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
957
958 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
959 struct otp_info *buf)
960 {
961 if (!mtd->_get_user_prot_info)
962 return -EOPNOTSUPP;
963 if (!len)
964 return 0;
965 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
966 }
967 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
968
969 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
970 size_t *retlen, u_char *buf)
971 {
972 *retlen = 0;
973 if (!mtd->_read_user_prot_reg)
974 return -EOPNOTSUPP;
975 if (!len)
976 return 0;
977 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
978 }
979 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
980
981 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
982 size_t *retlen, u_char *buf)
983 {
984 int ret;
985
986 *retlen = 0;
987 if (!mtd->_write_user_prot_reg)
988 return -EOPNOTSUPP;
989 if (!len)
990 return 0;
991 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
992 if (ret)
993 return ret;
994
995 /*
996 * If no data could be written at all, we are out of memory and
997 * must return -ENOSPC.
998 */
999 return (*retlen) ? 0 : -ENOSPC;
1000 }
1001 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1002
1003 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1004 {
1005 if (!mtd->_lock_user_prot_reg)
1006 return -EOPNOTSUPP;
1007 if (!len)
1008 return 0;
1009 return mtd->_lock_user_prot_reg(mtd, from, len);
1010 }
1011 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1012
1013 /* Chip-supported device locking */
1014 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1015 {
1016 if (!mtd->_lock)
1017 return -EOPNOTSUPP;
1018 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1019 return -EINVAL;
1020 if (!len)
1021 return 0;
1022 return mtd->_lock(mtd, ofs, len);
1023 }
1024 EXPORT_SYMBOL_GPL(mtd_lock);
1025
1026 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1027 {
1028 if (!mtd->_unlock)
1029 return -EOPNOTSUPP;
1030 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1031 return -EINVAL;
1032 if (!len)
1033 return 0;
1034 return mtd->_unlock(mtd, ofs, len);
1035 }
1036 EXPORT_SYMBOL_GPL(mtd_unlock);
1037
1038 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1039 {
1040 if (!mtd->_is_locked)
1041 return -EOPNOTSUPP;
1042 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1043 return -EINVAL;
1044 if (!len)
1045 return 0;
1046 return mtd->_is_locked(mtd, ofs, len);
1047 }
1048 EXPORT_SYMBOL_GPL(mtd_is_locked);
1049
1050 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1051 {
1052 if (ofs < 0 || ofs >= mtd->size)
1053 return -EINVAL;
1054 if (!mtd->_block_isreserved)
1055 return 0;
1056 return mtd->_block_isreserved(mtd, ofs);
1057 }
1058 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1059
1060 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1061 {
1062 if (ofs < 0 || ofs >= mtd->size)
1063 return -EINVAL;
1064 if (!mtd->_block_isbad)
1065 return 0;
1066 return mtd->_block_isbad(mtd, ofs);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1069
1070 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1071 {
1072 if (!mtd->_block_markbad)
1073 return -EOPNOTSUPP;
1074 if (ofs < 0 || ofs >= mtd->size)
1075 return -EINVAL;
1076 if (!(mtd->flags & MTD_WRITEABLE))
1077 return -EROFS;
1078 return mtd->_block_markbad(mtd, ofs);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1081
1082 /*
1083 * default_mtd_writev - the default writev method
1084 * @mtd: mtd device description object pointer
1085 * @vecs: the vectors to write
1086 * @count: count of vectors in @vecs
1087 * @to: the MTD device offset to write to
1088 * @retlen: on exit contains the count of bytes written to the MTD device.
1089 *
1090 * This function returns zero in case of success and a negative error code in
1091 * case of failure.
1092 */
1093 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1094 unsigned long count, loff_t to, size_t *retlen)
1095 {
1096 unsigned long i;
1097 size_t totlen = 0, thislen;
1098 int ret = 0;
1099
1100 for (i = 0; i < count; i++) {
1101 if (!vecs[i].iov_len)
1102 continue;
1103 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1104 vecs[i].iov_base);
1105 totlen += thislen;
1106 if (ret || thislen != vecs[i].iov_len)
1107 break;
1108 to += vecs[i].iov_len;
1109 }
1110 *retlen = totlen;
1111 return ret;
1112 }
1113
1114 /*
1115 * mtd_writev - the vector-based MTD write method
1116 * @mtd: mtd device description object pointer
1117 * @vecs: the vectors to write
1118 * @count: count of vectors in @vecs
1119 * @to: the MTD device offset to write to
1120 * @retlen: on exit contains the count of bytes written to the MTD device.
1121 *
1122 * This function returns zero in case of success and a negative error code in
1123 * case of failure.
1124 */
1125 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1126 unsigned long count, loff_t to, size_t *retlen)
1127 {
1128 *retlen = 0;
1129 if (!(mtd->flags & MTD_WRITEABLE))
1130 return -EROFS;
1131 if (!mtd->_writev)
1132 return default_mtd_writev(mtd, vecs, count, to, retlen);
1133 return mtd->_writev(mtd, vecs, count, to, retlen);
1134 }
1135 EXPORT_SYMBOL_GPL(mtd_writev);
1136
1137 /**
1138 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1139 * @mtd: mtd device description object pointer
1140 * @size: a pointer to the ideal or maximum size of the allocation, points
1141 * to the actual allocation size on success.
1142 *
1143 * This routine attempts to allocate a contiguous kernel buffer up to
1144 * the specified size, backing off the size of the request exponentially
1145 * until the request succeeds or until the allocation size falls below
1146 * the system page size. This attempts to make sure it does not adversely
1147 * impact system performance, so when allocating more than one page, we
1148 * ask the memory allocator to avoid re-trying, swapping, writing back
1149 * or performing I/O.
1150 *
1151 * Note, this function also makes sure that the allocated buffer is aligned to
1152 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1153 *
1154 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1155 * to handle smaller (i.e. degraded) buffer allocations under low- or
1156 * fragmented-memory situations where such reduced allocations, from a
1157 * requested ideal, are allowed.
1158 *
1159 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1160 */
1161 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1162 {
1163 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1164 __GFP_NORETRY | __GFP_NO_KSWAPD;
1165 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1166 void *kbuf;
1167
1168 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1169
1170 while (*size > min_alloc) {
1171 kbuf = kmalloc(*size, flags);
1172 if (kbuf)
1173 return kbuf;
1174
1175 *size >>= 1;
1176 *size = ALIGN(*size, mtd->writesize);
1177 }
1178
1179 /*
1180 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1181 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1182 */
1183 return kmalloc(*size, GFP_KERNEL);
1184 }
1185 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1186
1187 #ifdef CONFIG_PROC_FS
1188
1189 /*====================================================================*/
1190 /* Support for /proc/mtd */
1191
1192 static int mtd_proc_show(struct seq_file *m, void *v)
1193 {
1194 struct mtd_info *mtd;
1195
1196 seq_puts(m, "dev: size erasesize name\n");
1197 mutex_lock(&mtd_table_mutex);
1198 mtd_for_each_device(mtd) {
1199 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1200 mtd->index, (unsigned long long)mtd->size,
1201 mtd->erasesize, mtd->name);
1202 }
1203 mutex_unlock(&mtd_table_mutex);
1204 return 0;
1205 }
1206
1207 static int mtd_proc_open(struct inode *inode, struct file *file)
1208 {
1209 return single_open(file, mtd_proc_show, NULL);
1210 }
1211
1212 static const struct file_operations mtd_proc_ops = {
1213 .open = mtd_proc_open,
1214 .read = seq_read,
1215 .llseek = seq_lseek,
1216 .release = single_release,
1217 };
1218 #endif /* CONFIG_PROC_FS */
1219
1220 /*====================================================================*/
1221 /* Init code */
1222
1223 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1224 {
1225 int ret;
1226
1227 ret = bdi_init(bdi);
1228 if (!ret)
1229 ret = bdi_register(bdi, NULL, "%s", name);
1230
1231 if (ret)
1232 bdi_destroy(bdi);
1233
1234 return ret;
1235 }
1236
1237 static struct proc_dir_entry *proc_mtd;
1238
1239 static int __init init_mtd(void)
1240 {
1241 int ret;
1242
1243 ret = class_register(&mtd_class);
1244 if (ret)
1245 goto err_reg;
1246
1247 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1248 if (ret)
1249 goto err_bdi;
1250
1251 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1252
1253 ret = init_mtdchar();
1254 if (ret)
1255 goto out_procfs;
1256
1257 return 0;
1258
1259 out_procfs:
1260 if (proc_mtd)
1261 remove_proc_entry("mtd", NULL);
1262 err_bdi:
1263 class_unregister(&mtd_class);
1264 err_reg:
1265 pr_err("Error registering mtd class or bdi: %d\n", ret);
1266 return ret;
1267 }
1268
1269 static void __exit cleanup_mtd(void)
1270 {
1271 cleanup_mtdchar();
1272 if (proc_mtd)
1273 remove_proc_entry("mtd", NULL);
1274 class_unregister(&mtd_class);
1275 bdi_destroy(&mtd_bdi);
1276 }
1277
1278 module_init(init_mtd);
1279 module_exit(cleanup_mtd);
1280
1281 MODULE_LICENSE("GPL");
1282 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1283 MODULE_DESCRIPTION("Core MTD registration and access routines");