]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mtd/mtdcore.c
brcmsmac: remove set but not used variables 'phybw40, maxtargetpwr'
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
45
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
48
49 #include "mtdcore.h"
50
51 struct backing_dev_info *mtd_bdi;
52
53 #ifdef CONFIG_PM_SLEEP
54
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 struct mtd_info *mtd = dev_get_drvdata(dev);
58
59 return mtd ? mtd_suspend(mtd) : 0;
60 }
61
62 static int mtd_cls_resume(struct device *dev)
63 {
64 struct mtd_info *mtd = dev_get_drvdata(dev);
65
66 if (mtd)
67 mtd_resume(mtd);
68 return 0;
69 }
70
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76
77 static struct class mtd_class = {
78 .name = "mtd",
79 .owner = THIS_MODULE,
80 .pm = MTD_CLS_PM_OPS,
81 };
82
83 static DEFINE_IDR(mtd_idr);
84
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96 static LIST_HEAD(mtd_notifiers);
97
98
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102 * the mtd_info will probably want to use the release() hook...
103 */
104 static void mtd_release(struct device *dev)
105 {
106 struct mtd_info *mtd = dev_get_drvdata(dev);
107 dev_t index = MTD_DEVT(mtd->index);
108
109 /* remove /dev/mtdXro node */
110 device_destroy(&mtd_class, index + 1);
111 }
112
113 static ssize_t mtd_type_show(struct device *dev,
114 struct device_attribute *attr, char *buf)
115 {
116 struct mtd_info *mtd = dev_get_drvdata(dev);
117 char *type;
118
119 switch (mtd->type) {
120 case MTD_ABSENT:
121 type = "absent";
122 break;
123 case MTD_RAM:
124 type = "ram";
125 break;
126 case MTD_ROM:
127 type = "rom";
128 break;
129 case MTD_NORFLASH:
130 type = "nor";
131 break;
132 case MTD_NANDFLASH:
133 type = "nand";
134 break;
135 case MTD_DATAFLASH:
136 type = "dataflash";
137 break;
138 case MTD_UBIVOLUME:
139 type = "ubi";
140 break;
141 case MTD_MLCNANDFLASH:
142 type = "mlc-nand";
143 break;
144 default:
145 type = "unknown";
146 }
147
148 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151
152 static ssize_t mtd_flags_show(struct device *dev,
153 struct device_attribute *attr, char *buf)
154 {
155 struct mtd_info *mtd = dev_get_drvdata(dev);
156
157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158
159 }
160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161
162 static ssize_t mtd_size_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return snprintf(buf, PAGE_SIZE, "%llu\n",
168 (unsigned long long)mtd->size);
169
170 }
171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172
173 static ssize_t mtd_erasesize_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
175 {
176 struct mtd_info *mtd = dev_get_drvdata(dev);
177
178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
179
180 }
181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182
183 static ssize_t mtd_writesize_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
189
190 }
191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192
193 static ssize_t mtd_subpagesize_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
200
201 }
202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203
204 static ssize_t mtd_oobsize_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206 {
207 struct mtd_info *mtd = dev_get_drvdata(dev);
208
209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
210
211 }
212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213
214 static ssize_t mtd_oobavail_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
216 {
217 struct mtd_info *mtd = dev_get_drvdata(dev);
218
219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
220 }
221 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
222
223 static ssize_t mtd_numeraseregions_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
229
230 }
231 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
232 NULL);
233
234 static ssize_t mtd_name_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
240
241 }
242 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
243
244 static ssize_t mtd_ecc_strength_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
246 {
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
250 }
251 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
252
253 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
254 struct device_attribute *attr,
255 char *buf)
256 {
257 struct mtd_info *mtd = dev_get_drvdata(dev);
258
259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
260 }
261
262 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
263 struct device_attribute *attr,
264 const char *buf, size_t count)
265 {
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267 unsigned int bitflip_threshold;
268 int retval;
269
270 retval = kstrtouint(buf, 0, &bitflip_threshold);
271 if (retval)
272 return retval;
273
274 mtd->bitflip_threshold = bitflip_threshold;
275 return count;
276 }
277 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
278 mtd_bitflip_threshold_show,
279 mtd_bitflip_threshold_store);
280
281 static ssize_t mtd_ecc_step_size_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
287
288 }
289 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
290
291 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
298 }
299 static DEVICE_ATTR(corrected_bits, S_IRUGO,
300 mtd_ecc_stats_corrected_show, NULL);
301
302 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
309 }
310 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
311
312 static ssize_t mtd_badblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314 {
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
319 }
320 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
321
322 static ssize_t mtd_bbtblocks_show(struct device *dev,
323 struct device_attribute *attr, char *buf)
324 {
325 struct mtd_info *mtd = dev_get_drvdata(dev);
326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327
328 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
329 }
330 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
331
332 static struct attribute *mtd_attrs[] = {
333 &dev_attr_type.attr,
334 &dev_attr_flags.attr,
335 &dev_attr_size.attr,
336 &dev_attr_erasesize.attr,
337 &dev_attr_writesize.attr,
338 &dev_attr_subpagesize.attr,
339 &dev_attr_oobsize.attr,
340 &dev_attr_oobavail.attr,
341 &dev_attr_numeraseregions.attr,
342 &dev_attr_name.attr,
343 &dev_attr_ecc_strength.attr,
344 &dev_attr_ecc_step_size.attr,
345 &dev_attr_corrected_bits.attr,
346 &dev_attr_ecc_failures.attr,
347 &dev_attr_bad_blocks.attr,
348 &dev_attr_bbt_blocks.attr,
349 &dev_attr_bitflip_threshold.attr,
350 NULL,
351 };
352 ATTRIBUTE_GROUPS(mtd);
353
354 static const struct device_type mtd_devtype = {
355 .name = "mtd",
356 .groups = mtd_groups,
357 .release = mtd_release,
358 };
359
360 #ifndef CONFIG_MMU
361 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
362 {
363 switch (mtd->type) {
364 case MTD_RAM:
365 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
366 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
367 case MTD_ROM:
368 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
369 NOMMU_MAP_READ;
370 default:
371 return NOMMU_MAP_COPY;
372 }
373 }
374 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
375 #endif
376
377 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
378 void *cmd)
379 {
380 struct mtd_info *mtd;
381
382 mtd = container_of(n, struct mtd_info, reboot_notifier);
383 mtd->_reboot(mtd);
384
385 return NOTIFY_DONE;
386 }
387
388 /**
389 * mtd_wunit_to_pairing_info - get pairing information of a wunit
390 * @mtd: pointer to new MTD device info structure
391 * @wunit: write unit we are interested in
392 * @info: returned pairing information
393 *
394 * Retrieve pairing information associated to the wunit.
395 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
396 * paired together, and where programming a page may influence the page it is
397 * paired with.
398 * The notion of page is replaced by the term wunit (write-unit) to stay
399 * consistent with the ->writesize field.
400 *
401 * The @wunit argument can be extracted from an absolute offset using
402 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
403 * to @wunit.
404 *
405 * From the pairing info the MTD user can find all the wunits paired with
406 * @wunit using the following loop:
407 *
408 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
409 * info.pair = i;
410 * mtd_pairing_info_to_wunit(mtd, &info);
411 * ...
412 * }
413 */
414 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
415 struct mtd_pairing_info *info)
416 {
417 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
418
419 if (wunit < 0 || wunit >= npairs)
420 return -EINVAL;
421
422 if (mtd->pairing && mtd->pairing->get_info)
423 return mtd->pairing->get_info(mtd, wunit, info);
424
425 info->group = 0;
426 info->pair = wunit;
427
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
431
432 /**
433 * mtd_pairing_info_to_wunit - get wunit from pairing information
434 * @mtd: pointer to new MTD device info structure
435 * @info: pairing information struct
436 *
437 * Returns a positive number representing the wunit associated to the info
438 * struct, or a negative error code.
439 *
440 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
441 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
442 * doc).
443 *
444 * It can also be used to only program the first page of each pair (i.e.
445 * page attached to group 0), which allows one to use an MLC NAND in
446 * software-emulated SLC mode:
447 *
448 * info.group = 0;
449 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
450 * for (info.pair = 0; info.pair < npairs; info.pair++) {
451 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
452 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
453 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
454 * }
455 */
456 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
457 const struct mtd_pairing_info *info)
458 {
459 int ngroups = mtd_pairing_groups(mtd);
460 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
461
462 if (!info || info->pair < 0 || info->pair >= npairs ||
463 info->group < 0 || info->group >= ngroups)
464 return -EINVAL;
465
466 if (mtd->pairing && mtd->pairing->get_wunit)
467 return mtd->pairing->get_wunit(mtd, info);
468
469 return info->pair;
470 }
471 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
472
473 /**
474 * mtd_pairing_groups - get the number of pairing groups
475 * @mtd: pointer to new MTD device info structure
476 *
477 * Returns the number of pairing groups.
478 *
479 * This number is usually equal to the number of bits exposed by a single
480 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
481 * to iterate over all pages of a given pair.
482 */
483 int mtd_pairing_groups(struct mtd_info *mtd)
484 {
485 if (!mtd->pairing || !mtd->pairing->ngroups)
486 return 1;
487
488 return mtd->pairing->ngroups;
489 }
490 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
491
492 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
493 void *val, size_t bytes)
494 {
495 struct mtd_info *mtd = priv;
496 size_t retlen;
497 int err;
498
499 err = mtd_read(mtd, offset, bytes, &retlen, val);
500 if (err && err != -EUCLEAN)
501 return err;
502
503 return retlen == bytes ? 0 : -EIO;
504 }
505
506 static int mtd_nvmem_add(struct mtd_info *mtd)
507 {
508 struct nvmem_config config = {};
509
510 config.dev = &mtd->dev;
511 config.name = mtd->name;
512 config.owner = THIS_MODULE;
513 config.reg_read = mtd_nvmem_reg_read;
514 config.size = mtd->size;
515 config.word_size = 1;
516 config.stride = 1;
517 config.read_only = true;
518 config.root_only = true;
519 config.no_of_node = true;
520 config.priv = mtd;
521
522 mtd->nvmem = nvmem_register(&config);
523 if (IS_ERR(mtd->nvmem)) {
524 /* Just ignore if there is no NVMEM support in the kernel */
525 if (PTR_ERR(mtd->nvmem) == -ENOSYS) {
526 mtd->nvmem = NULL;
527 } else {
528 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
529 return PTR_ERR(mtd->nvmem);
530 }
531 }
532
533 return 0;
534 }
535
536 static struct dentry *dfs_dir_mtd;
537
538 /**
539 * add_mtd_device - register an MTD device
540 * @mtd: pointer to new MTD device info structure
541 *
542 * Add a device to the list of MTD devices present in the system, and
543 * notify each currently active MTD 'user' of its arrival. Returns
544 * zero on success or non-zero on failure.
545 */
546
547 int add_mtd_device(struct mtd_info *mtd)
548 {
549 struct mtd_notifier *not;
550 int i, error;
551
552 /*
553 * May occur, for instance, on buggy drivers which call
554 * mtd_device_parse_register() multiple times on the same master MTD,
555 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
556 */
557 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
558 return -EEXIST;
559
560 BUG_ON(mtd->writesize == 0);
561
562 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
563 !(mtd->flags & MTD_NO_ERASE)))
564 return -EINVAL;
565
566 mutex_lock(&mtd_table_mutex);
567
568 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
569 if (i < 0) {
570 error = i;
571 goto fail_locked;
572 }
573
574 mtd->index = i;
575 mtd->usecount = 0;
576
577 /* default value if not set by driver */
578 if (mtd->bitflip_threshold == 0)
579 mtd->bitflip_threshold = mtd->ecc_strength;
580
581 if (is_power_of_2(mtd->erasesize))
582 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
583 else
584 mtd->erasesize_shift = 0;
585
586 if (is_power_of_2(mtd->writesize))
587 mtd->writesize_shift = ffs(mtd->writesize) - 1;
588 else
589 mtd->writesize_shift = 0;
590
591 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
592 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
593
594 /* Some chips always power up locked. Unlock them now */
595 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
596 error = mtd_unlock(mtd, 0, mtd->size);
597 if (error && error != -EOPNOTSUPP)
598 printk(KERN_WARNING
599 "%s: unlock failed, writes may not work\n",
600 mtd->name);
601 /* Ignore unlock failures? */
602 error = 0;
603 }
604
605 /* Caller should have set dev.parent to match the
606 * physical device, if appropriate.
607 */
608 mtd->dev.type = &mtd_devtype;
609 mtd->dev.class = &mtd_class;
610 mtd->dev.devt = MTD_DEVT(i);
611 dev_set_name(&mtd->dev, "mtd%d", i);
612 dev_set_drvdata(&mtd->dev, mtd);
613 of_node_get(mtd_get_of_node(mtd));
614 error = device_register(&mtd->dev);
615 if (error)
616 goto fail_added;
617
618 /* Add the nvmem provider */
619 error = mtd_nvmem_add(mtd);
620 if (error)
621 goto fail_nvmem_add;
622
623 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
624 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
625 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
626 pr_debug("mtd device %s won't show data in debugfs\n",
627 dev_name(&mtd->dev));
628 }
629 }
630
631 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
632 "mtd%dro", i);
633
634 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
635 /* No need to get a refcount on the module containing
636 the notifier, since we hold the mtd_table_mutex */
637 list_for_each_entry(not, &mtd_notifiers, list)
638 not->add(mtd);
639
640 mutex_unlock(&mtd_table_mutex);
641 /* We _know_ we aren't being removed, because
642 our caller is still holding us here. So none
643 of this try_ nonsense, and no bitching about it
644 either. :) */
645 __module_get(THIS_MODULE);
646 return 0;
647
648 fail_nvmem_add:
649 device_unregister(&mtd->dev);
650 fail_added:
651 of_node_put(mtd_get_of_node(mtd));
652 idr_remove(&mtd_idr, i);
653 fail_locked:
654 mutex_unlock(&mtd_table_mutex);
655 return error;
656 }
657
658 /**
659 * del_mtd_device - unregister an MTD device
660 * @mtd: pointer to MTD device info structure
661 *
662 * Remove a device from the list of MTD devices present in the system,
663 * and notify each currently active MTD 'user' of its departure.
664 * Returns zero on success or 1 on failure, which currently will happen
665 * if the requested device does not appear to be present in the list.
666 */
667
668 int del_mtd_device(struct mtd_info *mtd)
669 {
670 int ret;
671 struct mtd_notifier *not;
672
673 mutex_lock(&mtd_table_mutex);
674
675 debugfs_remove_recursive(mtd->dbg.dfs_dir);
676
677 if (idr_find(&mtd_idr, mtd->index) != mtd) {
678 ret = -ENODEV;
679 goto out_error;
680 }
681
682 /* No need to get a refcount on the module containing
683 the notifier, since we hold the mtd_table_mutex */
684 list_for_each_entry(not, &mtd_notifiers, list)
685 not->remove(mtd);
686
687 if (mtd->usecount) {
688 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
689 mtd->index, mtd->name, mtd->usecount);
690 ret = -EBUSY;
691 } else {
692 /* Try to remove the NVMEM provider */
693 if (mtd->nvmem)
694 nvmem_unregister(mtd->nvmem);
695
696 device_unregister(&mtd->dev);
697
698 idr_remove(&mtd_idr, mtd->index);
699 of_node_put(mtd_get_of_node(mtd));
700
701 module_put(THIS_MODULE);
702 ret = 0;
703 }
704
705 out_error:
706 mutex_unlock(&mtd_table_mutex);
707 return ret;
708 }
709
710 /*
711 * Set a few defaults based on the parent devices, if not provided by the
712 * driver
713 */
714 static void mtd_set_dev_defaults(struct mtd_info *mtd)
715 {
716 if (mtd->dev.parent) {
717 if (!mtd->owner && mtd->dev.parent->driver)
718 mtd->owner = mtd->dev.parent->driver->owner;
719 if (!mtd->name)
720 mtd->name = dev_name(mtd->dev.parent);
721 } else {
722 pr_debug("mtd device won't show a device symlink in sysfs\n");
723 }
724
725 mtd->orig_flags = mtd->flags;
726 }
727
728 /**
729 * mtd_device_parse_register - parse partitions and register an MTD device.
730 *
731 * @mtd: the MTD device to register
732 * @types: the list of MTD partition probes to try, see
733 * 'parse_mtd_partitions()' for more information
734 * @parser_data: MTD partition parser-specific data
735 * @parts: fallback partition information to register, if parsing fails;
736 * only valid if %nr_parts > %0
737 * @nr_parts: the number of partitions in parts, if zero then the full
738 * MTD device is registered if no partition info is found
739 *
740 * This function aggregates MTD partitions parsing (done by
741 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
742 * basically follows the most common pattern found in many MTD drivers:
743 *
744 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
745 * registered first.
746 * * Then It tries to probe partitions on MTD device @mtd using parsers
747 * specified in @types (if @types is %NULL, then the default list of parsers
748 * is used, see 'parse_mtd_partitions()' for more information). If none are
749 * found this functions tries to fallback to information specified in
750 * @parts/@nr_parts.
751 * * If no partitions were found this function just registers the MTD device
752 * @mtd and exits.
753 *
754 * Returns zero in case of success and a negative error code in case of failure.
755 */
756 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
757 struct mtd_part_parser_data *parser_data,
758 const struct mtd_partition *parts,
759 int nr_parts)
760 {
761 int ret;
762
763 mtd_set_dev_defaults(mtd);
764
765 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
766 ret = add_mtd_device(mtd);
767 if (ret)
768 return ret;
769 }
770
771 /* Prefer parsed partitions over driver-provided fallback */
772 ret = parse_mtd_partitions(mtd, types, parser_data);
773 if (ret > 0)
774 ret = 0;
775 else if (nr_parts)
776 ret = add_mtd_partitions(mtd, parts, nr_parts);
777 else if (!device_is_registered(&mtd->dev))
778 ret = add_mtd_device(mtd);
779 else
780 ret = 0;
781
782 if (ret)
783 goto out;
784
785 /*
786 * FIXME: some drivers unfortunately call this function more than once.
787 * So we have to check if we've already assigned the reboot notifier.
788 *
789 * Generally, we can make multiple calls work for most cases, but it
790 * does cause problems with parse_mtd_partitions() above (e.g.,
791 * cmdlineparts will register partitions more than once).
792 */
793 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
794 "MTD already registered\n");
795 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
796 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
797 register_reboot_notifier(&mtd->reboot_notifier);
798 }
799
800 out:
801 if (ret && device_is_registered(&mtd->dev))
802 del_mtd_device(mtd);
803
804 return ret;
805 }
806 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
807
808 /**
809 * mtd_device_unregister - unregister an existing MTD device.
810 *
811 * @master: the MTD device to unregister. This will unregister both the master
812 * and any partitions if registered.
813 */
814 int mtd_device_unregister(struct mtd_info *master)
815 {
816 int err;
817
818 if (master->_reboot)
819 unregister_reboot_notifier(&master->reboot_notifier);
820
821 err = del_mtd_partitions(master);
822 if (err)
823 return err;
824
825 if (!device_is_registered(&master->dev))
826 return 0;
827
828 return del_mtd_device(master);
829 }
830 EXPORT_SYMBOL_GPL(mtd_device_unregister);
831
832 /**
833 * register_mtd_user - register a 'user' of MTD devices.
834 * @new: pointer to notifier info structure
835 *
836 * Registers a pair of callbacks function to be called upon addition
837 * or removal of MTD devices. Causes the 'add' callback to be immediately
838 * invoked for each MTD device currently present in the system.
839 */
840 void register_mtd_user (struct mtd_notifier *new)
841 {
842 struct mtd_info *mtd;
843
844 mutex_lock(&mtd_table_mutex);
845
846 list_add(&new->list, &mtd_notifiers);
847
848 __module_get(THIS_MODULE);
849
850 mtd_for_each_device(mtd)
851 new->add(mtd);
852
853 mutex_unlock(&mtd_table_mutex);
854 }
855 EXPORT_SYMBOL_GPL(register_mtd_user);
856
857 /**
858 * unregister_mtd_user - unregister a 'user' of MTD devices.
859 * @old: pointer to notifier info structure
860 *
861 * Removes a callback function pair from the list of 'users' to be
862 * notified upon addition or removal of MTD devices. Causes the
863 * 'remove' callback to be immediately invoked for each MTD device
864 * currently present in the system.
865 */
866 int unregister_mtd_user (struct mtd_notifier *old)
867 {
868 struct mtd_info *mtd;
869
870 mutex_lock(&mtd_table_mutex);
871
872 module_put(THIS_MODULE);
873
874 mtd_for_each_device(mtd)
875 old->remove(mtd);
876
877 list_del(&old->list);
878 mutex_unlock(&mtd_table_mutex);
879 return 0;
880 }
881 EXPORT_SYMBOL_GPL(unregister_mtd_user);
882
883 /**
884 * get_mtd_device - obtain a validated handle for an MTD device
885 * @mtd: last known address of the required MTD device
886 * @num: internal device number of the required MTD device
887 *
888 * Given a number and NULL address, return the num'th entry in the device
889 * table, if any. Given an address and num == -1, search the device table
890 * for a device with that address and return if it's still present. Given
891 * both, return the num'th driver only if its address matches. Return
892 * error code if not.
893 */
894 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
895 {
896 struct mtd_info *ret = NULL, *other;
897 int err = -ENODEV;
898
899 mutex_lock(&mtd_table_mutex);
900
901 if (num == -1) {
902 mtd_for_each_device(other) {
903 if (other == mtd) {
904 ret = mtd;
905 break;
906 }
907 }
908 } else if (num >= 0) {
909 ret = idr_find(&mtd_idr, num);
910 if (mtd && mtd != ret)
911 ret = NULL;
912 }
913
914 if (!ret) {
915 ret = ERR_PTR(err);
916 goto out;
917 }
918
919 err = __get_mtd_device(ret);
920 if (err)
921 ret = ERR_PTR(err);
922 out:
923 mutex_unlock(&mtd_table_mutex);
924 return ret;
925 }
926 EXPORT_SYMBOL_GPL(get_mtd_device);
927
928
929 int __get_mtd_device(struct mtd_info *mtd)
930 {
931 int err;
932
933 if (!try_module_get(mtd->owner))
934 return -ENODEV;
935
936 if (mtd->_get_device) {
937 err = mtd->_get_device(mtd);
938
939 if (err) {
940 module_put(mtd->owner);
941 return err;
942 }
943 }
944 mtd->usecount++;
945 return 0;
946 }
947 EXPORT_SYMBOL_GPL(__get_mtd_device);
948
949 /**
950 * get_mtd_device_nm - obtain a validated handle for an MTD device by
951 * device name
952 * @name: MTD device name to open
953 *
954 * This function returns MTD device description structure in case of
955 * success and an error code in case of failure.
956 */
957 struct mtd_info *get_mtd_device_nm(const char *name)
958 {
959 int err = -ENODEV;
960 struct mtd_info *mtd = NULL, *other;
961
962 mutex_lock(&mtd_table_mutex);
963
964 mtd_for_each_device(other) {
965 if (!strcmp(name, other->name)) {
966 mtd = other;
967 break;
968 }
969 }
970
971 if (!mtd)
972 goto out_unlock;
973
974 err = __get_mtd_device(mtd);
975 if (err)
976 goto out_unlock;
977
978 mutex_unlock(&mtd_table_mutex);
979 return mtd;
980
981 out_unlock:
982 mutex_unlock(&mtd_table_mutex);
983 return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
986
987 void put_mtd_device(struct mtd_info *mtd)
988 {
989 mutex_lock(&mtd_table_mutex);
990 __put_mtd_device(mtd);
991 mutex_unlock(&mtd_table_mutex);
992
993 }
994 EXPORT_SYMBOL_GPL(put_mtd_device);
995
996 void __put_mtd_device(struct mtd_info *mtd)
997 {
998 --mtd->usecount;
999 BUG_ON(mtd->usecount < 0);
1000
1001 if (mtd->_put_device)
1002 mtd->_put_device(mtd);
1003
1004 module_put(mtd->owner);
1005 }
1006 EXPORT_SYMBOL_GPL(__put_mtd_device);
1007
1008 /*
1009 * Erase is an synchronous operation. Device drivers are epected to return a
1010 * negative error code if the operation failed and update instr->fail_addr
1011 * to point the portion that was not properly erased.
1012 */
1013 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1014 {
1015 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1016
1017 if (!mtd->erasesize || !mtd->_erase)
1018 return -ENOTSUPP;
1019
1020 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1021 return -EINVAL;
1022 if (!(mtd->flags & MTD_WRITEABLE))
1023 return -EROFS;
1024
1025 if (!instr->len)
1026 return 0;
1027
1028 ledtrig_mtd_activity();
1029 return mtd->_erase(mtd, instr);
1030 }
1031 EXPORT_SYMBOL_GPL(mtd_erase);
1032
1033 /*
1034 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1035 */
1036 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1037 void **virt, resource_size_t *phys)
1038 {
1039 *retlen = 0;
1040 *virt = NULL;
1041 if (phys)
1042 *phys = 0;
1043 if (!mtd->_point)
1044 return -EOPNOTSUPP;
1045 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1046 return -EINVAL;
1047 if (!len)
1048 return 0;
1049 return mtd->_point(mtd, from, len, retlen, virt, phys);
1050 }
1051 EXPORT_SYMBOL_GPL(mtd_point);
1052
1053 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1054 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1055 {
1056 if (!mtd->_unpoint)
1057 return -EOPNOTSUPP;
1058 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1059 return -EINVAL;
1060 if (!len)
1061 return 0;
1062 return mtd->_unpoint(mtd, from, len);
1063 }
1064 EXPORT_SYMBOL_GPL(mtd_unpoint);
1065
1066 /*
1067 * Allow NOMMU mmap() to directly map the device (if not NULL)
1068 * - return the address to which the offset maps
1069 * - return -ENOSYS to indicate refusal to do the mapping
1070 */
1071 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1072 unsigned long offset, unsigned long flags)
1073 {
1074 size_t retlen;
1075 void *virt;
1076 int ret;
1077
1078 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1079 if (ret)
1080 return ret;
1081 if (retlen != len) {
1082 mtd_unpoint(mtd, offset, retlen);
1083 return -ENOSYS;
1084 }
1085 return (unsigned long)virt;
1086 }
1087 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1088
1089 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1090 u_char *buf)
1091 {
1092 int ret_code;
1093 *retlen = 0;
1094 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1095 return -EINVAL;
1096 if (!len)
1097 return 0;
1098
1099 ledtrig_mtd_activity();
1100 /*
1101 * In the absence of an error, drivers return a non-negative integer
1102 * representing the maximum number of bitflips that were corrected on
1103 * any one ecc region (if applicable; zero otherwise).
1104 */
1105 if (mtd->_read) {
1106 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1107 } else if (mtd->_read_oob) {
1108 struct mtd_oob_ops ops = {
1109 .len = len,
1110 .datbuf = buf,
1111 };
1112
1113 ret_code = mtd->_read_oob(mtd, from, &ops);
1114 *retlen = ops.retlen;
1115 } else {
1116 return -ENOTSUPP;
1117 }
1118
1119 if (unlikely(ret_code < 0))
1120 return ret_code;
1121 if (mtd->ecc_strength == 0)
1122 return 0; /* device lacks ecc */
1123 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1124 }
1125 EXPORT_SYMBOL_GPL(mtd_read);
1126
1127 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1128 const u_char *buf)
1129 {
1130 *retlen = 0;
1131 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1132 return -EINVAL;
1133 if ((!mtd->_write && !mtd->_write_oob) ||
1134 !(mtd->flags & MTD_WRITEABLE))
1135 return -EROFS;
1136 if (!len)
1137 return 0;
1138 ledtrig_mtd_activity();
1139
1140 if (!mtd->_write) {
1141 struct mtd_oob_ops ops = {
1142 .len = len,
1143 .datbuf = (u8 *)buf,
1144 };
1145 int ret;
1146
1147 ret = mtd->_write_oob(mtd, to, &ops);
1148 *retlen = ops.retlen;
1149 return ret;
1150 }
1151
1152 return mtd->_write(mtd, to, len, retlen, buf);
1153 }
1154 EXPORT_SYMBOL_GPL(mtd_write);
1155
1156 /*
1157 * In blackbox flight recorder like scenarios we want to make successful writes
1158 * in interrupt context. panic_write() is only intended to be called when its
1159 * known the kernel is about to panic and we need the write to succeed. Since
1160 * the kernel is not going to be running for much longer, this function can
1161 * break locks and delay to ensure the write succeeds (but not sleep).
1162 */
1163 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1164 const u_char *buf)
1165 {
1166 *retlen = 0;
1167 if (!mtd->_panic_write)
1168 return -EOPNOTSUPP;
1169 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1170 return -EINVAL;
1171 if (!(mtd->flags & MTD_WRITEABLE))
1172 return -EROFS;
1173 if (!len)
1174 return 0;
1175 return mtd->_panic_write(mtd, to, len, retlen, buf);
1176 }
1177 EXPORT_SYMBOL_GPL(mtd_panic_write);
1178
1179 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1180 struct mtd_oob_ops *ops)
1181 {
1182 /*
1183 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1184 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1185 * this case.
1186 */
1187 if (!ops->datbuf)
1188 ops->len = 0;
1189
1190 if (!ops->oobbuf)
1191 ops->ooblen = 0;
1192
1193 if (offs < 0 || offs + ops->len > mtd->size)
1194 return -EINVAL;
1195
1196 if (ops->ooblen) {
1197 size_t maxooblen;
1198
1199 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1200 return -EINVAL;
1201
1202 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1203 mtd_div_by_ws(offs, mtd)) *
1204 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1205 if (ops->ooblen > maxooblen)
1206 return -EINVAL;
1207 }
1208
1209 return 0;
1210 }
1211
1212 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1213 {
1214 int ret_code;
1215 ops->retlen = ops->oobretlen = 0;
1216
1217 ret_code = mtd_check_oob_ops(mtd, from, ops);
1218 if (ret_code)
1219 return ret_code;
1220
1221 ledtrig_mtd_activity();
1222
1223 /* Check the validity of a potential fallback on mtd->_read */
1224 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1225 return -EOPNOTSUPP;
1226
1227 if (mtd->_read_oob)
1228 ret_code = mtd->_read_oob(mtd, from, ops);
1229 else
1230 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1231 ops->datbuf);
1232
1233 /*
1234 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1235 * similar to mtd->_read(), returning a non-negative integer
1236 * representing max bitflips. In other cases, mtd->_read_oob() may
1237 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1238 */
1239 if (unlikely(ret_code < 0))
1240 return ret_code;
1241 if (mtd->ecc_strength == 0)
1242 return 0; /* device lacks ecc */
1243 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1244 }
1245 EXPORT_SYMBOL_GPL(mtd_read_oob);
1246
1247 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1248 struct mtd_oob_ops *ops)
1249 {
1250 int ret;
1251
1252 ops->retlen = ops->oobretlen = 0;
1253
1254 if (!(mtd->flags & MTD_WRITEABLE))
1255 return -EROFS;
1256
1257 ret = mtd_check_oob_ops(mtd, to, ops);
1258 if (ret)
1259 return ret;
1260
1261 ledtrig_mtd_activity();
1262
1263 /* Check the validity of a potential fallback on mtd->_write */
1264 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1265 return -EOPNOTSUPP;
1266
1267 if (mtd->_write_oob)
1268 return mtd->_write_oob(mtd, to, ops);
1269 else
1270 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1271 ops->datbuf);
1272 }
1273 EXPORT_SYMBOL_GPL(mtd_write_oob);
1274
1275 /**
1276 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1277 * @mtd: MTD device structure
1278 * @section: ECC section. Depending on the layout you may have all the ECC
1279 * bytes stored in a single contiguous section, or one section
1280 * per ECC chunk (and sometime several sections for a single ECC
1281 * ECC chunk)
1282 * @oobecc: OOB region struct filled with the appropriate ECC position
1283 * information
1284 *
1285 * This function returns ECC section information in the OOB area. If you want
1286 * to get all the ECC bytes information, then you should call
1287 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1288 *
1289 * Returns zero on success, a negative error code otherwise.
1290 */
1291 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1292 struct mtd_oob_region *oobecc)
1293 {
1294 memset(oobecc, 0, sizeof(*oobecc));
1295
1296 if (!mtd || section < 0)
1297 return -EINVAL;
1298
1299 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1300 return -ENOTSUPP;
1301
1302 return mtd->ooblayout->ecc(mtd, section, oobecc);
1303 }
1304 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1305
1306 /**
1307 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1308 * section
1309 * @mtd: MTD device structure
1310 * @section: Free section you are interested in. Depending on the layout
1311 * you may have all the free bytes stored in a single contiguous
1312 * section, or one section per ECC chunk plus an extra section
1313 * for the remaining bytes (or other funky layout).
1314 * @oobfree: OOB region struct filled with the appropriate free position
1315 * information
1316 *
1317 * This function returns free bytes position in the OOB area. If you want
1318 * to get all the free bytes information, then you should call
1319 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1320 *
1321 * Returns zero on success, a negative error code otherwise.
1322 */
1323 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1324 struct mtd_oob_region *oobfree)
1325 {
1326 memset(oobfree, 0, sizeof(*oobfree));
1327
1328 if (!mtd || section < 0)
1329 return -EINVAL;
1330
1331 if (!mtd->ooblayout || !mtd->ooblayout->free)
1332 return -ENOTSUPP;
1333
1334 return mtd->ooblayout->free(mtd, section, oobfree);
1335 }
1336 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1337
1338 /**
1339 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1340 * @mtd: mtd info structure
1341 * @byte: the byte we are searching for
1342 * @sectionp: pointer where the section id will be stored
1343 * @oobregion: used to retrieve the ECC position
1344 * @iter: iterator function. Should be either mtd_ooblayout_free or
1345 * mtd_ooblayout_ecc depending on the region type you're searching for
1346 *
1347 * This function returns the section id and oobregion information of a
1348 * specific byte. For example, say you want to know where the 4th ECC byte is
1349 * stored, you'll use:
1350 *
1351 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1352 *
1353 * Returns zero on success, a negative error code otherwise.
1354 */
1355 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1356 int *sectionp, struct mtd_oob_region *oobregion,
1357 int (*iter)(struct mtd_info *,
1358 int section,
1359 struct mtd_oob_region *oobregion))
1360 {
1361 int pos = 0, ret, section = 0;
1362
1363 memset(oobregion, 0, sizeof(*oobregion));
1364
1365 while (1) {
1366 ret = iter(mtd, section, oobregion);
1367 if (ret)
1368 return ret;
1369
1370 if (pos + oobregion->length > byte)
1371 break;
1372
1373 pos += oobregion->length;
1374 section++;
1375 }
1376
1377 /*
1378 * Adjust region info to make it start at the beginning at the
1379 * 'start' ECC byte.
1380 */
1381 oobregion->offset += byte - pos;
1382 oobregion->length -= byte - pos;
1383 *sectionp = section;
1384
1385 return 0;
1386 }
1387
1388 /**
1389 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1390 * ECC byte
1391 * @mtd: mtd info structure
1392 * @eccbyte: the byte we are searching for
1393 * @sectionp: pointer where the section id will be stored
1394 * @oobregion: OOB region information
1395 *
1396 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1397 * byte.
1398 *
1399 * Returns zero on success, a negative error code otherwise.
1400 */
1401 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1402 int *section,
1403 struct mtd_oob_region *oobregion)
1404 {
1405 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1406 mtd_ooblayout_ecc);
1407 }
1408 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1409
1410 /**
1411 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1412 * @mtd: mtd info structure
1413 * @buf: destination buffer to store OOB bytes
1414 * @oobbuf: OOB buffer
1415 * @start: first byte to retrieve
1416 * @nbytes: number of bytes to retrieve
1417 * @iter: section iterator
1418 *
1419 * Extract bytes attached to a specific category (ECC or free)
1420 * from the OOB buffer and copy them into buf.
1421 *
1422 * Returns zero on success, a negative error code otherwise.
1423 */
1424 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1425 const u8 *oobbuf, int start, int nbytes,
1426 int (*iter)(struct mtd_info *,
1427 int section,
1428 struct mtd_oob_region *oobregion))
1429 {
1430 struct mtd_oob_region oobregion;
1431 int section, ret;
1432
1433 ret = mtd_ooblayout_find_region(mtd, start, &section,
1434 &oobregion, iter);
1435
1436 while (!ret) {
1437 int cnt;
1438
1439 cnt = min_t(int, nbytes, oobregion.length);
1440 memcpy(buf, oobbuf + oobregion.offset, cnt);
1441 buf += cnt;
1442 nbytes -= cnt;
1443
1444 if (!nbytes)
1445 break;
1446
1447 ret = iter(mtd, ++section, &oobregion);
1448 }
1449
1450 return ret;
1451 }
1452
1453 /**
1454 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1455 * @mtd: mtd info structure
1456 * @buf: source buffer to get OOB bytes from
1457 * @oobbuf: OOB buffer
1458 * @start: first OOB byte to set
1459 * @nbytes: number of OOB bytes to set
1460 * @iter: section iterator
1461 *
1462 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1463 * is selected by passing the appropriate iterator.
1464 *
1465 * Returns zero on success, a negative error code otherwise.
1466 */
1467 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1468 u8 *oobbuf, int start, int nbytes,
1469 int (*iter)(struct mtd_info *,
1470 int section,
1471 struct mtd_oob_region *oobregion))
1472 {
1473 struct mtd_oob_region oobregion;
1474 int section, ret;
1475
1476 ret = mtd_ooblayout_find_region(mtd, start, &section,
1477 &oobregion, iter);
1478
1479 while (!ret) {
1480 int cnt;
1481
1482 cnt = min_t(int, nbytes, oobregion.length);
1483 memcpy(oobbuf + oobregion.offset, buf, cnt);
1484 buf += cnt;
1485 nbytes -= cnt;
1486
1487 if (!nbytes)
1488 break;
1489
1490 ret = iter(mtd, ++section, &oobregion);
1491 }
1492
1493 return ret;
1494 }
1495
1496 /**
1497 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1498 * @mtd: mtd info structure
1499 * @iter: category iterator
1500 *
1501 * Count the number of bytes in a given category.
1502 *
1503 * Returns a positive value on success, a negative error code otherwise.
1504 */
1505 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1506 int (*iter)(struct mtd_info *,
1507 int section,
1508 struct mtd_oob_region *oobregion))
1509 {
1510 struct mtd_oob_region oobregion;
1511 int section = 0, ret, nbytes = 0;
1512
1513 while (1) {
1514 ret = iter(mtd, section++, &oobregion);
1515 if (ret) {
1516 if (ret == -ERANGE)
1517 ret = nbytes;
1518 break;
1519 }
1520
1521 nbytes += oobregion.length;
1522 }
1523
1524 return ret;
1525 }
1526
1527 /**
1528 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1529 * @mtd: mtd info structure
1530 * @eccbuf: destination buffer to store ECC bytes
1531 * @oobbuf: OOB buffer
1532 * @start: first ECC byte to retrieve
1533 * @nbytes: number of ECC bytes to retrieve
1534 *
1535 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1536 *
1537 * Returns zero on success, a negative error code otherwise.
1538 */
1539 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1540 const u8 *oobbuf, int start, int nbytes)
1541 {
1542 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1543 mtd_ooblayout_ecc);
1544 }
1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1546
1547 /**
1548 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1549 * @mtd: mtd info structure
1550 * @eccbuf: source buffer to get ECC bytes from
1551 * @oobbuf: OOB buffer
1552 * @start: first ECC byte to set
1553 * @nbytes: number of ECC bytes to set
1554 *
1555 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1556 *
1557 * Returns zero on success, a negative error code otherwise.
1558 */
1559 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1560 u8 *oobbuf, int start, int nbytes)
1561 {
1562 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1563 mtd_ooblayout_ecc);
1564 }
1565 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1566
1567 /**
1568 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1569 * @mtd: mtd info structure
1570 * @databuf: destination buffer to store ECC bytes
1571 * @oobbuf: OOB buffer
1572 * @start: first ECC byte to retrieve
1573 * @nbytes: number of ECC bytes to retrieve
1574 *
1575 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1576 *
1577 * Returns zero on success, a negative error code otherwise.
1578 */
1579 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1580 const u8 *oobbuf, int start, int nbytes)
1581 {
1582 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1583 mtd_ooblayout_free);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1586
1587 /**
1588 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1589 * @mtd: mtd info structure
1590 * @databuf: source buffer to get data bytes from
1591 * @oobbuf: OOB buffer
1592 * @start: first ECC byte to set
1593 * @nbytes: number of ECC bytes to set
1594 *
1595 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1596 *
1597 * Returns zero on success, a negative error code otherwise.
1598 */
1599 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1600 u8 *oobbuf, int start, int nbytes)
1601 {
1602 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1603 mtd_ooblayout_free);
1604 }
1605 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1606
1607 /**
1608 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1609 * @mtd: mtd info structure
1610 *
1611 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1612 *
1613 * Returns zero on success, a negative error code otherwise.
1614 */
1615 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1616 {
1617 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1618 }
1619 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1620
1621 /**
1622 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1623 * @mtd: mtd info structure
1624 *
1625 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1626 *
1627 * Returns zero on success, a negative error code otherwise.
1628 */
1629 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1630 {
1631 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1632 }
1633 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1634
1635 /*
1636 * Method to access the protection register area, present in some flash
1637 * devices. The user data is one time programmable but the factory data is read
1638 * only.
1639 */
1640 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1641 struct otp_info *buf)
1642 {
1643 if (!mtd->_get_fact_prot_info)
1644 return -EOPNOTSUPP;
1645 if (!len)
1646 return 0;
1647 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1648 }
1649 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1650
1651 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1652 size_t *retlen, u_char *buf)
1653 {
1654 *retlen = 0;
1655 if (!mtd->_read_fact_prot_reg)
1656 return -EOPNOTSUPP;
1657 if (!len)
1658 return 0;
1659 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1660 }
1661 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1662
1663 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1664 struct otp_info *buf)
1665 {
1666 if (!mtd->_get_user_prot_info)
1667 return -EOPNOTSUPP;
1668 if (!len)
1669 return 0;
1670 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1671 }
1672 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1673
1674 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1675 size_t *retlen, u_char *buf)
1676 {
1677 *retlen = 0;
1678 if (!mtd->_read_user_prot_reg)
1679 return -EOPNOTSUPP;
1680 if (!len)
1681 return 0;
1682 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1683 }
1684 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1685
1686 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1687 size_t *retlen, u_char *buf)
1688 {
1689 int ret;
1690
1691 *retlen = 0;
1692 if (!mtd->_write_user_prot_reg)
1693 return -EOPNOTSUPP;
1694 if (!len)
1695 return 0;
1696 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1697 if (ret)
1698 return ret;
1699
1700 /*
1701 * If no data could be written at all, we are out of memory and
1702 * must return -ENOSPC.
1703 */
1704 return (*retlen) ? 0 : -ENOSPC;
1705 }
1706 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1707
1708 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1709 {
1710 if (!mtd->_lock_user_prot_reg)
1711 return -EOPNOTSUPP;
1712 if (!len)
1713 return 0;
1714 return mtd->_lock_user_prot_reg(mtd, from, len);
1715 }
1716 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1717
1718 /* Chip-supported device locking */
1719 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1720 {
1721 if (!mtd->_lock)
1722 return -EOPNOTSUPP;
1723 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1724 return -EINVAL;
1725 if (!len)
1726 return 0;
1727 return mtd->_lock(mtd, ofs, len);
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_lock);
1730
1731 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1732 {
1733 if (!mtd->_unlock)
1734 return -EOPNOTSUPP;
1735 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1736 return -EINVAL;
1737 if (!len)
1738 return 0;
1739 return mtd->_unlock(mtd, ofs, len);
1740 }
1741 EXPORT_SYMBOL_GPL(mtd_unlock);
1742
1743 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1744 {
1745 if (!mtd->_is_locked)
1746 return -EOPNOTSUPP;
1747 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1748 return -EINVAL;
1749 if (!len)
1750 return 0;
1751 return mtd->_is_locked(mtd, ofs, len);
1752 }
1753 EXPORT_SYMBOL_GPL(mtd_is_locked);
1754
1755 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1756 {
1757 if (ofs < 0 || ofs >= mtd->size)
1758 return -EINVAL;
1759 if (!mtd->_block_isreserved)
1760 return 0;
1761 return mtd->_block_isreserved(mtd, ofs);
1762 }
1763 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1764
1765 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1766 {
1767 if (ofs < 0 || ofs >= mtd->size)
1768 return -EINVAL;
1769 if (!mtd->_block_isbad)
1770 return 0;
1771 return mtd->_block_isbad(mtd, ofs);
1772 }
1773 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1774
1775 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1776 {
1777 if (!mtd->_block_markbad)
1778 return -EOPNOTSUPP;
1779 if (ofs < 0 || ofs >= mtd->size)
1780 return -EINVAL;
1781 if (!(mtd->flags & MTD_WRITEABLE))
1782 return -EROFS;
1783 return mtd->_block_markbad(mtd, ofs);
1784 }
1785 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1786
1787 /*
1788 * default_mtd_writev - the default writev method
1789 * @mtd: mtd device description object pointer
1790 * @vecs: the vectors to write
1791 * @count: count of vectors in @vecs
1792 * @to: the MTD device offset to write to
1793 * @retlen: on exit contains the count of bytes written to the MTD device.
1794 *
1795 * This function returns zero in case of success and a negative error code in
1796 * case of failure.
1797 */
1798 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1799 unsigned long count, loff_t to, size_t *retlen)
1800 {
1801 unsigned long i;
1802 size_t totlen = 0, thislen;
1803 int ret = 0;
1804
1805 for (i = 0; i < count; i++) {
1806 if (!vecs[i].iov_len)
1807 continue;
1808 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1809 vecs[i].iov_base);
1810 totlen += thislen;
1811 if (ret || thislen != vecs[i].iov_len)
1812 break;
1813 to += vecs[i].iov_len;
1814 }
1815 *retlen = totlen;
1816 return ret;
1817 }
1818
1819 /*
1820 * mtd_writev - the vector-based MTD write method
1821 * @mtd: mtd device description object pointer
1822 * @vecs: the vectors to write
1823 * @count: count of vectors in @vecs
1824 * @to: the MTD device offset to write to
1825 * @retlen: on exit contains the count of bytes written to the MTD device.
1826 *
1827 * This function returns zero in case of success and a negative error code in
1828 * case of failure.
1829 */
1830 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1831 unsigned long count, loff_t to, size_t *retlen)
1832 {
1833 *retlen = 0;
1834 if (!(mtd->flags & MTD_WRITEABLE))
1835 return -EROFS;
1836 if (!mtd->_writev)
1837 return default_mtd_writev(mtd, vecs, count, to, retlen);
1838 return mtd->_writev(mtd, vecs, count, to, retlen);
1839 }
1840 EXPORT_SYMBOL_GPL(mtd_writev);
1841
1842 /**
1843 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1844 * @mtd: mtd device description object pointer
1845 * @size: a pointer to the ideal or maximum size of the allocation, points
1846 * to the actual allocation size on success.
1847 *
1848 * This routine attempts to allocate a contiguous kernel buffer up to
1849 * the specified size, backing off the size of the request exponentially
1850 * until the request succeeds or until the allocation size falls below
1851 * the system page size. This attempts to make sure it does not adversely
1852 * impact system performance, so when allocating more than one page, we
1853 * ask the memory allocator to avoid re-trying, swapping, writing back
1854 * or performing I/O.
1855 *
1856 * Note, this function also makes sure that the allocated buffer is aligned to
1857 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1858 *
1859 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1860 * to handle smaller (i.e. degraded) buffer allocations under low- or
1861 * fragmented-memory situations where such reduced allocations, from a
1862 * requested ideal, are allowed.
1863 *
1864 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1865 */
1866 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1867 {
1868 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1869 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1870 void *kbuf;
1871
1872 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1873
1874 while (*size > min_alloc) {
1875 kbuf = kmalloc(*size, flags);
1876 if (kbuf)
1877 return kbuf;
1878
1879 *size >>= 1;
1880 *size = ALIGN(*size, mtd->writesize);
1881 }
1882
1883 /*
1884 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1885 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1886 */
1887 return kmalloc(*size, GFP_KERNEL);
1888 }
1889 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1890
1891 #ifdef CONFIG_PROC_FS
1892
1893 /*====================================================================*/
1894 /* Support for /proc/mtd */
1895
1896 static int mtd_proc_show(struct seq_file *m, void *v)
1897 {
1898 struct mtd_info *mtd;
1899
1900 seq_puts(m, "dev: size erasesize name\n");
1901 mutex_lock(&mtd_table_mutex);
1902 mtd_for_each_device(mtd) {
1903 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1904 mtd->index, (unsigned long long)mtd->size,
1905 mtd->erasesize, mtd->name);
1906 }
1907 mutex_unlock(&mtd_table_mutex);
1908 return 0;
1909 }
1910 #endif /* CONFIG_PROC_FS */
1911
1912 /*====================================================================*/
1913 /* Init code */
1914
1915 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1916 {
1917 struct backing_dev_info *bdi;
1918 int ret;
1919
1920 bdi = bdi_alloc(GFP_KERNEL);
1921 if (!bdi)
1922 return ERR_PTR(-ENOMEM);
1923
1924 bdi->name = name;
1925 /*
1926 * We put '-0' suffix to the name to get the same name format as we
1927 * used to get. Since this is called only once, we get a unique name.
1928 */
1929 ret = bdi_register(bdi, "%.28s-0", name);
1930 if (ret)
1931 bdi_put(bdi);
1932
1933 return ret ? ERR_PTR(ret) : bdi;
1934 }
1935
1936 static struct proc_dir_entry *proc_mtd;
1937
1938 static int __init init_mtd(void)
1939 {
1940 int ret;
1941
1942 ret = class_register(&mtd_class);
1943 if (ret)
1944 goto err_reg;
1945
1946 mtd_bdi = mtd_bdi_init("mtd");
1947 if (IS_ERR(mtd_bdi)) {
1948 ret = PTR_ERR(mtd_bdi);
1949 goto err_bdi;
1950 }
1951
1952 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1953
1954 ret = init_mtdchar();
1955 if (ret)
1956 goto out_procfs;
1957
1958 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1959
1960 return 0;
1961
1962 out_procfs:
1963 if (proc_mtd)
1964 remove_proc_entry("mtd", NULL);
1965 bdi_put(mtd_bdi);
1966 err_bdi:
1967 class_unregister(&mtd_class);
1968 err_reg:
1969 pr_err("Error registering mtd class or bdi: %d\n", ret);
1970 return ret;
1971 }
1972
1973 static void __exit cleanup_mtd(void)
1974 {
1975 debugfs_remove_recursive(dfs_dir_mtd);
1976 cleanup_mtdchar();
1977 if (proc_mtd)
1978 remove_proc_entry("mtd", NULL);
1979 class_unregister(&mtd_class);
1980 bdi_put(mtd_bdi);
1981 idr_destroy(&mtd_idr);
1982 }
1983
1984 module_init(init_mtd);
1985 module_exit(cleanup_mtd);
1986
1987 MODULE_LICENSE("GPL");
1988 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1989 MODULE_DESCRIPTION("Core MTD registration and access routines");