]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdcore.c
rhashtable: remove insecure_elasticity
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46
47 #include "mtdcore.h"
48
49 static struct backing_dev_info *mtd_bdi;
50
51 #ifdef CONFIG_PM_SLEEP
52
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58 }
59
60 static int mtd_cls_resume(struct device *dev)
61 {
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67 }
68
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74
75 static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
78 .pm = MTD_CLS_PM_OPS,
79 };
80
81 static DEFINE_IDR(mtd_idr);
82
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84 should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93
94 static LIST_HEAD(mtd_notifiers);
95
96
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102 static void mtd_release(struct device *dev)
103 {
104 struct mtd_info *mtd = dev_get_drvdata(dev);
105 dev_t index = MTD_DEVT(mtd->index);
106
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
109 }
110
111 static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct mtd_info *mtd = dev_get_drvdata(dev);
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150 static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152 {
153 struct mtd_info *mtd = dev_get_drvdata(dev);
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160 static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162 {
163 struct mtd_info *mtd = dev_get_drvdata(dev);
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181 static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214 {
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223 static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254 {
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
321 static struct attribute *mtd_attrs[] = {
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
327 &dev_attr_subpagesize.attr,
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
331 &dev_attr_ecc_strength.attr,
332 &dev_attr_ecc_step_size.attr,
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
337 &dev_attr_bitflip_threshold.attr,
338 NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341
342 static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346 };
347
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367 {
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374 }
375
376 /**
377 * mtd_wunit_to_pairing_info - get pairing information of a wunit
378 * @mtd: pointer to new MTD device info structure
379 * @wunit: write unit we are interested in
380 * @info: returned pairing information
381 *
382 * Retrieve pairing information associated to the wunit.
383 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
384 * paired together, and where programming a page may influence the page it is
385 * paired with.
386 * The notion of page is replaced by the term wunit (write-unit) to stay
387 * consistent with the ->writesize field.
388 *
389 * The @wunit argument can be extracted from an absolute offset using
390 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
391 * to @wunit.
392 *
393 * From the pairing info the MTD user can find all the wunits paired with
394 * @wunit using the following loop:
395 *
396 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
397 * info.pair = i;
398 * mtd_pairing_info_to_wunit(mtd, &info);
399 * ...
400 * }
401 */
402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
403 struct mtd_pairing_info *info)
404 {
405 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
406
407 if (wunit < 0 || wunit >= npairs)
408 return -EINVAL;
409
410 if (mtd->pairing && mtd->pairing->get_info)
411 return mtd->pairing->get_info(mtd, wunit, info);
412
413 info->group = 0;
414 info->pair = wunit;
415
416 return 0;
417 }
418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
419
420 /**
421 * mtd_wunit_to_pairing_info - get wunit from pairing information
422 * @mtd: pointer to new MTD device info structure
423 * @info: pairing information struct
424 *
425 * Returns a positive number representing the wunit associated to the info
426 * struct, or a negative error code.
427 *
428 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
429 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
430 * doc).
431 *
432 * It can also be used to only program the first page of each pair (i.e.
433 * page attached to group 0), which allows one to use an MLC NAND in
434 * software-emulated SLC mode:
435 *
436 * info.group = 0;
437 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
438 * for (info.pair = 0; info.pair < npairs; info.pair++) {
439 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
440 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
441 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
442 * }
443 */
444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
445 const struct mtd_pairing_info *info)
446 {
447 int ngroups = mtd_pairing_groups(mtd);
448 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
449
450 if (!info || info->pair < 0 || info->pair >= npairs ||
451 info->group < 0 || info->group >= ngroups)
452 return -EINVAL;
453
454 if (mtd->pairing && mtd->pairing->get_wunit)
455 return mtd->pairing->get_wunit(mtd, info);
456
457 return info->pair;
458 }
459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
460
461 /**
462 * mtd_pairing_groups - get the number of pairing groups
463 * @mtd: pointer to new MTD device info structure
464 *
465 * Returns the number of pairing groups.
466 *
467 * This number is usually equal to the number of bits exposed by a single
468 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
469 * to iterate over all pages of a given pair.
470 */
471 int mtd_pairing_groups(struct mtd_info *mtd)
472 {
473 if (!mtd->pairing || !mtd->pairing->ngroups)
474 return 1;
475
476 return mtd->pairing->ngroups;
477 }
478 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
479
480 /**
481 * add_mtd_device - register an MTD device
482 * @mtd: pointer to new MTD device info structure
483 *
484 * Add a device to the list of MTD devices present in the system, and
485 * notify each currently active MTD 'user' of its arrival. Returns
486 * zero on success or non-zero on failure.
487 */
488
489 int add_mtd_device(struct mtd_info *mtd)
490 {
491 struct mtd_notifier *not;
492 int i, error;
493
494 /*
495 * May occur, for instance, on buggy drivers which call
496 * mtd_device_parse_register() multiple times on the same master MTD,
497 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
498 */
499 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
500 return -EEXIST;
501
502 mtd->backing_dev_info = mtd_bdi;
503
504 BUG_ON(mtd->writesize == 0);
505 mutex_lock(&mtd_table_mutex);
506
507 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
508 if (i < 0) {
509 error = i;
510 goto fail_locked;
511 }
512
513 mtd->index = i;
514 mtd->usecount = 0;
515
516 /* default value if not set by driver */
517 if (mtd->bitflip_threshold == 0)
518 mtd->bitflip_threshold = mtd->ecc_strength;
519
520 if (is_power_of_2(mtd->erasesize))
521 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
522 else
523 mtd->erasesize_shift = 0;
524
525 if (is_power_of_2(mtd->writesize))
526 mtd->writesize_shift = ffs(mtd->writesize) - 1;
527 else
528 mtd->writesize_shift = 0;
529
530 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
531 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
532
533 /* Some chips always power up locked. Unlock them now */
534 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
535 error = mtd_unlock(mtd, 0, mtd->size);
536 if (error && error != -EOPNOTSUPP)
537 printk(KERN_WARNING
538 "%s: unlock failed, writes may not work\n",
539 mtd->name);
540 /* Ignore unlock failures? */
541 error = 0;
542 }
543
544 /* Caller should have set dev.parent to match the
545 * physical device, if appropriate.
546 */
547 mtd->dev.type = &mtd_devtype;
548 mtd->dev.class = &mtd_class;
549 mtd->dev.devt = MTD_DEVT(i);
550 dev_set_name(&mtd->dev, "mtd%d", i);
551 dev_set_drvdata(&mtd->dev, mtd);
552 of_node_get(mtd_get_of_node(mtd));
553 error = device_register(&mtd->dev);
554 if (error)
555 goto fail_added;
556
557 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
558 "mtd%dro", i);
559
560 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
561 /* No need to get a refcount on the module containing
562 the notifier, since we hold the mtd_table_mutex */
563 list_for_each_entry(not, &mtd_notifiers, list)
564 not->add(mtd);
565
566 mutex_unlock(&mtd_table_mutex);
567 /* We _know_ we aren't being removed, because
568 our caller is still holding us here. So none
569 of this try_ nonsense, and no bitching about it
570 either. :) */
571 __module_get(THIS_MODULE);
572 return 0;
573
574 fail_added:
575 of_node_put(mtd_get_of_node(mtd));
576 idr_remove(&mtd_idr, i);
577 fail_locked:
578 mutex_unlock(&mtd_table_mutex);
579 return error;
580 }
581
582 /**
583 * del_mtd_device - unregister an MTD device
584 * @mtd: pointer to MTD device info structure
585 *
586 * Remove a device from the list of MTD devices present in the system,
587 * and notify each currently active MTD 'user' of its departure.
588 * Returns zero on success or 1 on failure, which currently will happen
589 * if the requested device does not appear to be present in the list.
590 */
591
592 int del_mtd_device(struct mtd_info *mtd)
593 {
594 int ret;
595 struct mtd_notifier *not;
596
597 mutex_lock(&mtd_table_mutex);
598
599 if (idr_find(&mtd_idr, mtd->index) != mtd) {
600 ret = -ENODEV;
601 goto out_error;
602 }
603
604 /* No need to get a refcount on the module containing
605 the notifier, since we hold the mtd_table_mutex */
606 list_for_each_entry(not, &mtd_notifiers, list)
607 not->remove(mtd);
608
609 if (mtd->usecount) {
610 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
611 mtd->index, mtd->name, mtd->usecount);
612 ret = -EBUSY;
613 } else {
614 device_unregister(&mtd->dev);
615
616 idr_remove(&mtd_idr, mtd->index);
617 of_node_put(mtd_get_of_node(mtd));
618
619 module_put(THIS_MODULE);
620 ret = 0;
621 }
622
623 out_error:
624 mutex_unlock(&mtd_table_mutex);
625 return ret;
626 }
627
628 static int mtd_add_device_partitions(struct mtd_info *mtd,
629 struct mtd_partitions *parts)
630 {
631 const struct mtd_partition *real_parts = parts->parts;
632 int nbparts = parts->nr_parts;
633 int ret;
634
635 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
636 ret = add_mtd_device(mtd);
637 if (ret)
638 return ret;
639 }
640
641 if (nbparts > 0) {
642 ret = add_mtd_partitions(mtd, real_parts, nbparts);
643 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
644 del_mtd_device(mtd);
645 return ret;
646 }
647
648 return 0;
649 }
650
651 /*
652 * Set a few defaults based on the parent devices, if not provided by the
653 * driver
654 */
655 static void mtd_set_dev_defaults(struct mtd_info *mtd)
656 {
657 if (mtd->dev.parent) {
658 if (!mtd->owner && mtd->dev.parent->driver)
659 mtd->owner = mtd->dev.parent->driver->owner;
660 if (!mtd->name)
661 mtd->name = dev_name(mtd->dev.parent);
662 } else {
663 pr_debug("mtd device won't show a device symlink in sysfs\n");
664 }
665 }
666
667 /**
668 * mtd_device_parse_register - parse partitions and register an MTD device.
669 *
670 * @mtd: the MTD device to register
671 * @types: the list of MTD partition probes to try, see
672 * 'parse_mtd_partitions()' for more information
673 * @parser_data: MTD partition parser-specific data
674 * @parts: fallback partition information to register, if parsing fails;
675 * only valid if %nr_parts > %0
676 * @nr_parts: the number of partitions in parts, if zero then the full
677 * MTD device is registered if no partition info is found
678 *
679 * This function aggregates MTD partitions parsing (done by
680 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
681 * basically follows the most common pattern found in many MTD drivers:
682 *
683 * * It first tries to probe partitions on MTD device @mtd using parsers
684 * specified in @types (if @types is %NULL, then the default list of parsers
685 * is used, see 'parse_mtd_partitions()' for more information). If none are
686 * found this functions tries to fallback to information specified in
687 * @parts/@nr_parts.
688 * * If any partitioning info was found, this function registers the found
689 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
690 * as a whole is registered first.
691 * * If no partitions were found this function just registers the MTD device
692 * @mtd and exits.
693 *
694 * Returns zero in case of success and a negative error code in case of failure.
695 */
696 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
697 struct mtd_part_parser_data *parser_data,
698 const struct mtd_partition *parts,
699 int nr_parts)
700 {
701 struct mtd_partitions parsed;
702 int ret;
703
704 mtd_set_dev_defaults(mtd);
705
706 memset(&parsed, 0, sizeof(parsed));
707
708 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
709 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
710 /* Fall back to driver-provided partitions */
711 parsed = (struct mtd_partitions){
712 .parts = parts,
713 .nr_parts = nr_parts,
714 };
715 } else if (ret < 0) {
716 /* Didn't come up with parsed OR fallback partitions */
717 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
718 ret);
719 /* Don't abort on errors; we can still use unpartitioned MTD */
720 memset(&parsed, 0, sizeof(parsed));
721 }
722
723 ret = mtd_add_device_partitions(mtd, &parsed);
724 if (ret)
725 goto out;
726
727 /*
728 * FIXME: some drivers unfortunately call this function more than once.
729 * So we have to check if we've already assigned the reboot notifier.
730 *
731 * Generally, we can make multiple calls work for most cases, but it
732 * does cause problems with parse_mtd_partitions() above (e.g.,
733 * cmdlineparts will register partitions more than once).
734 */
735 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
736 "MTD already registered\n");
737 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
738 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
739 register_reboot_notifier(&mtd->reboot_notifier);
740 }
741
742 out:
743 /* Cleanup any parsed partitions */
744 mtd_part_parser_cleanup(&parsed);
745 return ret;
746 }
747 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
748
749 /**
750 * mtd_device_unregister - unregister an existing MTD device.
751 *
752 * @master: the MTD device to unregister. This will unregister both the master
753 * and any partitions if registered.
754 */
755 int mtd_device_unregister(struct mtd_info *master)
756 {
757 int err;
758
759 if (master->_reboot)
760 unregister_reboot_notifier(&master->reboot_notifier);
761
762 err = del_mtd_partitions(master);
763 if (err)
764 return err;
765
766 if (!device_is_registered(&master->dev))
767 return 0;
768
769 return del_mtd_device(master);
770 }
771 EXPORT_SYMBOL_GPL(mtd_device_unregister);
772
773 /**
774 * register_mtd_user - register a 'user' of MTD devices.
775 * @new: pointer to notifier info structure
776 *
777 * Registers a pair of callbacks function to be called upon addition
778 * or removal of MTD devices. Causes the 'add' callback to be immediately
779 * invoked for each MTD device currently present in the system.
780 */
781 void register_mtd_user (struct mtd_notifier *new)
782 {
783 struct mtd_info *mtd;
784
785 mutex_lock(&mtd_table_mutex);
786
787 list_add(&new->list, &mtd_notifiers);
788
789 __module_get(THIS_MODULE);
790
791 mtd_for_each_device(mtd)
792 new->add(mtd);
793
794 mutex_unlock(&mtd_table_mutex);
795 }
796 EXPORT_SYMBOL_GPL(register_mtd_user);
797
798 /**
799 * unregister_mtd_user - unregister a 'user' of MTD devices.
800 * @old: pointer to notifier info structure
801 *
802 * Removes a callback function pair from the list of 'users' to be
803 * notified upon addition or removal of MTD devices. Causes the
804 * 'remove' callback to be immediately invoked for each MTD device
805 * currently present in the system.
806 */
807 int unregister_mtd_user (struct mtd_notifier *old)
808 {
809 struct mtd_info *mtd;
810
811 mutex_lock(&mtd_table_mutex);
812
813 module_put(THIS_MODULE);
814
815 mtd_for_each_device(mtd)
816 old->remove(mtd);
817
818 list_del(&old->list);
819 mutex_unlock(&mtd_table_mutex);
820 return 0;
821 }
822 EXPORT_SYMBOL_GPL(unregister_mtd_user);
823
824 /**
825 * get_mtd_device - obtain a validated handle for an MTD device
826 * @mtd: last known address of the required MTD device
827 * @num: internal device number of the required MTD device
828 *
829 * Given a number and NULL address, return the num'th entry in the device
830 * table, if any. Given an address and num == -1, search the device table
831 * for a device with that address and return if it's still present. Given
832 * both, return the num'th driver only if its address matches. Return
833 * error code if not.
834 */
835 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
836 {
837 struct mtd_info *ret = NULL, *other;
838 int err = -ENODEV;
839
840 mutex_lock(&mtd_table_mutex);
841
842 if (num == -1) {
843 mtd_for_each_device(other) {
844 if (other == mtd) {
845 ret = mtd;
846 break;
847 }
848 }
849 } else if (num >= 0) {
850 ret = idr_find(&mtd_idr, num);
851 if (mtd && mtd != ret)
852 ret = NULL;
853 }
854
855 if (!ret) {
856 ret = ERR_PTR(err);
857 goto out;
858 }
859
860 err = __get_mtd_device(ret);
861 if (err)
862 ret = ERR_PTR(err);
863 out:
864 mutex_unlock(&mtd_table_mutex);
865 return ret;
866 }
867 EXPORT_SYMBOL_GPL(get_mtd_device);
868
869
870 int __get_mtd_device(struct mtd_info *mtd)
871 {
872 int err;
873
874 if (!try_module_get(mtd->owner))
875 return -ENODEV;
876
877 if (mtd->_get_device) {
878 err = mtd->_get_device(mtd);
879
880 if (err) {
881 module_put(mtd->owner);
882 return err;
883 }
884 }
885 mtd->usecount++;
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(__get_mtd_device);
889
890 /**
891 * get_mtd_device_nm - obtain a validated handle for an MTD device by
892 * device name
893 * @name: MTD device name to open
894 *
895 * This function returns MTD device description structure in case of
896 * success and an error code in case of failure.
897 */
898 struct mtd_info *get_mtd_device_nm(const char *name)
899 {
900 int err = -ENODEV;
901 struct mtd_info *mtd = NULL, *other;
902
903 mutex_lock(&mtd_table_mutex);
904
905 mtd_for_each_device(other) {
906 if (!strcmp(name, other->name)) {
907 mtd = other;
908 break;
909 }
910 }
911
912 if (!mtd)
913 goto out_unlock;
914
915 err = __get_mtd_device(mtd);
916 if (err)
917 goto out_unlock;
918
919 mutex_unlock(&mtd_table_mutex);
920 return mtd;
921
922 out_unlock:
923 mutex_unlock(&mtd_table_mutex);
924 return ERR_PTR(err);
925 }
926 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
927
928 void put_mtd_device(struct mtd_info *mtd)
929 {
930 mutex_lock(&mtd_table_mutex);
931 __put_mtd_device(mtd);
932 mutex_unlock(&mtd_table_mutex);
933
934 }
935 EXPORT_SYMBOL_GPL(put_mtd_device);
936
937 void __put_mtd_device(struct mtd_info *mtd)
938 {
939 --mtd->usecount;
940 BUG_ON(mtd->usecount < 0);
941
942 if (mtd->_put_device)
943 mtd->_put_device(mtd);
944
945 module_put(mtd->owner);
946 }
947 EXPORT_SYMBOL_GPL(__put_mtd_device);
948
949 /*
950 * Erase is an asynchronous operation. Device drivers are supposed
951 * to call instr->callback() whenever the operation completes, even
952 * if it completes with a failure.
953 * Callers are supposed to pass a callback function and wait for it
954 * to be called before writing to the block.
955 */
956 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
957 {
958 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
959 return -EINVAL;
960 if (!(mtd->flags & MTD_WRITEABLE))
961 return -EROFS;
962 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
963 if (!instr->len) {
964 instr->state = MTD_ERASE_DONE;
965 mtd_erase_callback(instr);
966 return 0;
967 }
968 ledtrig_mtd_activity();
969 return mtd->_erase(mtd, instr);
970 }
971 EXPORT_SYMBOL_GPL(mtd_erase);
972
973 /*
974 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
975 */
976 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
977 void **virt, resource_size_t *phys)
978 {
979 *retlen = 0;
980 *virt = NULL;
981 if (phys)
982 *phys = 0;
983 if (!mtd->_point)
984 return -EOPNOTSUPP;
985 if (from < 0 || from >= mtd->size || len > mtd->size - from)
986 return -EINVAL;
987 if (!len)
988 return 0;
989 return mtd->_point(mtd, from, len, retlen, virt, phys);
990 }
991 EXPORT_SYMBOL_GPL(mtd_point);
992
993 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
994 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
995 {
996 if (!mtd->_point)
997 return -EOPNOTSUPP;
998 if (from < 0 || from >= mtd->size || len > mtd->size - from)
999 return -EINVAL;
1000 if (!len)
1001 return 0;
1002 return mtd->_unpoint(mtd, from, len);
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_unpoint);
1005
1006 /*
1007 * Allow NOMMU mmap() to directly map the device (if not NULL)
1008 * - return the address to which the offset maps
1009 * - return -ENOSYS to indicate refusal to do the mapping
1010 */
1011 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1012 unsigned long offset, unsigned long flags)
1013 {
1014 if (!mtd->_get_unmapped_area)
1015 return -EOPNOTSUPP;
1016 if (offset >= mtd->size || len > mtd->size - offset)
1017 return -EINVAL;
1018 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1021
1022 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1023 u_char *buf)
1024 {
1025 int ret_code;
1026 *retlen = 0;
1027 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1028 return -EINVAL;
1029 if (!len)
1030 return 0;
1031
1032 ledtrig_mtd_activity();
1033 /*
1034 * In the absence of an error, drivers return a non-negative integer
1035 * representing the maximum number of bitflips that were corrected on
1036 * any one ecc region (if applicable; zero otherwise).
1037 */
1038 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1039 if (unlikely(ret_code < 0))
1040 return ret_code;
1041 if (mtd->ecc_strength == 0)
1042 return 0; /* device lacks ecc */
1043 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1044 }
1045 EXPORT_SYMBOL_GPL(mtd_read);
1046
1047 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1048 const u_char *buf)
1049 {
1050 *retlen = 0;
1051 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1052 return -EINVAL;
1053 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1054 return -EROFS;
1055 if (!len)
1056 return 0;
1057 ledtrig_mtd_activity();
1058 return mtd->_write(mtd, to, len, retlen, buf);
1059 }
1060 EXPORT_SYMBOL_GPL(mtd_write);
1061
1062 /*
1063 * In blackbox flight recorder like scenarios we want to make successful writes
1064 * in interrupt context. panic_write() is only intended to be called when its
1065 * known the kernel is about to panic and we need the write to succeed. Since
1066 * the kernel is not going to be running for much longer, this function can
1067 * break locks and delay to ensure the write succeeds (but not sleep).
1068 */
1069 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1070 const u_char *buf)
1071 {
1072 *retlen = 0;
1073 if (!mtd->_panic_write)
1074 return -EOPNOTSUPP;
1075 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1076 return -EINVAL;
1077 if (!(mtd->flags & MTD_WRITEABLE))
1078 return -EROFS;
1079 if (!len)
1080 return 0;
1081 return mtd->_panic_write(mtd, to, len, retlen, buf);
1082 }
1083 EXPORT_SYMBOL_GPL(mtd_panic_write);
1084
1085 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1086 {
1087 int ret_code;
1088 ops->retlen = ops->oobretlen = 0;
1089 if (!mtd->_read_oob)
1090 return -EOPNOTSUPP;
1091
1092 ledtrig_mtd_activity();
1093 /*
1094 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1095 * similar to mtd->_read(), returning a non-negative integer
1096 * representing max bitflips. In other cases, mtd->_read_oob() may
1097 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1098 */
1099 ret_code = mtd->_read_oob(mtd, from, ops);
1100 if (unlikely(ret_code < 0))
1101 return ret_code;
1102 if (mtd->ecc_strength == 0)
1103 return 0; /* device lacks ecc */
1104 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_read_oob);
1107
1108 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1109 struct mtd_oob_ops *ops)
1110 {
1111 ops->retlen = ops->oobretlen = 0;
1112 if (!mtd->_write_oob)
1113 return -EOPNOTSUPP;
1114 if (!(mtd->flags & MTD_WRITEABLE))
1115 return -EROFS;
1116 ledtrig_mtd_activity();
1117 return mtd->_write_oob(mtd, to, ops);
1118 }
1119 EXPORT_SYMBOL_GPL(mtd_write_oob);
1120
1121 /**
1122 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1123 * @mtd: MTD device structure
1124 * @section: ECC section. Depending on the layout you may have all the ECC
1125 * bytes stored in a single contiguous section, or one section
1126 * per ECC chunk (and sometime several sections for a single ECC
1127 * ECC chunk)
1128 * @oobecc: OOB region struct filled with the appropriate ECC position
1129 * information
1130 *
1131 * This function returns ECC section information in the OOB area. If you want
1132 * to get all the ECC bytes information, then you should call
1133 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1134 *
1135 * Returns zero on success, a negative error code otherwise.
1136 */
1137 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1138 struct mtd_oob_region *oobecc)
1139 {
1140 memset(oobecc, 0, sizeof(*oobecc));
1141
1142 if (!mtd || section < 0)
1143 return -EINVAL;
1144
1145 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1146 return -ENOTSUPP;
1147
1148 return mtd->ooblayout->ecc(mtd, section, oobecc);
1149 }
1150 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1151
1152 /**
1153 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1154 * section
1155 * @mtd: MTD device structure
1156 * @section: Free section you are interested in. Depending on the layout
1157 * you may have all the free bytes stored in a single contiguous
1158 * section, or one section per ECC chunk plus an extra section
1159 * for the remaining bytes (or other funky layout).
1160 * @oobfree: OOB region struct filled with the appropriate free position
1161 * information
1162 *
1163 * This function returns free bytes position in the OOB area. If you want
1164 * to get all the free bytes information, then you should call
1165 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1166 *
1167 * Returns zero on success, a negative error code otherwise.
1168 */
1169 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1170 struct mtd_oob_region *oobfree)
1171 {
1172 memset(oobfree, 0, sizeof(*oobfree));
1173
1174 if (!mtd || section < 0)
1175 return -EINVAL;
1176
1177 if (!mtd->ooblayout || !mtd->ooblayout->free)
1178 return -ENOTSUPP;
1179
1180 return mtd->ooblayout->free(mtd, section, oobfree);
1181 }
1182 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1183
1184 /**
1185 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1186 * @mtd: mtd info structure
1187 * @byte: the byte we are searching for
1188 * @sectionp: pointer where the section id will be stored
1189 * @oobregion: used to retrieve the ECC position
1190 * @iter: iterator function. Should be either mtd_ooblayout_free or
1191 * mtd_ooblayout_ecc depending on the region type you're searching for
1192 *
1193 * This function returns the section id and oobregion information of a
1194 * specific byte. For example, say you want to know where the 4th ECC byte is
1195 * stored, you'll use:
1196 *
1197 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1198 *
1199 * Returns zero on success, a negative error code otherwise.
1200 */
1201 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1202 int *sectionp, struct mtd_oob_region *oobregion,
1203 int (*iter)(struct mtd_info *,
1204 int section,
1205 struct mtd_oob_region *oobregion))
1206 {
1207 int pos = 0, ret, section = 0;
1208
1209 memset(oobregion, 0, sizeof(*oobregion));
1210
1211 while (1) {
1212 ret = iter(mtd, section, oobregion);
1213 if (ret)
1214 return ret;
1215
1216 if (pos + oobregion->length > byte)
1217 break;
1218
1219 pos += oobregion->length;
1220 section++;
1221 }
1222
1223 /*
1224 * Adjust region info to make it start at the beginning at the
1225 * 'start' ECC byte.
1226 */
1227 oobregion->offset += byte - pos;
1228 oobregion->length -= byte - pos;
1229 *sectionp = section;
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1236 * ECC byte
1237 * @mtd: mtd info structure
1238 * @eccbyte: the byte we are searching for
1239 * @sectionp: pointer where the section id will be stored
1240 * @oobregion: OOB region information
1241 *
1242 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1243 * byte.
1244 *
1245 * Returns zero on success, a negative error code otherwise.
1246 */
1247 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1248 int *section,
1249 struct mtd_oob_region *oobregion)
1250 {
1251 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1252 mtd_ooblayout_ecc);
1253 }
1254 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1255
1256 /**
1257 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1258 * @mtd: mtd info structure
1259 * @buf: destination buffer to store OOB bytes
1260 * @oobbuf: OOB buffer
1261 * @start: first byte to retrieve
1262 * @nbytes: number of bytes to retrieve
1263 * @iter: section iterator
1264 *
1265 * Extract bytes attached to a specific category (ECC or free)
1266 * from the OOB buffer and copy them into buf.
1267 *
1268 * Returns zero on success, a negative error code otherwise.
1269 */
1270 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1271 const u8 *oobbuf, int start, int nbytes,
1272 int (*iter)(struct mtd_info *,
1273 int section,
1274 struct mtd_oob_region *oobregion))
1275 {
1276 struct mtd_oob_region oobregion;
1277 int section, ret;
1278
1279 ret = mtd_ooblayout_find_region(mtd, start, &section,
1280 &oobregion, iter);
1281
1282 while (!ret) {
1283 int cnt;
1284
1285 cnt = min_t(int, nbytes, oobregion.length);
1286 memcpy(buf, oobbuf + oobregion.offset, cnt);
1287 buf += cnt;
1288 nbytes -= cnt;
1289
1290 if (!nbytes)
1291 break;
1292
1293 ret = iter(mtd, ++section, &oobregion);
1294 }
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1301 * @mtd: mtd info structure
1302 * @buf: source buffer to get OOB bytes from
1303 * @oobbuf: OOB buffer
1304 * @start: first OOB byte to set
1305 * @nbytes: number of OOB bytes to set
1306 * @iter: section iterator
1307 *
1308 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1309 * is selected by passing the appropriate iterator.
1310 *
1311 * Returns zero on success, a negative error code otherwise.
1312 */
1313 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1314 u8 *oobbuf, int start, int nbytes,
1315 int (*iter)(struct mtd_info *,
1316 int section,
1317 struct mtd_oob_region *oobregion))
1318 {
1319 struct mtd_oob_region oobregion;
1320 int section, ret;
1321
1322 ret = mtd_ooblayout_find_region(mtd, start, &section,
1323 &oobregion, iter);
1324
1325 while (!ret) {
1326 int cnt;
1327
1328 cnt = min_t(int, nbytes, oobregion.length);
1329 memcpy(oobbuf + oobregion.offset, buf, cnt);
1330 buf += cnt;
1331 nbytes -= cnt;
1332
1333 if (!nbytes)
1334 break;
1335
1336 ret = iter(mtd, ++section, &oobregion);
1337 }
1338
1339 return ret;
1340 }
1341
1342 /**
1343 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1344 * @mtd: mtd info structure
1345 * @iter: category iterator
1346 *
1347 * Count the number of bytes in a given category.
1348 *
1349 * Returns a positive value on success, a negative error code otherwise.
1350 */
1351 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1352 int (*iter)(struct mtd_info *,
1353 int section,
1354 struct mtd_oob_region *oobregion))
1355 {
1356 struct mtd_oob_region oobregion;
1357 int section = 0, ret, nbytes = 0;
1358
1359 while (1) {
1360 ret = iter(mtd, section++, &oobregion);
1361 if (ret) {
1362 if (ret == -ERANGE)
1363 ret = nbytes;
1364 break;
1365 }
1366
1367 nbytes += oobregion.length;
1368 }
1369
1370 return ret;
1371 }
1372
1373 /**
1374 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1375 * @mtd: mtd info structure
1376 * @eccbuf: destination buffer to store ECC bytes
1377 * @oobbuf: OOB buffer
1378 * @start: first ECC byte to retrieve
1379 * @nbytes: number of ECC bytes to retrieve
1380 *
1381 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1382 *
1383 * Returns zero on success, a negative error code otherwise.
1384 */
1385 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1386 const u8 *oobbuf, int start, int nbytes)
1387 {
1388 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1389 mtd_ooblayout_ecc);
1390 }
1391 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1392
1393 /**
1394 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1395 * @mtd: mtd info structure
1396 * @eccbuf: source buffer to get ECC bytes from
1397 * @oobbuf: OOB buffer
1398 * @start: first ECC byte to set
1399 * @nbytes: number of ECC bytes to set
1400 *
1401 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1402 *
1403 * Returns zero on success, a negative error code otherwise.
1404 */
1405 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1406 u8 *oobbuf, int start, int nbytes)
1407 {
1408 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1409 mtd_ooblayout_ecc);
1410 }
1411 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1412
1413 /**
1414 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1415 * @mtd: mtd info structure
1416 * @databuf: destination buffer to store ECC bytes
1417 * @oobbuf: OOB buffer
1418 * @start: first ECC byte to retrieve
1419 * @nbytes: number of ECC bytes to retrieve
1420 *
1421 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1422 *
1423 * Returns zero on success, a negative error code otherwise.
1424 */
1425 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1426 const u8 *oobbuf, int start, int nbytes)
1427 {
1428 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1429 mtd_ooblayout_free);
1430 }
1431 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1432
1433 /**
1434 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1435 * @mtd: mtd info structure
1436 * @eccbuf: source buffer to get data bytes from
1437 * @oobbuf: OOB buffer
1438 * @start: first ECC byte to set
1439 * @nbytes: number of ECC bytes to set
1440 *
1441 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1442 *
1443 * Returns zero on success, a negative error code otherwise.
1444 */
1445 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1446 u8 *oobbuf, int start, int nbytes)
1447 {
1448 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1449 mtd_ooblayout_free);
1450 }
1451 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1452
1453 /**
1454 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1455 * @mtd: mtd info structure
1456 *
1457 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1458 *
1459 * Returns zero on success, a negative error code otherwise.
1460 */
1461 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1462 {
1463 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1464 }
1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1466
1467 /**
1468 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1469 * @mtd: mtd info structure
1470 *
1471 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1472 *
1473 * Returns zero on success, a negative error code otherwise.
1474 */
1475 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1476 {
1477 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1478 }
1479 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1480
1481 /*
1482 * Method to access the protection register area, present in some flash
1483 * devices. The user data is one time programmable but the factory data is read
1484 * only.
1485 */
1486 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1487 struct otp_info *buf)
1488 {
1489 if (!mtd->_get_fact_prot_info)
1490 return -EOPNOTSUPP;
1491 if (!len)
1492 return 0;
1493 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1494 }
1495 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1496
1497 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1498 size_t *retlen, u_char *buf)
1499 {
1500 *retlen = 0;
1501 if (!mtd->_read_fact_prot_reg)
1502 return -EOPNOTSUPP;
1503 if (!len)
1504 return 0;
1505 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1508
1509 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1510 struct otp_info *buf)
1511 {
1512 if (!mtd->_get_user_prot_info)
1513 return -EOPNOTSUPP;
1514 if (!len)
1515 return 0;
1516 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1519
1520 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1521 size_t *retlen, u_char *buf)
1522 {
1523 *retlen = 0;
1524 if (!mtd->_read_user_prot_reg)
1525 return -EOPNOTSUPP;
1526 if (!len)
1527 return 0;
1528 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1529 }
1530 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1531
1532 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1533 size_t *retlen, u_char *buf)
1534 {
1535 int ret;
1536
1537 *retlen = 0;
1538 if (!mtd->_write_user_prot_reg)
1539 return -EOPNOTSUPP;
1540 if (!len)
1541 return 0;
1542 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1543 if (ret)
1544 return ret;
1545
1546 /*
1547 * If no data could be written at all, we are out of memory and
1548 * must return -ENOSPC.
1549 */
1550 return (*retlen) ? 0 : -ENOSPC;
1551 }
1552 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1553
1554 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1555 {
1556 if (!mtd->_lock_user_prot_reg)
1557 return -EOPNOTSUPP;
1558 if (!len)
1559 return 0;
1560 return mtd->_lock_user_prot_reg(mtd, from, len);
1561 }
1562 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1563
1564 /* Chip-supported device locking */
1565 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1566 {
1567 if (!mtd->_lock)
1568 return -EOPNOTSUPP;
1569 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1570 return -EINVAL;
1571 if (!len)
1572 return 0;
1573 return mtd->_lock(mtd, ofs, len);
1574 }
1575 EXPORT_SYMBOL_GPL(mtd_lock);
1576
1577 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1578 {
1579 if (!mtd->_unlock)
1580 return -EOPNOTSUPP;
1581 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1582 return -EINVAL;
1583 if (!len)
1584 return 0;
1585 return mtd->_unlock(mtd, ofs, len);
1586 }
1587 EXPORT_SYMBOL_GPL(mtd_unlock);
1588
1589 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1590 {
1591 if (!mtd->_is_locked)
1592 return -EOPNOTSUPP;
1593 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1594 return -EINVAL;
1595 if (!len)
1596 return 0;
1597 return mtd->_is_locked(mtd, ofs, len);
1598 }
1599 EXPORT_SYMBOL_GPL(mtd_is_locked);
1600
1601 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1602 {
1603 if (ofs < 0 || ofs >= mtd->size)
1604 return -EINVAL;
1605 if (!mtd->_block_isreserved)
1606 return 0;
1607 return mtd->_block_isreserved(mtd, ofs);
1608 }
1609 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1610
1611 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1612 {
1613 if (ofs < 0 || ofs >= mtd->size)
1614 return -EINVAL;
1615 if (!mtd->_block_isbad)
1616 return 0;
1617 return mtd->_block_isbad(mtd, ofs);
1618 }
1619 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1620
1621 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1622 {
1623 if (!mtd->_block_markbad)
1624 return -EOPNOTSUPP;
1625 if (ofs < 0 || ofs >= mtd->size)
1626 return -EINVAL;
1627 if (!(mtd->flags & MTD_WRITEABLE))
1628 return -EROFS;
1629 return mtd->_block_markbad(mtd, ofs);
1630 }
1631 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1632
1633 /*
1634 * default_mtd_writev - the default writev method
1635 * @mtd: mtd device description object pointer
1636 * @vecs: the vectors to write
1637 * @count: count of vectors in @vecs
1638 * @to: the MTD device offset to write to
1639 * @retlen: on exit contains the count of bytes written to the MTD device.
1640 *
1641 * This function returns zero in case of success and a negative error code in
1642 * case of failure.
1643 */
1644 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1645 unsigned long count, loff_t to, size_t *retlen)
1646 {
1647 unsigned long i;
1648 size_t totlen = 0, thislen;
1649 int ret = 0;
1650
1651 for (i = 0; i < count; i++) {
1652 if (!vecs[i].iov_len)
1653 continue;
1654 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1655 vecs[i].iov_base);
1656 totlen += thislen;
1657 if (ret || thislen != vecs[i].iov_len)
1658 break;
1659 to += vecs[i].iov_len;
1660 }
1661 *retlen = totlen;
1662 return ret;
1663 }
1664
1665 /*
1666 * mtd_writev - the vector-based MTD write method
1667 * @mtd: mtd device description object pointer
1668 * @vecs: the vectors to write
1669 * @count: count of vectors in @vecs
1670 * @to: the MTD device offset to write to
1671 * @retlen: on exit contains the count of bytes written to the MTD device.
1672 *
1673 * This function returns zero in case of success and a negative error code in
1674 * case of failure.
1675 */
1676 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1677 unsigned long count, loff_t to, size_t *retlen)
1678 {
1679 *retlen = 0;
1680 if (!(mtd->flags & MTD_WRITEABLE))
1681 return -EROFS;
1682 if (!mtd->_writev)
1683 return default_mtd_writev(mtd, vecs, count, to, retlen);
1684 return mtd->_writev(mtd, vecs, count, to, retlen);
1685 }
1686 EXPORT_SYMBOL_GPL(mtd_writev);
1687
1688 /**
1689 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1690 * @mtd: mtd device description object pointer
1691 * @size: a pointer to the ideal or maximum size of the allocation, points
1692 * to the actual allocation size on success.
1693 *
1694 * This routine attempts to allocate a contiguous kernel buffer up to
1695 * the specified size, backing off the size of the request exponentially
1696 * until the request succeeds or until the allocation size falls below
1697 * the system page size. This attempts to make sure it does not adversely
1698 * impact system performance, so when allocating more than one page, we
1699 * ask the memory allocator to avoid re-trying, swapping, writing back
1700 * or performing I/O.
1701 *
1702 * Note, this function also makes sure that the allocated buffer is aligned to
1703 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1704 *
1705 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1706 * to handle smaller (i.e. degraded) buffer allocations under low- or
1707 * fragmented-memory situations where such reduced allocations, from a
1708 * requested ideal, are allowed.
1709 *
1710 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1711 */
1712 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1713 {
1714 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1715 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1716 void *kbuf;
1717
1718 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1719
1720 while (*size > min_alloc) {
1721 kbuf = kmalloc(*size, flags);
1722 if (kbuf)
1723 return kbuf;
1724
1725 *size >>= 1;
1726 *size = ALIGN(*size, mtd->writesize);
1727 }
1728
1729 /*
1730 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1731 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1732 */
1733 return kmalloc(*size, GFP_KERNEL);
1734 }
1735 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1736
1737 #ifdef CONFIG_PROC_FS
1738
1739 /*====================================================================*/
1740 /* Support for /proc/mtd */
1741
1742 static int mtd_proc_show(struct seq_file *m, void *v)
1743 {
1744 struct mtd_info *mtd;
1745
1746 seq_puts(m, "dev: size erasesize name\n");
1747 mutex_lock(&mtd_table_mutex);
1748 mtd_for_each_device(mtd) {
1749 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1750 mtd->index, (unsigned long long)mtd->size,
1751 mtd->erasesize, mtd->name);
1752 }
1753 mutex_unlock(&mtd_table_mutex);
1754 return 0;
1755 }
1756
1757 static int mtd_proc_open(struct inode *inode, struct file *file)
1758 {
1759 return single_open(file, mtd_proc_show, NULL);
1760 }
1761
1762 static const struct file_operations mtd_proc_ops = {
1763 .open = mtd_proc_open,
1764 .read = seq_read,
1765 .llseek = seq_lseek,
1766 .release = single_release,
1767 };
1768 #endif /* CONFIG_PROC_FS */
1769
1770 /*====================================================================*/
1771 /* Init code */
1772
1773 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1774 {
1775 struct backing_dev_info *bdi;
1776 int ret;
1777
1778 bdi = kzalloc(sizeof(*bdi), GFP_KERNEL);
1779 if (!bdi)
1780 return ERR_PTR(-ENOMEM);
1781
1782 ret = bdi_setup_and_register(bdi, name);
1783 if (ret)
1784 kfree(bdi);
1785
1786 return ret ? ERR_PTR(ret) : bdi;
1787 }
1788
1789 static struct proc_dir_entry *proc_mtd;
1790
1791 static int __init init_mtd(void)
1792 {
1793 int ret;
1794
1795 ret = class_register(&mtd_class);
1796 if (ret)
1797 goto err_reg;
1798
1799 mtd_bdi = mtd_bdi_init("mtd");
1800 if (IS_ERR(mtd_bdi)) {
1801 ret = PTR_ERR(mtd_bdi);
1802 goto err_bdi;
1803 }
1804
1805 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1806
1807 ret = init_mtdchar();
1808 if (ret)
1809 goto out_procfs;
1810
1811 return 0;
1812
1813 out_procfs:
1814 if (proc_mtd)
1815 remove_proc_entry("mtd", NULL);
1816 bdi_destroy(mtd_bdi);
1817 kfree(mtd_bdi);
1818 err_bdi:
1819 class_unregister(&mtd_class);
1820 err_reg:
1821 pr_err("Error registering mtd class or bdi: %d\n", ret);
1822 return ret;
1823 }
1824
1825 static void __exit cleanup_mtd(void)
1826 {
1827 cleanup_mtdchar();
1828 if (proc_mtd)
1829 remove_proc_entry("mtd", NULL);
1830 class_unregister(&mtd_class);
1831 bdi_destroy(mtd_bdi);
1832 kfree(mtd_bdi);
1833 idr_destroy(&mtd_idr);
1834 }
1835
1836 module_init(init_mtd);
1837 module_exit(cleanup_mtd);
1838
1839 MODULE_LICENSE("GPL");
1840 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1841 MODULE_DESCRIPTION("Core MTD registration and access routines");