]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdcore.c
sfc: Add new sensor names
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43
44 #include "mtdcore.h"
45
46 /*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 .capabilities = BDI_CAP_MAP_COPY,
52 };
53
54 /*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63
64 /*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73 };
74
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77
78 static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83 };
84
85 static DEFINE_IDR(mtd_idr);
86
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98 static LIST_HEAD(mtd_notifiers);
99
100
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
106 static void mtd_release(struct device *dev)
107 {
108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 dev_t index = MTD_DEVT(mtd->index);
110
111 /* remove /dev/mtdXro node if needed */
112 if (index)
113 device_destroy(&mtd_class, index + 1);
114 }
115
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 struct mtd_info *mtd = dev_get_drvdata(dev);
119
120 return mtd ? mtd_suspend(mtd) : 0;
121 }
122
123 static int mtd_cls_resume(struct device *dev)
124 {
125 struct mtd_info *mtd = dev_get_drvdata(dev);
126
127 if (mtd)
128 mtd_resume(mtd);
129 return 0;
130 }
131
132 static ssize_t mtd_type_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct mtd_info *mtd = dev_get_drvdata(dev);
136 char *type;
137
138 switch (mtd->type) {
139 case MTD_ABSENT:
140 type = "absent";
141 break;
142 case MTD_RAM:
143 type = "ram";
144 break;
145 case MTD_ROM:
146 type = "rom";
147 break;
148 case MTD_NORFLASH:
149 type = "nor";
150 break;
151 case MTD_NANDFLASH:
152 type = "nand";
153 break;
154 case MTD_DATAFLASH:
155 type = "dataflash";
156 break;
157 case MTD_UBIVOLUME:
158 type = "ubi";
159 break;
160 case MTD_MLCNANDFLASH:
161 type = "mlc-nand";
162 break;
163 default:
164 type = "unknown";
165 }
166
167 return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 }
169 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170
171 static ssize_t mtd_flags_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177
178 }
179 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180
181 static ssize_t mtd_size_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%llu\n",
187 (unsigned long long)mtd->size);
188
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196
197 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198
199 }
200 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201
202 static ssize_t mtd_writesize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208
209 }
210 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211
212 static ssize_t mtd_subpagesize_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214 {
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219
220 }
221 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222
223 static ssize_t mtd_oobsize_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229
230 }
231 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232
233 static ssize_t mtd_numeraseregions_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239
240 }
241 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242 NULL);
243
244 static ssize_t mtd_name_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
246 {
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250
251 }
252 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253
254 static ssize_t mtd_ecc_strength_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
256 {
257 struct mtd_info *mtd = dev_get_drvdata(dev);
258
259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260 }
261 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262
263 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264 struct device_attribute *attr,
265 char *buf)
266 {
267 struct mtd_info *mtd = dev_get_drvdata(dev);
268
269 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270 }
271
272 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273 struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 struct mtd_info *mtd = dev_get_drvdata(dev);
277 unsigned int bitflip_threshold;
278 int retval;
279
280 retval = kstrtouint(buf, 0, &bitflip_threshold);
281 if (retval)
282 return retval;
283
284 mtd->bitflip_threshold = bitflip_threshold;
285 return count;
286 }
287 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288 mtd_bitflip_threshold_show,
289 mtd_bitflip_threshold_store);
290
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297
298 }
299 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300
301 static struct attribute *mtd_attrs[] = {
302 &dev_attr_type.attr,
303 &dev_attr_flags.attr,
304 &dev_attr_size.attr,
305 &dev_attr_erasesize.attr,
306 &dev_attr_writesize.attr,
307 &dev_attr_subpagesize.attr,
308 &dev_attr_oobsize.attr,
309 &dev_attr_numeraseregions.attr,
310 &dev_attr_name.attr,
311 &dev_attr_ecc_strength.attr,
312 &dev_attr_ecc_step_size.attr,
313 &dev_attr_bitflip_threshold.attr,
314 NULL,
315 };
316
317 static struct attribute_group mtd_group = {
318 .attrs = mtd_attrs,
319 };
320
321 static const struct attribute_group *mtd_groups[] = {
322 &mtd_group,
323 NULL,
324 };
325
326 static struct device_type mtd_devtype = {
327 .name = "mtd",
328 .groups = mtd_groups,
329 .release = mtd_release,
330 };
331
332 /**
333 * add_mtd_device - register an MTD device
334 * @mtd: pointer to new MTD device info structure
335 *
336 * Add a device to the list of MTD devices present in the system, and
337 * notify each currently active MTD 'user' of its arrival. Returns
338 * zero on success or 1 on failure, which currently will only happen
339 * if there is insufficient memory or a sysfs error.
340 */
341
342 int add_mtd_device(struct mtd_info *mtd)
343 {
344 struct mtd_notifier *not;
345 int i, error;
346
347 if (!mtd->backing_dev_info) {
348 switch (mtd->type) {
349 case MTD_RAM:
350 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
351 break;
352 case MTD_ROM:
353 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
354 break;
355 default:
356 mtd->backing_dev_info = &mtd_bdi_unmappable;
357 break;
358 }
359 }
360
361 BUG_ON(mtd->writesize == 0);
362 mutex_lock(&mtd_table_mutex);
363
364 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
365 if (i < 0)
366 goto fail_locked;
367
368 mtd->index = i;
369 mtd->usecount = 0;
370
371 /* default value if not set by driver */
372 if (mtd->bitflip_threshold == 0)
373 mtd->bitflip_threshold = mtd->ecc_strength;
374
375 if (is_power_of_2(mtd->erasesize))
376 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
377 else
378 mtd->erasesize_shift = 0;
379
380 if (is_power_of_2(mtd->writesize))
381 mtd->writesize_shift = ffs(mtd->writesize) - 1;
382 else
383 mtd->writesize_shift = 0;
384
385 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
386 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
387
388 /* Some chips always power up locked. Unlock them now */
389 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
390 error = mtd_unlock(mtd, 0, mtd->size);
391 if (error && error != -EOPNOTSUPP)
392 printk(KERN_WARNING
393 "%s: unlock failed, writes may not work\n",
394 mtd->name);
395 }
396
397 /* Caller should have set dev.parent to match the
398 * physical device.
399 */
400 mtd->dev.type = &mtd_devtype;
401 mtd->dev.class = &mtd_class;
402 mtd->dev.devt = MTD_DEVT(i);
403 dev_set_name(&mtd->dev, "mtd%d", i);
404 dev_set_drvdata(&mtd->dev, mtd);
405 if (device_register(&mtd->dev) != 0)
406 goto fail_added;
407
408 if (MTD_DEVT(i))
409 device_create(&mtd_class, mtd->dev.parent,
410 MTD_DEVT(i) + 1,
411 NULL, "mtd%dro", i);
412
413 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
414 /* No need to get a refcount on the module containing
415 the notifier, since we hold the mtd_table_mutex */
416 list_for_each_entry(not, &mtd_notifiers, list)
417 not->add(mtd);
418
419 mutex_unlock(&mtd_table_mutex);
420 /* We _know_ we aren't being removed, because
421 our caller is still holding us here. So none
422 of this try_ nonsense, and no bitching about it
423 either. :) */
424 __module_get(THIS_MODULE);
425 return 0;
426
427 fail_added:
428 idr_remove(&mtd_idr, i);
429 fail_locked:
430 mutex_unlock(&mtd_table_mutex);
431 return 1;
432 }
433
434 /**
435 * del_mtd_device - unregister an MTD device
436 * @mtd: pointer to MTD device info structure
437 *
438 * Remove a device from the list of MTD devices present in the system,
439 * and notify each currently active MTD 'user' of its departure.
440 * Returns zero on success or 1 on failure, which currently will happen
441 * if the requested device does not appear to be present in the list.
442 */
443
444 int del_mtd_device(struct mtd_info *mtd)
445 {
446 int ret;
447 struct mtd_notifier *not;
448
449 mutex_lock(&mtd_table_mutex);
450
451 if (idr_find(&mtd_idr, mtd->index) != mtd) {
452 ret = -ENODEV;
453 goto out_error;
454 }
455
456 /* No need to get a refcount on the module containing
457 the notifier, since we hold the mtd_table_mutex */
458 list_for_each_entry(not, &mtd_notifiers, list)
459 not->remove(mtd);
460
461 if (mtd->usecount) {
462 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
463 mtd->index, mtd->name, mtd->usecount);
464 ret = -EBUSY;
465 } else {
466 device_unregister(&mtd->dev);
467
468 idr_remove(&mtd_idr, mtd->index);
469
470 module_put(THIS_MODULE);
471 ret = 0;
472 }
473
474 out_error:
475 mutex_unlock(&mtd_table_mutex);
476 return ret;
477 }
478
479 /**
480 * mtd_device_parse_register - parse partitions and register an MTD device.
481 *
482 * @mtd: the MTD device to register
483 * @types: the list of MTD partition probes to try, see
484 * 'parse_mtd_partitions()' for more information
485 * @parser_data: MTD partition parser-specific data
486 * @parts: fallback partition information to register, if parsing fails;
487 * only valid if %nr_parts > %0
488 * @nr_parts: the number of partitions in parts, if zero then the full
489 * MTD device is registered if no partition info is found
490 *
491 * This function aggregates MTD partitions parsing (done by
492 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
493 * basically follows the most common pattern found in many MTD drivers:
494 *
495 * * It first tries to probe partitions on MTD device @mtd using parsers
496 * specified in @types (if @types is %NULL, then the default list of parsers
497 * is used, see 'parse_mtd_partitions()' for more information). If none are
498 * found this functions tries to fallback to information specified in
499 * @parts/@nr_parts.
500 * * If any partitioning info was found, this function registers the found
501 * partitions.
502 * * If no partitions were found this function just registers the MTD device
503 * @mtd and exits.
504 *
505 * Returns zero in case of success and a negative error code in case of failure.
506 */
507 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
508 struct mtd_part_parser_data *parser_data,
509 const struct mtd_partition *parts,
510 int nr_parts)
511 {
512 int err;
513 struct mtd_partition *real_parts;
514
515 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
516 if (err <= 0 && nr_parts && parts) {
517 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
518 GFP_KERNEL);
519 if (!real_parts)
520 err = -ENOMEM;
521 else
522 err = nr_parts;
523 }
524
525 if (err > 0) {
526 err = add_mtd_partitions(mtd, real_parts, err);
527 kfree(real_parts);
528 } else if (err == 0) {
529 err = add_mtd_device(mtd);
530 if (err == 1)
531 err = -ENODEV;
532 }
533
534 return err;
535 }
536 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
537
538 /**
539 * mtd_device_unregister - unregister an existing MTD device.
540 *
541 * @master: the MTD device to unregister. This will unregister both the master
542 * and any partitions if registered.
543 */
544 int mtd_device_unregister(struct mtd_info *master)
545 {
546 int err;
547
548 err = del_mtd_partitions(master);
549 if (err)
550 return err;
551
552 if (!device_is_registered(&master->dev))
553 return 0;
554
555 return del_mtd_device(master);
556 }
557 EXPORT_SYMBOL_GPL(mtd_device_unregister);
558
559 /**
560 * register_mtd_user - register a 'user' of MTD devices.
561 * @new: pointer to notifier info structure
562 *
563 * Registers a pair of callbacks function to be called upon addition
564 * or removal of MTD devices. Causes the 'add' callback to be immediately
565 * invoked for each MTD device currently present in the system.
566 */
567 void register_mtd_user (struct mtd_notifier *new)
568 {
569 struct mtd_info *mtd;
570
571 mutex_lock(&mtd_table_mutex);
572
573 list_add(&new->list, &mtd_notifiers);
574
575 __module_get(THIS_MODULE);
576
577 mtd_for_each_device(mtd)
578 new->add(mtd);
579
580 mutex_unlock(&mtd_table_mutex);
581 }
582 EXPORT_SYMBOL_GPL(register_mtd_user);
583
584 /**
585 * unregister_mtd_user - unregister a 'user' of MTD devices.
586 * @old: pointer to notifier info structure
587 *
588 * Removes a callback function pair from the list of 'users' to be
589 * notified upon addition or removal of MTD devices. Causes the
590 * 'remove' callback to be immediately invoked for each MTD device
591 * currently present in the system.
592 */
593 int unregister_mtd_user (struct mtd_notifier *old)
594 {
595 struct mtd_info *mtd;
596
597 mutex_lock(&mtd_table_mutex);
598
599 module_put(THIS_MODULE);
600
601 mtd_for_each_device(mtd)
602 old->remove(mtd);
603
604 list_del(&old->list);
605 mutex_unlock(&mtd_table_mutex);
606 return 0;
607 }
608 EXPORT_SYMBOL_GPL(unregister_mtd_user);
609
610 /**
611 * get_mtd_device - obtain a validated handle for an MTD device
612 * @mtd: last known address of the required MTD device
613 * @num: internal device number of the required MTD device
614 *
615 * Given a number and NULL address, return the num'th entry in the device
616 * table, if any. Given an address and num == -1, search the device table
617 * for a device with that address and return if it's still present. Given
618 * both, return the num'th driver only if its address matches. Return
619 * error code if not.
620 */
621 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
622 {
623 struct mtd_info *ret = NULL, *other;
624 int err = -ENODEV;
625
626 mutex_lock(&mtd_table_mutex);
627
628 if (num == -1) {
629 mtd_for_each_device(other) {
630 if (other == mtd) {
631 ret = mtd;
632 break;
633 }
634 }
635 } else if (num >= 0) {
636 ret = idr_find(&mtd_idr, num);
637 if (mtd && mtd != ret)
638 ret = NULL;
639 }
640
641 if (!ret) {
642 ret = ERR_PTR(err);
643 goto out;
644 }
645
646 err = __get_mtd_device(ret);
647 if (err)
648 ret = ERR_PTR(err);
649 out:
650 mutex_unlock(&mtd_table_mutex);
651 return ret;
652 }
653 EXPORT_SYMBOL_GPL(get_mtd_device);
654
655
656 int __get_mtd_device(struct mtd_info *mtd)
657 {
658 int err;
659
660 if (!try_module_get(mtd->owner))
661 return -ENODEV;
662
663 if (mtd->_get_device) {
664 err = mtd->_get_device(mtd);
665
666 if (err) {
667 module_put(mtd->owner);
668 return err;
669 }
670 }
671 mtd->usecount++;
672 return 0;
673 }
674 EXPORT_SYMBOL_GPL(__get_mtd_device);
675
676 /**
677 * get_mtd_device_nm - obtain a validated handle for an MTD device by
678 * device name
679 * @name: MTD device name to open
680 *
681 * This function returns MTD device description structure in case of
682 * success and an error code in case of failure.
683 */
684 struct mtd_info *get_mtd_device_nm(const char *name)
685 {
686 int err = -ENODEV;
687 struct mtd_info *mtd = NULL, *other;
688
689 mutex_lock(&mtd_table_mutex);
690
691 mtd_for_each_device(other) {
692 if (!strcmp(name, other->name)) {
693 mtd = other;
694 break;
695 }
696 }
697
698 if (!mtd)
699 goto out_unlock;
700
701 err = __get_mtd_device(mtd);
702 if (err)
703 goto out_unlock;
704
705 mutex_unlock(&mtd_table_mutex);
706 return mtd;
707
708 out_unlock:
709 mutex_unlock(&mtd_table_mutex);
710 return ERR_PTR(err);
711 }
712 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
713
714 void put_mtd_device(struct mtd_info *mtd)
715 {
716 mutex_lock(&mtd_table_mutex);
717 __put_mtd_device(mtd);
718 mutex_unlock(&mtd_table_mutex);
719
720 }
721 EXPORT_SYMBOL_GPL(put_mtd_device);
722
723 void __put_mtd_device(struct mtd_info *mtd)
724 {
725 --mtd->usecount;
726 BUG_ON(mtd->usecount < 0);
727
728 if (mtd->_put_device)
729 mtd->_put_device(mtd);
730
731 module_put(mtd->owner);
732 }
733 EXPORT_SYMBOL_GPL(__put_mtd_device);
734
735 /*
736 * Erase is an asynchronous operation. Device drivers are supposed
737 * to call instr->callback() whenever the operation completes, even
738 * if it completes with a failure.
739 * Callers are supposed to pass a callback function and wait for it
740 * to be called before writing to the block.
741 */
742 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
743 {
744 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
745 return -EINVAL;
746 if (!(mtd->flags & MTD_WRITEABLE))
747 return -EROFS;
748 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
749 if (!instr->len) {
750 instr->state = MTD_ERASE_DONE;
751 mtd_erase_callback(instr);
752 return 0;
753 }
754 return mtd->_erase(mtd, instr);
755 }
756 EXPORT_SYMBOL_GPL(mtd_erase);
757
758 /*
759 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
760 */
761 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
762 void **virt, resource_size_t *phys)
763 {
764 *retlen = 0;
765 *virt = NULL;
766 if (phys)
767 *phys = 0;
768 if (!mtd->_point)
769 return -EOPNOTSUPP;
770 if (from < 0 || from > mtd->size || len > mtd->size - from)
771 return -EINVAL;
772 if (!len)
773 return 0;
774 return mtd->_point(mtd, from, len, retlen, virt, phys);
775 }
776 EXPORT_SYMBOL_GPL(mtd_point);
777
778 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
779 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
780 {
781 if (!mtd->_point)
782 return -EOPNOTSUPP;
783 if (from < 0 || from > mtd->size || len > mtd->size - from)
784 return -EINVAL;
785 if (!len)
786 return 0;
787 return mtd->_unpoint(mtd, from, len);
788 }
789 EXPORT_SYMBOL_GPL(mtd_unpoint);
790
791 /*
792 * Allow NOMMU mmap() to directly map the device (if not NULL)
793 * - return the address to which the offset maps
794 * - return -ENOSYS to indicate refusal to do the mapping
795 */
796 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
797 unsigned long offset, unsigned long flags)
798 {
799 if (!mtd->_get_unmapped_area)
800 return -EOPNOTSUPP;
801 if (offset > mtd->size || len > mtd->size - offset)
802 return -EINVAL;
803 return mtd->_get_unmapped_area(mtd, len, offset, flags);
804 }
805 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
806
807 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
808 u_char *buf)
809 {
810 int ret_code;
811 *retlen = 0;
812 if (from < 0 || from > mtd->size || len > mtd->size - from)
813 return -EINVAL;
814 if (!len)
815 return 0;
816
817 /*
818 * In the absence of an error, drivers return a non-negative integer
819 * representing the maximum number of bitflips that were corrected on
820 * any one ecc region (if applicable; zero otherwise).
821 */
822 ret_code = mtd->_read(mtd, from, len, retlen, buf);
823 if (unlikely(ret_code < 0))
824 return ret_code;
825 if (mtd->ecc_strength == 0)
826 return 0; /* device lacks ecc */
827 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
828 }
829 EXPORT_SYMBOL_GPL(mtd_read);
830
831 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
832 const u_char *buf)
833 {
834 *retlen = 0;
835 if (to < 0 || to > mtd->size || len > mtd->size - to)
836 return -EINVAL;
837 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
838 return -EROFS;
839 if (!len)
840 return 0;
841 return mtd->_write(mtd, to, len, retlen, buf);
842 }
843 EXPORT_SYMBOL_GPL(mtd_write);
844
845 /*
846 * In blackbox flight recorder like scenarios we want to make successful writes
847 * in interrupt context. panic_write() is only intended to be called when its
848 * known the kernel is about to panic and we need the write to succeed. Since
849 * the kernel is not going to be running for much longer, this function can
850 * break locks and delay to ensure the write succeeds (but not sleep).
851 */
852 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
853 const u_char *buf)
854 {
855 *retlen = 0;
856 if (!mtd->_panic_write)
857 return -EOPNOTSUPP;
858 if (to < 0 || to > mtd->size || len > mtd->size - to)
859 return -EINVAL;
860 if (!(mtd->flags & MTD_WRITEABLE))
861 return -EROFS;
862 if (!len)
863 return 0;
864 return mtd->_panic_write(mtd, to, len, retlen, buf);
865 }
866 EXPORT_SYMBOL_GPL(mtd_panic_write);
867
868 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
869 {
870 int ret_code;
871 ops->retlen = ops->oobretlen = 0;
872 if (!mtd->_read_oob)
873 return -EOPNOTSUPP;
874 /*
875 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
876 * similar to mtd->_read(), returning a non-negative integer
877 * representing max bitflips. In other cases, mtd->_read_oob() may
878 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
879 */
880 ret_code = mtd->_read_oob(mtd, from, ops);
881 if (unlikely(ret_code < 0))
882 return ret_code;
883 if (mtd->ecc_strength == 0)
884 return 0; /* device lacks ecc */
885 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
886 }
887 EXPORT_SYMBOL_GPL(mtd_read_oob);
888
889 /*
890 * Method to access the protection register area, present in some flash
891 * devices. The user data is one time programmable but the factory data is read
892 * only.
893 */
894 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
895 size_t len)
896 {
897 if (!mtd->_get_fact_prot_info)
898 return -EOPNOTSUPP;
899 if (!len)
900 return 0;
901 return mtd->_get_fact_prot_info(mtd, buf, len);
902 }
903 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
904
905 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
906 size_t *retlen, u_char *buf)
907 {
908 *retlen = 0;
909 if (!mtd->_read_fact_prot_reg)
910 return -EOPNOTSUPP;
911 if (!len)
912 return 0;
913 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
914 }
915 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
916
917 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
918 size_t len)
919 {
920 if (!mtd->_get_user_prot_info)
921 return -EOPNOTSUPP;
922 if (!len)
923 return 0;
924 return mtd->_get_user_prot_info(mtd, buf, len);
925 }
926 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
927
928 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
929 size_t *retlen, u_char *buf)
930 {
931 *retlen = 0;
932 if (!mtd->_read_user_prot_reg)
933 return -EOPNOTSUPP;
934 if (!len)
935 return 0;
936 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
937 }
938 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
939
940 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
941 size_t *retlen, u_char *buf)
942 {
943 *retlen = 0;
944 if (!mtd->_write_user_prot_reg)
945 return -EOPNOTSUPP;
946 if (!len)
947 return 0;
948 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
949 }
950 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
951
952 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
953 {
954 if (!mtd->_lock_user_prot_reg)
955 return -EOPNOTSUPP;
956 if (!len)
957 return 0;
958 return mtd->_lock_user_prot_reg(mtd, from, len);
959 }
960 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
961
962 /* Chip-supported device locking */
963 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964 {
965 if (!mtd->_lock)
966 return -EOPNOTSUPP;
967 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968 return -EINVAL;
969 if (!len)
970 return 0;
971 return mtd->_lock(mtd, ofs, len);
972 }
973 EXPORT_SYMBOL_GPL(mtd_lock);
974
975 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976 {
977 if (!mtd->_unlock)
978 return -EOPNOTSUPP;
979 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980 return -EINVAL;
981 if (!len)
982 return 0;
983 return mtd->_unlock(mtd, ofs, len);
984 }
985 EXPORT_SYMBOL_GPL(mtd_unlock);
986
987 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
988 {
989 if (!mtd->_is_locked)
990 return -EOPNOTSUPP;
991 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
992 return -EINVAL;
993 if (!len)
994 return 0;
995 return mtd->_is_locked(mtd, ofs, len);
996 }
997 EXPORT_SYMBOL_GPL(mtd_is_locked);
998
999 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1000 {
1001 if (!mtd->_block_isbad)
1002 return 0;
1003 if (ofs < 0 || ofs > mtd->size)
1004 return -EINVAL;
1005 return mtd->_block_isbad(mtd, ofs);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1008
1009 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1010 {
1011 if (!mtd->_block_markbad)
1012 return -EOPNOTSUPP;
1013 if (ofs < 0 || ofs > mtd->size)
1014 return -EINVAL;
1015 if (!(mtd->flags & MTD_WRITEABLE))
1016 return -EROFS;
1017 return mtd->_block_markbad(mtd, ofs);
1018 }
1019 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1020
1021 /*
1022 * default_mtd_writev - the default writev method
1023 * @mtd: mtd device description object pointer
1024 * @vecs: the vectors to write
1025 * @count: count of vectors in @vecs
1026 * @to: the MTD device offset to write to
1027 * @retlen: on exit contains the count of bytes written to the MTD device.
1028 *
1029 * This function returns zero in case of success and a negative error code in
1030 * case of failure.
1031 */
1032 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1033 unsigned long count, loff_t to, size_t *retlen)
1034 {
1035 unsigned long i;
1036 size_t totlen = 0, thislen;
1037 int ret = 0;
1038
1039 for (i = 0; i < count; i++) {
1040 if (!vecs[i].iov_len)
1041 continue;
1042 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1043 vecs[i].iov_base);
1044 totlen += thislen;
1045 if (ret || thislen != vecs[i].iov_len)
1046 break;
1047 to += vecs[i].iov_len;
1048 }
1049 *retlen = totlen;
1050 return ret;
1051 }
1052
1053 /*
1054 * mtd_writev - the vector-based MTD write method
1055 * @mtd: mtd device description object pointer
1056 * @vecs: the vectors to write
1057 * @count: count of vectors in @vecs
1058 * @to: the MTD device offset to write to
1059 * @retlen: on exit contains the count of bytes written to the MTD device.
1060 *
1061 * This function returns zero in case of success and a negative error code in
1062 * case of failure.
1063 */
1064 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1065 unsigned long count, loff_t to, size_t *retlen)
1066 {
1067 *retlen = 0;
1068 if (!(mtd->flags & MTD_WRITEABLE))
1069 return -EROFS;
1070 if (!mtd->_writev)
1071 return default_mtd_writev(mtd, vecs, count, to, retlen);
1072 return mtd->_writev(mtd, vecs, count, to, retlen);
1073 }
1074 EXPORT_SYMBOL_GPL(mtd_writev);
1075
1076 /**
1077 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1078 * @mtd: mtd device description object pointer
1079 * @size: a pointer to the ideal or maximum size of the allocation, points
1080 * to the actual allocation size on success.
1081 *
1082 * This routine attempts to allocate a contiguous kernel buffer up to
1083 * the specified size, backing off the size of the request exponentially
1084 * until the request succeeds or until the allocation size falls below
1085 * the system page size. This attempts to make sure it does not adversely
1086 * impact system performance, so when allocating more than one page, we
1087 * ask the memory allocator to avoid re-trying, swapping, writing back
1088 * or performing I/O.
1089 *
1090 * Note, this function also makes sure that the allocated buffer is aligned to
1091 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1092 *
1093 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1094 * to handle smaller (i.e. degraded) buffer allocations under low- or
1095 * fragmented-memory situations where such reduced allocations, from a
1096 * requested ideal, are allowed.
1097 *
1098 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1099 */
1100 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1101 {
1102 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1103 __GFP_NORETRY | __GFP_NO_KSWAPD;
1104 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1105 void *kbuf;
1106
1107 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1108
1109 while (*size > min_alloc) {
1110 kbuf = kmalloc(*size, flags);
1111 if (kbuf)
1112 return kbuf;
1113
1114 *size >>= 1;
1115 *size = ALIGN(*size, mtd->writesize);
1116 }
1117
1118 /*
1119 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1120 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1121 */
1122 return kmalloc(*size, GFP_KERNEL);
1123 }
1124 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1125
1126 #ifdef CONFIG_PROC_FS
1127
1128 /*====================================================================*/
1129 /* Support for /proc/mtd */
1130
1131 static int mtd_proc_show(struct seq_file *m, void *v)
1132 {
1133 struct mtd_info *mtd;
1134
1135 seq_puts(m, "dev: size erasesize name\n");
1136 mutex_lock(&mtd_table_mutex);
1137 mtd_for_each_device(mtd) {
1138 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1139 mtd->index, (unsigned long long)mtd->size,
1140 mtd->erasesize, mtd->name);
1141 }
1142 mutex_unlock(&mtd_table_mutex);
1143 return 0;
1144 }
1145
1146 static int mtd_proc_open(struct inode *inode, struct file *file)
1147 {
1148 return single_open(file, mtd_proc_show, NULL);
1149 }
1150
1151 static const struct file_operations mtd_proc_ops = {
1152 .open = mtd_proc_open,
1153 .read = seq_read,
1154 .llseek = seq_lseek,
1155 .release = single_release,
1156 };
1157 #endif /* CONFIG_PROC_FS */
1158
1159 /*====================================================================*/
1160 /* Init code */
1161
1162 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1163 {
1164 int ret;
1165
1166 ret = bdi_init(bdi);
1167 if (!ret)
1168 ret = bdi_register(bdi, NULL, "%s", name);
1169
1170 if (ret)
1171 bdi_destroy(bdi);
1172
1173 return ret;
1174 }
1175
1176 static struct proc_dir_entry *proc_mtd;
1177
1178 static int __init init_mtd(void)
1179 {
1180 int ret;
1181
1182 ret = class_register(&mtd_class);
1183 if (ret)
1184 goto err_reg;
1185
1186 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1187 if (ret)
1188 goto err_bdi1;
1189
1190 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1191 if (ret)
1192 goto err_bdi2;
1193
1194 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1195 if (ret)
1196 goto err_bdi3;
1197
1198 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1199
1200 ret = init_mtdchar();
1201 if (ret)
1202 goto out_procfs;
1203
1204 return 0;
1205
1206 out_procfs:
1207 if (proc_mtd)
1208 remove_proc_entry("mtd", NULL);
1209 err_bdi3:
1210 bdi_destroy(&mtd_bdi_ro_mappable);
1211 err_bdi2:
1212 bdi_destroy(&mtd_bdi_unmappable);
1213 err_bdi1:
1214 class_unregister(&mtd_class);
1215 err_reg:
1216 pr_err("Error registering mtd class or bdi: %d\n", ret);
1217 return ret;
1218 }
1219
1220 static void __exit cleanup_mtd(void)
1221 {
1222 cleanup_mtdchar();
1223 if (proc_mtd)
1224 remove_proc_entry("mtd", NULL);
1225 class_unregister(&mtd_class);
1226 bdi_destroy(&mtd_bdi_unmappable);
1227 bdi_destroy(&mtd_bdi_ro_mappable);
1228 bdi_destroy(&mtd_bdi_rw_mappable);
1229 }
1230
1231 module_init(init_mtd);
1232 module_exit(cleanup_mtd);
1233
1234 MODULE_LICENSE("GPL");
1235 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1236 MODULE_DESCRIPTION("Core MTD registration and access routines");