]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/mtdcore.c
carl9170: remove unnecessary break after return
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43
44 #include "mtdcore.h"
45
46 /*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 .capabilities = BDI_CAP_MAP_COPY,
52 };
53
54 /*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63
64 /*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73 };
74
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77
78 static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83 };
84
85 static DEFINE_IDR(mtd_idr);
86
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98 static LIST_HEAD(mtd_notifiers);
99
100
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
106 static void mtd_release(struct device *dev)
107 {
108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 dev_t index = MTD_DEVT(mtd->index);
110
111 /* remove /dev/mtdXro node if needed */
112 if (index)
113 device_destroy(&mtd_class, index + 1);
114 }
115
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 struct mtd_info *mtd = dev_get_drvdata(dev);
119
120 return mtd ? mtd_suspend(mtd) : 0;
121 }
122
123 static int mtd_cls_resume(struct device *dev)
124 {
125 struct mtd_info *mtd = dev_get_drvdata(dev);
126
127 if (mtd)
128 mtd_resume(mtd);
129 return 0;
130 }
131
132 static ssize_t mtd_type_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct mtd_info *mtd = dev_get_drvdata(dev);
136 char *type;
137
138 switch (mtd->type) {
139 case MTD_ABSENT:
140 type = "absent";
141 break;
142 case MTD_RAM:
143 type = "ram";
144 break;
145 case MTD_ROM:
146 type = "rom";
147 break;
148 case MTD_NORFLASH:
149 type = "nor";
150 break;
151 case MTD_NANDFLASH:
152 type = "nand";
153 break;
154 case MTD_DATAFLASH:
155 type = "dataflash";
156 break;
157 case MTD_UBIVOLUME:
158 type = "ubi";
159 break;
160 case MTD_MLCNANDFLASH:
161 type = "mlc-nand";
162 break;
163 default:
164 type = "unknown";
165 }
166
167 return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 }
169 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170
171 static ssize_t mtd_flags_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177
178 }
179 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180
181 static ssize_t mtd_size_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%llu\n",
187 (unsigned long long)mtd->size);
188
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196
197 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198
199 }
200 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201
202 static ssize_t mtd_writesize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208
209 }
210 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211
212 static ssize_t mtd_subpagesize_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214 {
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219
220 }
221 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222
223 static ssize_t mtd_oobsize_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229
230 }
231 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232
233 static ssize_t mtd_numeraseregions_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239
240 }
241 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242 NULL);
243
244 static ssize_t mtd_name_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
246 {
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250
251 }
252 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253
254 static ssize_t mtd_ecc_strength_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
256 {
257 struct mtd_info *mtd = dev_get_drvdata(dev);
258
259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260 }
261 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262
263 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264 struct device_attribute *attr,
265 char *buf)
266 {
267 struct mtd_info *mtd = dev_get_drvdata(dev);
268
269 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270 }
271
272 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273 struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 struct mtd_info *mtd = dev_get_drvdata(dev);
277 unsigned int bitflip_threshold;
278 int retval;
279
280 retval = kstrtouint(buf, 0, &bitflip_threshold);
281 if (retval)
282 return retval;
283
284 mtd->bitflip_threshold = bitflip_threshold;
285 return count;
286 }
287 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288 mtd_bitflip_threshold_show,
289 mtd_bitflip_threshold_store);
290
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297
298 }
299 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300
301 static struct attribute *mtd_attrs[] = {
302 &dev_attr_type.attr,
303 &dev_attr_flags.attr,
304 &dev_attr_size.attr,
305 &dev_attr_erasesize.attr,
306 &dev_attr_writesize.attr,
307 &dev_attr_subpagesize.attr,
308 &dev_attr_oobsize.attr,
309 &dev_attr_numeraseregions.attr,
310 &dev_attr_name.attr,
311 &dev_attr_ecc_strength.attr,
312 &dev_attr_ecc_step_size.attr,
313 &dev_attr_bitflip_threshold.attr,
314 NULL,
315 };
316 ATTRIBUTE_GROUPS(mtd);
317
318 static struct device_type mtd_devtype = {
319 .name = "mtd",
320 .groups = mtd_groups,
321 .release = mtd_release,
322 };
323
324 /**
325 * add_mtd_device - register an MTD device
326 * @mtd: pointer to new MTD device info structure
327 *
328 * Add a device to the list of MTD devices present in the system, and
329 * notify each currently active MTD 'user' of its arrival. Returns
330 * zero on success or 1 on failure, which currently will only happen
331 * if there is insufficient memory or a sysfs error.
332 */
333
334 int add_mtd_device(struct mtd_info *mtd)
335 {
336 struct mtd_notifier *not;
337 int i, error;
338
339 if (!mtd->backing_dev_info) {
340 switch (mtd->type) {
341 case MTD_RAM:
342 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
343 break;
344 case MTD_ROM:
345 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
346 break;
347 default:
348 mtd->backing_dev_info = &mtd_bdi_unmappable;
349 break;
350 }
351 }
352
353 BUG_ON(mtd->writesize == 0);
354 mutex_lock(&mtd_table_mutex);
355
356 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
357 if (i < 0)
358 goto fail_locked;
359
360 mtd->index = i;
361 mtd->usecount = 0;
362
363 /* default value if not set by driver */
364 if (mtd->bitflip_threshold == 0)
365 mtd->bitflip_threshold = mtd->ecc_strength;
366
367 if (is_power_of_2(mtd->erasesize))
368 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
369 else
370 mtd->erasesize_shift = 0;
371
372 if (is_power_of_2(mtd->writesize))
373 mtd->writesize_shift = ffs(mtd->writesize) - 1;
374 else
375 mtd->writesize_shift = 0;
376
377 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
378 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
379
380 /* Some chips always power up locked. Unlock them now */
381 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
382 error = mtd_unlock(mtd, 0, mtd->size);
383 if (error && error != -EOPNOTSUPP)
384 printk(KERN_WARNING
385 "%s: unlock failed, writes may not work\n",
386 mtd->name);
387 }
388
389 /* Caller should have set dev.parent to match the
390 * physical device.
391 */
392 mtd->dev.type = &mtd_devtype;
393 mtd->dev.class = &mtd_class;
394 mtd->dev.devt = MTD_DEVT(i);
395 dev_set_name(&mtd->dev, "mtd%d", i);
396 dev_set_drvdata(&mtd->dev, mtd);
397 if (device_register(&mtd->dev) != 0)
398 goto fail_added;
399
400 if (MTD_DEVT(i))
401 device_create(&mtd_class, mtd->dev.parent,
402 MTD_DEVT(i) + 1,
403 NULL, "mtd%dro", i);
404
405 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
406 /* No need to get a refcount on the module containing
407 the notifier, since we hold the mtd_table_mutex */
408 list_for_each_entry(not, &mtd_notifiers, list)
409 not->add(mtd);
410
411 mutex_unlock(&mtd_table_mutex);
412 /* We _know_ we aren't being removed, because
413 our caller is still holding us here. So none
414 of this try_ nonsense, and no bitching about it
415 either. :) */
416 __module_get(THIS_MODULE);
417 return 0;
418
419 fail_added:
420 idr_remove(&mtd_idr, i);
421 fail_locked:
422 mutex_unlock(&mtd_table_mutex);
423 return 1;
424 }
425
426 /**
427 * del_mtd_device - unregister an MTD device
428 * @mtd: pointer to MTD device info structure
429 *
430 * Remove a device from the list of MTD devices present in the system,
431 * and notify each currently active MTD 'user' of its departure.
432 * Returns zero on success or 1 on failure, which currently will happen
433 * if the requested device does not appear to be present in the list.
434 */
435
436 int del_mtd_device(struct mtd_info *mtd)
437 {
438 int ret;
439 struct mtd_notifier *not;
440
441 mutex_lock(&mtd_table_mutex);
442
443 if (idr_find(&mtd_idr, mtd->index) != mtd) {
444 ret = -ENODEV;
445 goto out_error;
446 }
447
448 /* No need to get a refcount on the module containing
449 the notifier, since we hold the mtd_table_mutex */
450 list_for_each_entry(not, &mtd_notifiers, list)
451 not->remove(mtd);
452
453 if (mtd->usecount) {
454 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
455 mtd->index, mtd->name, mtd->usecount);
456 ret = -EBUSY;
457 } else {
458 device_unregister(&mtd->dev);
459
460 idr_remove(&mtd_idr, mtd->index);
461
462 module_put(THIS_MODULE);
463 ret = 0;
464 }
465
466 out_error:
467 mutex_unlock(&mtd_table_mutex);
468 return ret;
469 }
470
471 /**
472 * mtd_device_parse_register - parse partitions and register an MTD device.
473 *
474 * @mtd: the MTD device to register
475 * @types: the list of MTD partition probes to try, see
476 * 'parse_mtd_partitions()' for more information
477 * @parser_data: MTD partition parser-specific data
478 * @parts: fallback partition information to register, if parsing fails;
479 * only valid if %nr_parts > %0
480 * @nr_parts: the number of partitions in parts, if zero then the full
481 * MTD device is registered if no partition info is found
482 *
483 * This function aggregates MTD partitions parsing (done by
484 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
485 * basically follows the most common pattern found in many MTD drivers:
486 *
487 * * It first tries to probe partitions on MTD device @mtd using parsers
488 * specified in @types (if @types is %NULL, then the default list of parsers
489 * is used, see 'parse_mtd_partitions()' for more information). If none are
490 * found this functions tries to fallback to information specified in
491 * @parts/@nr_parts.
492 * * If any partitioning info was found, this function registers the found
493 * partitions.
494 * * If no partitions were found this function just registers the MTD device
495 * @mtd and exits.
496 *
497 * Returns zero in case of success and a negative error code in case of failure.
498 */
499 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
500 struct mtd_part_parser_data *parser_data,
501 const struct mtd_partition *parts,
502 int nr_parts)
503 {
504 int err;
505 struct mtd_partition *real_parts;
506
507 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
508 if (err <= 0 && nr_parts && parts) {
509 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
510 GFP_KERNEL);
511 if (!real_parts)
512 err = -ENOMEM;
513 else
514 err = nr_parts;
515 }
516
517 if (err > 0) {
518 err = add_mtd_partitions(mtd, real_parts, err);
519 kfree(real_parts);
520 } else if (err == 0) {
521 err = add_mtd_device(mtd);
522 if (err == 1)
523 err = -ENODEV;
524 }
525
526 return err;
527 }
528 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
529
530 /**
531 * mtd_device_unregister - unregister an existing MTD device.
532 *
533 * @master: the MTD device to unregister. This will unregister both the master
534 * and any partitions if registered.
535 */
536 int mtd_device_unregister(struct mtd_info *master)
537 {
538 int err;
539
540 err = del_mtd_partitions(master);
541 if (err)
542 return err;
543
544 if (!device_is_registered(&master->dev))
545 return 0;
546
547 return del_mtd_device(master);
548 }
549 EXPORT_SYMBOL_GPL(mtd_device_unregister);
550
551 /**
552 * register_mtd_user - register a 'user' of MTD devices.
553 * @new: pointer to notifier info structure
554 *
555 * Registers a pair of callbacks function to be called upon addition
556 * or removal of MTD devices. Causes the 'add' callback to be immediately
557 * invoked for each MTD device currently present in the system.
558 */
559 void register_mtd_user (struct mtd_notifier *new)
560 {
561 struct mtd_info *mtd;
562
563 mutex_lock(&mtd_table_mutex);
564
565 list_add(&new->list, &mtd_notifiers);
566
567 __module_get(THIS_MODULE);
568
569 mtd_for_each_device(mtd)
570 new->add(mtd);
571
572 mutex_unlock(&mtd_table_mutex);
573 }
574 EXPORT_SYMBOL_GPL(register_mtd_user);
575
576 /**
577 * unregister_mtd_user - unregister a 'user' of MTD devices.
578 * @old: pointer to notifier info structure
579 *
580 * Removes a callback function pair from the list of 'users' to be
581 * notified upon addition or removal of MTD devices. Causes the
582 * 'remove' callback to be immediately invoked for each MTD device
583 * currently present in the system.
584 */
585 int unregister_mtd_user (struct mtd_notifier *old)
586 {
587 struct mtd_info *mtd;
588
589 mutex_lock(&mtd_table_mutex);
590
591 module_put(THIS_MODULE);
592
593 mtd_for_each_device(mtd)
594 old->remove(mtd);
595
596 list_del(&old->list);
597 mutex_unlock(&mtd_table_mutex);
598 return 0;
599 }
600 EXPORT_SYMBOL_GPL(unregister_mtd_user);
601
602 /**
603 * get_mtd_device - obtain a validated handle for an MTD device
604 * @mtd: last known address of the required MTD device
605 * @num: internal device number of the required MTD device
606 *
607 * Given a number and NULL address, return the num'th entry in the device
608 * table, if any. Given an address and num == -1, search the device table
609 * for a device with that address and return if it's still present. Given
610 * both, return the num'th driver only if its address matches. Return
611 * error code if not.
612 */
613 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
614 {
615 struct mtd_info *ret = NULL, *other;
616 int err = -ENODEV;
617
618 mutex_lock(&mtd_table_mutex);
619
620 if (num == -1) {
621 mtd_for_each_device(other) {
622 if (other == mtd) {
623 ret = mtd;
624 break;
625 }
626 }
627 } else if (num >= 0) {
628 ret = idr_find(&mtd_idr, num);
629 if (mtd && mtd != ret)
630 ret = NULL;
631 }
632
633 if (!ret) {
634 ret = ERR_PTR(err);
635 goto out;
636 }
637
638 err = __get_mtd_device(ret);
639 if (err)
640 ret = ERR_PTR(err);
641 out:
642 mutex_unlock(&mtd_table_mutex);
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(get_mtd_device);
646
647
648 int __get_mtd_device(struct mtd_info *mtd)
649 {
650 int err;
651
652 if (!try_module_get(mtd->owner))
653 return -ENODEV;
654
655 if (mtd->_get_device) {
656 err = mtd->_get_device(mtd);
657
658 if (err) {
659 module_put(mtd->owner);
660 return err;
661 }
662 }
663 mtd->usecount++;
664 return 0;
665 }
666 EXPORT_SYMBOL_GPL(__get_mtd_device);
667
668 /**
669 * get_mtd_device_nm - obtain a validated handle for an MTD device by
670 * device name
671 * @name: MTD device name to open
672 *
673 * This function returns MTD device description structure in case of
674 * success and an error code in case of failure.
675 */
676 struct mtd_info *get_mtd_device_nm(const char *name)
677 {
678 int err = -ENODEV;
679 struct mtd_info *mtd = NULL, *other;
680
681 mutex_lock(&mtd_table_mutex);
682
683 mtd_for_each_device(other) {
684 if (!strcmp(name, other->name)) {
685 mtd = other;
686 break;
687 }
688 }
689
690 if (!mtd)
691 goto out_unlock;
692
693 err = __get_mtd_device(mtd);
694 if (err)
695 goto out_unlock;
696
697 mutex_unlock(&mtd_table_mutex);
698 return mtd;
699
700 out_unlock:
701 mutex_unlock(&mtd_table_mutex);
702 return ERR_PTR(err);
703 }
704 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
705
706 void put_mtd_device(struct mtd_info *mtd)
707 {
708 mutex_lock(&mtd_table_mutex);
709 __put_mtd_device(mtd);
710 mutex_unlock(&mtd_table_mutex);
711
712 }
713 EXPORT_SYMBOL_GPL(put_mtd_device);
714
715 void __put_mtd_device(struct mtd_info *mtd)
716 {
717 --mtd->usecount;
718 BUG_ON(mtd->usecount < 0);
719
720 if (mtd->_put_device)
721 mtd->_put_device(mtd);
722
723 module_put(mtd->owner);
724 }
725 EXPORT_SYMBOL_GPL(__put_mtd_device);
726
727 /*
728 * Erase is an asynchronous operation. Device drivers are supposed
729 * to call instr->callback() whenever the operation completes, even
730 * if it completes with a failure.
731 * Callers are supposed to pass a callback function and wait for it
732 * to be called before writing to the block.
733 */
734 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
735 {
736 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
737 return -EINVAL;
738 if (!(mtd->flags & MTD_WRITEABLE))
739 return -EROFS;
740 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
741 if (!instr->len) {
742 instr->state = MTD_ERASE_DONE;
743 mtd_erase_callback(instr);
744 return 0;
745 }
746 return mtd->_erase(mtd, instr);
747 }
748 EXPORT_SYMBOL_GPL(mtd_erase);
749
750 /*
751 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
752 */
753 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
754 void **virt, resource_size_t *phys)
755 {
756 *retlen = 0;
757 *virt = NULL;
758 if (phys)
759 *phys = 0;
760 if (!mtd->_point)
761 return -EOPNOTSUPP;
762 if (from < 0 || from > mtd->size || len > mtd->size - from)
763 return -EINVAL;
764 if (!len)
765 return 0;
766 return mtd->_point(mtd, from, len, retlen, virt, phys);
767 }
768 EXPORT_SYMBOL_GPL(mtd_point);
769
770 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
771 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
772 {
773 if (!mtd->_point)
774 return -EOPNOTSUPP;
775 if (from < 0 || from > mtd->size || len > mtd->size - from)
776 return -EINVAL;
777 if (!len)
778 return 0;
779 return mtd->_unpoint(mtd, from, len);
780 }
781 EXPORT_SYMBOL_GPL(mtd_unpoint);
782
783 /*
784 * Allow NOMMU mmap() to directly map the device (if not NULL)
785 * - return the address to which the offset maps
786 * - return -ENOSYS to indicate refusal to do the mapping
787 */
788 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
789 unsigned long offset, unsigned long flags)
790 {
791 if (!mtd->_get_unmapped_area)
792 return -EOPNOTSUPP;
793 if (offset > mtd->size || len > mtd->size - offset)
794 return -EINVAL;
795 return mtd->_get_unmapped_area(mtd, len, offset, flags);
796 }
797 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
798
799 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
800 u_char *buf)
801 {
802 int ret_code;
803 *retlen = 0;
804 if (from < 0 || from > mtd->size || len > mtd->size - from)
805 return -EINVAL;
806 if (!len)
807 return 0;
808
809 /*
810 * In the absence of an error, drivers return a non-negative integer
811 * representing the maximum number of bitflips that were corrected on
812 * any one ecc region (if applicable; zero otherwise).
813 */
814 ret_code = mtd->_read(mtd, from, len, retlen, buf);
815 if (unlikely(ret_code < 0))
816 return ret_code;
817 if (mtd->ecc_strength == 0)
818 return 0; /* device lacks ecc */
819 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
820 }
821 EXPORT_SYMBOL_GPL(mtd_read);
822
823 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
824 const u_char *buf)
825 {
826 *retlen = 0;
827 if (to < 0 || to > mtd->size || len > mtd->size - to)
828 return -EINVAL;
829 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
830 return -EROFS;
831 if (!len)
832 return 0;
833 return mtd->_write(mtd, to, len, retlen, buf);
834 }
835 EXPORT_SYMBOL_GPL(mtd_write);
836
837 /*
838 * In blackbox flight recorder like scenarios we want to make successful writes
839 * in interrupt context. panic_write() is only intended to be called when its
840 * known the kernel is about to panic and we need the write to succeed. Since
841 * the kernel is not going to be running for much longer, this function can
842 * break locks and delay to ensure the write succeeds (but not sleep).
843 */
844 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
845 const u_char *buf)
846 {
847 *retlen = 0;
848 if (!mtd->_panic_write)
849 return -EOPNOTSUPP;
850 if (to < 0 || to > mtd->size || len > mtd->size - to)
851 return -EINVAL;
852 if (!(mtd->flags & MTD_WRITEABLE))
853 return -EROFS;
854 if (!len)
855 return 0;
856 return mtd->_panic_write(mtd, to, len, retlen, buf);
857 }
858 EXPORT_SYMBOL_GPL(mtd_panic_write);
859
860 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
861 {
862 int ret_code;
863 ops->retlen = ops->oobretlen = 0;
864 if (!mtd->_read_oob)
865 return -EOPNOTSUPP;
866 /*
867 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
868 * similar to mtd->_read(), returning a non-negative integer
869 * representing max bitflips. In other cases, mtd->_read_oob() may
870 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
871 */
872 ret_code = mtd->_read_oob(mtd, from, ops);
873 if (unlikely(ret_code < 0))
874 return ret_code;
875 if (mtd->ecc_strength == 0)
876 return 0; /* device lacks ecc */
877 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
878 }
879 EXPORT_SYMBOL_GPL(mtd_read_oob);
880
881 /*
882 * Method to access the protection register area, present in some flash
883 * devices. The user data is one time programmable but the factory data is read
884 * only.
885 */
886 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
887 struct otp_info *buf)
888 {
889 if (!mtd->_get_fact_prot_info)
890 return -EOPNOTSUPP;
891 if (!len)
892 return 0;
893 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
894 }
895 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
896
897 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
898 size_t *retlen, u_char *buf)
899 {
900 *retlen = 0;
901 if (!mtd->_read_fact_prot_reg)
902 return -EOPNOTSUPP;
903 if (!len)
904 return 0;
905 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
906 }
907 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
908
909 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
910 struct otp_info *buf)
911 {
912 if (!mtd->_get_user_prot_info)
913 return -EOPNOTSUPP;
914 if (!len)
915 return 0;
916 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
917 }
918 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
919
920 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
921 size_t *retlen, u_char *buf)
922 {
923 *retlen = 0;
924 if (!mtd->_read_user_prot_reg)
925 return -EOPNOTSUPP;
926 if (!len)
927 return 0;
928 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
929 }
930 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
931
932 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
933 size_t *retlen, u_char *buf)
934 {
935 int ret;
936
937 *retlen = 0;
938 if (!mtd->_write_user_prot_reg)
939 return -EOPNOTSUPP;
940 if (!len)
941 return 0;
942 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
943 if (ret)
944 return ret;
945
946 /*
947 * If no data could be written at all, we are out of memory and
948 * must return -ENOSPC.
949 */
950 return (*retlen) ? 0 : -ENOSPC;
951 }
952 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
953
954 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
955 {
956 if (!mtd->_lock_user_prot_reg)
957 return -EOPNOTSUPP;
958 if (!len)
959 return 0;
960 return mtd->_lock_user_prot_reg(mtd, from, len);
961 }
962 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
963
964 /* Chip-supported device locking */
965 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
966 {
967 if (!mtd->_lock)
968 return -EOPNOTSUPP;
969 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
970 return -EINVAL;
971 if (!len)
972 return 0;
973 return mtd->_lock(mtd, ofs, len);
974 }
975 EXPORT_SYMBOL_GPL(mtd_lock);
976
977 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
978 {
979 if (!mtd->_unlock)
980 return -EOPNOTSUPP;
981 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
982 return -EINVAL;
983 if (!len)
984 return 0;
985 return mtd->_unlock(mtd, ofs, len);
986 }
987 EXPORT_SYMBOL_GPL(mtd_unlock);
988
989 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
990 {
991 if (!mtd->_is_locked)
992 return -EOPNOTSUPP;
993 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
994 return -EINVAL;
995 if (!len)
996 return 0;
997 return mtd->_is_locked(mtd, ofs, len);
998 }
999 EXPORT_SYMBOL_GPL(mtd_is_locked);
1000
1001 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1002 {
1003 if (!mtd->_block_isbad)
1004 return 0;
1005 if (ofs < 0 || ofs > mtd->size)
1006 return -EINVAL;
1007 return mtd->_block_isbad(mtd, ofs);
1008 }
1009 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1010
1011 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1012 {
1013 if (!mtd->_block_markbad)
1014 return -EOPNOTSUPP;
1015 if (ofs < 0 || ofs > mtd->size)
1016 return -EINVAL;
1017 if (!(mtd->flags & MTD_WRITEABLE))
1018 return -EROFS;
1019 return mtd->_block_markbad(mtd, ofs);
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1022
1023 /*
1024 * default_mtd_writev - the default writev method
1025 * @mtd: mtd device description object pointer
1026 * @vecs: the vectors to write
1027 * @count: count of vectors in @vecs
1028 * @to: the MTD device offset to write to
1029 * @retlen: on exit contains the count of bytes written to the MTD device.
1030 *
1031 * This function returns zero in case of success and a negative error code in
1032 * case of failure.
1033 */
1034 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1035 unsigned long count, loff_t to, size_t *retlen)
1036 {
1037 unsigned long i;
1038 size_t totlen = 0, thislen;
1039 int ret = 0;
1040
1041 for (i = 0; i < count; i++) {
1042 if (!vecs[i].iov_len)
1043 continue;
1044 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1045 vecs[i].iov_base);
1046 totlen += thislen;
1047 if (ret || thislen != vecs[i].iov_len)
1048 break;
1049 to += vecs[i].iov_len;
1050 }
1051 *retlen = totlen;
1052 return ret;
1053 }
1054
1055 /*
1056 * mtd_writev - the vector-based MTD write method
1057 * @mtd: mtd device description object pointer
1058 * @vecs: the vectors to write
1059 * @count: count of vectors in @vecs
1060 * @to: the MTD device offset to write to
1061 * @retlen: on exit contains the count of bytes written to the MTD device.
1062 *
1063 * This function returns zero in case of success and a negative error code in
1064 * case of failure.
1065 */
1066 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1067 unsigned long count, loff_t to, size_t *retlen)
1068 {
1069 *retlen = 0;
1070 if (!(mtd->flags & MTD_WRITEABLE))
1071 return -EROFS;
1072 if (!mtd->_writev)
1073 return default_mtd_writev(mtd, vecs, count, to, retlen);
1074 return mtd->_writev(mtd, vecs, count, to, retlen);
1075 }
1076 EXPORT_SYMBOL_GPL(mtd_writev);
1077
1078 /**
1079 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080 * @mtd: mtd device description object pointer
1081 * @size: a pointer to the ideal or maximum size of the allocation, points
1082 * to the actual allocation size on success.
1083 *
1084 * This routine attempts to allocate a contiguous kernel buffer up to
1085 * the specified size, backing off the size of the request exponentially
1086 * until the request succeeds or until the allocation size falls below
1087 * the system page size. This attempts to make sure it does not adversely
1088 * impact system performance, so when allocating more than one page, we
1089 * ask the memory allocator to avoid re-trying, swapping, writing back
1090 * or performing I/O.
1091 *
1092 * Note, this function also makes sure that the allocated buffer is aligned to
1093 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1094 *
1095 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096 * to handle smaller (i.e. degraded) buffer allocations under low- or
1097 * fragmented-memory situations where such reduced allocations, from a
1098 * requested ideal, are allowed.
1099 *
1100 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1101 */
1102 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1103 {
1104 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1105 __GFP_NORETRY | __GFP_NO_KSWAPD;
1106 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1107 void *kbuf;
1108
1109 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1110
1111 while (*size > min_alloc) {
1112 kbuf = kmalloc(*size, flags);
1113 if (kbuf)
1114 return kbuf;
1115
1116 *size >>= 1;
1117 *size = ALIGN(*size, mtd->writesize);
1118 }
1119
1120 /*
1121 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1123 */
1124 return kmalloc(*size, GFP_KERNEL);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1127
1128 #ifdef CONFIG_PROC_FS
1129
1130 /*====================================================================*/
1131 /* Support for /proc/mtd */
1132
1133 static int mtd_proc_show(struct seq_file *m, void *v)
1134 {
1135 struct mtd_info *mtd;
1136
1137 seq_puts(m, "dev: size erasesize name\n");
1138 mutex_lock(&mtd_table_mutex);
1139 mtd_for_each_device(mtd) {
1140 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141 mtd->index, (unsigned long long)mtd->size,
1142 mtd->erasesize, mtd->name);
1143 }
1144 mutex_unlock(&mtd_table_mutex);
1145 return 0;
1146 }
1147
1148 static int mtd_proc_open(struct inode *inode, struct file *file)
1149 {
1150 return single_open(file, mtd_proc_show, NULL);
1151 }
1152
1153 static const struct file_operations mtd_proc_ops = {
1154 .open = mtd_proc_open,
1155 .read = seq_read,
1156 .llseek = seq_lseek,
1157 .release = single_release,
1158 };
1159 #endif /* CONFIG_PROC_FS */
1160
1161 /*====================================================================*/
1162 /* Init code */
1163
1164 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1165 {
1166 int ret;
1167
1168 ret = bdi_init(bdi);
1169 if (!ret)
1170 ret = bdi_register(bdi, NULL, "%s", name);
1171
1172 if (ret)
1173 bdi_destroy(bdi);
1174
1175 return ret;
1176 }
1177
1178 static struct proc_dir_entry *proc_mtd;
1179
1180 static int __init init_mtd(void)
1181 {
1182 int ret;
1183
1184 ret = class_register(&mtd_class);
1185 if (ret)
1186 goto err_reg;
1187
1188 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1189 if (ret)
1190 goto err_bdi1;
1191
1192 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1193 if (ret)
1194 goto err_bdi2;
1195
1196 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1197 if (ret)
1198 goto err_bdi3;
1199
1200 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1201
1202 ret = init_mtdchar();
1203 if (ret)
1204 goto out_procfs;
1205
1206 return 0;
1207
1208 out_procfs:
1209 if (proc_mtd)
1210 remove_proc_entry("mtd", NULL);
1211 err_bdi3:
1212 bdi_destroy(&mtd_bdi_ro_mappable);
1213 err_bdi2:
1214 bdi_destroy(&mtd_bdi_unmappable);
1215 err_bdi1:
1216 class_unregister(&mtd_class);
1217 err_reg:
1218 pr_err("Error registering mtd class or bdi: %d\n", ret);
1219 return ret;
1220 }
1221
1222 static void __exit cleanup_mtd(void)
1223 {
1224 cleanup_mtdchar();
1225 if (proc_mtd)
1226 remove_proc_entry("mtd", NULL);
1227 class_unregister(&mtd_class);
1228 bdi_destroy(&mtd_bdi_unmappable);
1229 bdi_destroy(&mtd_bdi_ro_mappable);
1230 bdi_destroy(&mtd_bdi_rw_mappable);
1231 }
1232
1233 module_init(init_mtd);
1234 module_exit(cleanup_mtd);
1235
1236 MODULE_LICENSE("GPL");
1237 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238 MODULE_DESCRIPTION("Core MTD registration and access routines");