]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdcore.c
HID: udraw-ps3: accel_limits is local to the driver
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46
47 #include "mtdcore.h"
48
49 static struct backing_dev_info mtd_bdi = {
50 };
51
52 #ifdef CONFIG_PM_SLEEP
53
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59 }
60
61 static int mtd_cls_resume(struct device *dev)
62 {
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68 }
69
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
80 };
81
82 static DEFINE_IDR(mtd_idr);
83
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94
95 static LIST_HEAD(mtd_notifiers);
96
97
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103 static void mtd_release(struct device *dev)
104 {
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
107
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
110 }
111
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114 {
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153 {
154 struct mtd_info *mtd = dev_get_drvdata(dev);
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163 {
164 struct mtd_info *mtd = dev_get_drvdata(dev);
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174 {
175 struct mtd_info *mtd = dev_get_drvdata(dev);
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184 {
185 struct mtd_info *mtd = dev_get_drvdata(dev);
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
223
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 struct mtd_info *mtd = dev_get_drvdata(dev);
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
246 {
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
259
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
263
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
270
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
291
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294 {
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314 {
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321
322 static struct attribute *mtd_attrs[] = {
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
339 NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342
343 static struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
347 };
348
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
361 }
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
368 {
369 struct mtd_info *mtd;
370
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
373
374 return NOTIFY_DONE;
375 }
376
377 /**
378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
379 * @mtd: pointer to new MTD device info structure
380 * @wunit: write unit we are interested in
381 * @info: returned pairing information
382 *
383 * Retrieve pairing information associated to the wunit.
384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385 * paired together, and where programming a page may influence the page it is
386 * paired with.
387 * The notion of page is replaced by the term wunit (write-unit) to stay
388 * consistent with the ->writesize field.
389 *
390 * The @wunit argument can be extracted from an absolute offset using
391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392 * to @wunit.
393 *
394 * From the pairing info the MTD user can find all the wunits paired with
395 * @wunit using the following loop:
396 *
397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398 * info.pair = i;
399 * mtd_pairing_info_to_wunit(mtd, &info);
400 * ...
401 * }
402 */
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 struct mtd_pairing_info *info)
405 {
406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407
408 if (wunit < 0 || wunit >= npairs)
409 return -EINVAL;
410
411 if (mtd->pairing && mtd->pairing->get_info)
412 return mtd->pairing->get_info(mtd, wunit, info);
413
414 info->group = 0;
415 info->pair = wunit;
416
417 return 0;
418 }
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420
421 /**
422 * mtd_wunit_to_pairing_info - get wunit from pairing information
423 * @mtd: pointer to new MTD device info structure
424 * @info: pairing information struct
425 *
426 * Returns a positive number representing the wunit associated to the info
427 * struct, or a negative error code.
428 *
429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431 * doc).
432 *
433 * It can also be used to only program the first page of each pair (i.e.
434 * page attached to group 0), which allows one to use an MLC NAND in
435 * software-emulated SLC mode:
436 *
437 * info.group = 0;
438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
440 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
443 * }
444 */
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 const struct mtd_pairing_info *info)
447 {
448 int ngroups = mtd_pairing_groups(mtd);
449 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450
451 if (!info || info->pair < 0 || info->pair >= npairs ||
452 info->group < 0 || info->group >= ngroups)
453 return -EINVAL;
454
455 if (mtd->pairing && mtd->pairing->get_wunit)
456 return mtd->pairing->get_wunit(mtd, info);
457
458 return info->pair;
459 }
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461
462 /**
463 * mtd_pairing_groups - get the number of pairing groups
464 * @mtd: pointer to new MTD device info structure
465 *
466 * Returns the number of pairing groups.
467 *
468 * This number is usually equal to the number of bits exposed by a single
469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470 * to iterate over all pages of a given pair.
471 */
472 int mtd_pairing_groups(struct mtd_info *mtd)
473 {
474 if (!mtd->pairing || !mtd->pairing->ngroups)
475 return 1;
476
477 return mtd->pairing->ngroups;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480
481 /**
482 * add_mtd_device - register an MTD device
483 * @mtd: pointer to new MTD device info structure
484 *
485 * Add a device to the list of MTD devices present in the system, and
486 * notify each currently active MTD 'user' of its arrival. Returns
487 * zero on success or non-zero on failure.
488 */
489
490 int add_mtd_device(struct mtd_info *mtd)
491 {
492 struct mtd_notifier *not;
493 int i, error;
494
495 /*
496 * May occur, for instance, on buggy drivers which call
497 * mtd_device_parse_register() multiple times on the same master MTD,
498 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
499 */
500 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
501 return -EEXIST;
502
503 mtd->backing_dev_info = &mtd_bdi;
504
505 BUG_ON(mtd->writesize == 0);
506 mutex_lock(&mtd_table_mutex);
507
508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
509 if (i < 0) {
510 error = i;
511 goto fail_locked;
512 }
513
514 mtd->index = i;
515 mtd->usecount = 0;
516
517 /* default value if not set by driver */
518 if (mtd->bitflip_threshold == 0)
519 mtd->bitflip_threshold = mtd->ecc_strength;
520
521 if (is_power_of_2(mtd->erasesize))
522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
523 else
524 mtd->erasesize_shift = 0;
525
526 if (is_power_of_2(mtd->writesize))
527 mtd->writesize_shift = ffs(mtd->writesize) - 1;
528 else
529 mtd->writesize_shift = 0;
530
531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
533
534 /* Some chips always power up locked. Unlock them now */
535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
536 error = mtd_unlock(mtd, 0, mtd->size);
537 if (error && error != -EOPNOTSUPP)
538 printk(KERN_WARNING
539 "%s: unlock failed, writes may not work\n",
540 mtd->name);
541 /* Ignore unlock failures? */
542 error = 0;
543 }
544
545 /* Caller should have set dev.parent to match the
546 * physical device, if appropriate.
547 */
548 mtd->dev.type = &mtd_devtype;
549 mtd->dev.class = &mtd_class;
550 mtd->dev.devt = MTD_DEVT(i);
551 dev_set_name(&mtd->dev, "mtd%d", i);
552 dev_set_drvdata(&mtd->dev, mtd);
553 of_node_get(mtd_get_of_node(mtd));
554 error = device_register(&mtd->dev);
555 if (error)
556 goto fail_added;
557
558 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
559 "mtd%dro", i);
560
561 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
562 /* No need to get a refcount on the module containing
563 the notifier, since we hold the mtd_table_mutex */
564 list_for_each_entry(not, &mtd_notifiers, list)
565 not->add(mtd);
566
567 mutex_unlock(&mtd_table_mutex);
568 /* We _know_ we aren't being removed, because
569 our caller is still holding us here. So none
570 of this try_ nonsense, and no bitching about it
571 either. :) */
572 __module_get(THIS_MODULE);
573 return 0;
574
575 fail_added:
576 of_node_put(mtd_get_of_node(mtd));
577 idr_remove(&mtd_idr, i);
578 fail_locked:
579 mutex_unlock(&mtd_table_mutex);
580 return error;
581 }
582
583 /**
584 * del_mtd_device - unregister an MTD device
585 * @mtd: pointer to MTD device info structure
586 *
587 * Remove a device from the list of MTD devices present in the system,
588 * and notify each currently active MTD 'user' of its departure.
589 * Returns zero on success or 1 on failure, which currently will happen
590 * if the requested device does not appear to be present in the list.
591 */
592
593 int del_mtd_device(struct mtd_info *mtd)
594 {
595 int ret;
596 struct mtd_notifier *not;
597
598 mutex_lock(&mtd_table_mutex);
599
600 if (idr_find(&mtd_idr, mtd->index) != mtd) {
601 ret = -ENODEV;
602 goto out_error;
603 }
604
605 /* No need to get a refcount on the module containing
606 the notifier, since we hold the mtd_table_mutex */
607 list_for_each_entry(not, &mtd_notifiers, list)
608 not->remove(mtd);
609
610 if (mtd->usecount) {
611 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
612 mtd->index, mtd->name, mtd->usecount);
613 ret = -EBUSY;
614 } else {
615 device_unregister(&mtd->dev);
616
617 idr_remove(&mtd_idr, mtd->index);
618 of_node_put(mtd_get_of_node(mtd));
619
620 module_put(THIS_MODULE);
621 ret = 0;
622 }
623
624 out_error:
625 mutex_unlock(&mtd_table_mutex);
626 return ret;
627 }
628
629 static int mtd_add_device_partitions(struct mtd_info *mtd,
630 struct mtd_partitions *parts)
631 {
632 const struct mtd_partition *real_parts = parts->parts;
633 int nbparts = parts->nr_parts;
634 int ret;
635
636 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
637 ret = add_mtd_device(mtd);
638 if (ret)
639 return ret;
640 }
641
642 if (nbparts > 0) {
643 ret = add_mtd_partitions(mtd, real_parts, nbparts);
644 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
645 del_mtd_device(mtd);
646 return ret;
647 }
648
649 return 0;
650 }
651
652 /*
653 * Set a few defaults based on the parent devices, if not provided by the
654 * driver
655 */
656 static void mtd_set_dev_defaults(struct mtd_info *mtd)
657 {
658 if (mtd->dev.parent) {
659 if (!mtd->owner && mtd->dev.parent->driver)
660 mtd->owner = mtd->dev.parent->driver->owner;
661 if (!mtd->name)
662 mtd->name = dev_name(mtd->dev.parent);
663 } else {
664 pr_debug("mtd device won't show a device symlink in sysfs\n");
665 }
666 }
667
668 /**
669 * mtd_device_parse_register - parse partitions and register an MTD device.
670 *
671 * @mtd: the MTD device to register
672 * @types: the list of MTD partition probes to try, see
673 * 'parse_mtd_partitions()' for more information
674 * @parser_data: MTD partition parser-specific data
675 * @parts: fallback partition information to register, if parsing fails;
676 * only valid if %nr_parts > %0
677 * @nr_parts: the number of partitions in parts, if zero then the full
678 * MTD device is registered if no partition info is found
679 *
680 * This function aggregates MTD partitions parsing (done by
681 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
682 * basically follows the most common pattern found in many MTD drivers:
683 *
684 * * It first tries to probe partitions on MTD device @mtd using parsers
685 * specified in @types (if @types is %NULL, then the default list of parsers
686 * is used, see 'parse_mtd_partitions()' for more information). If none are
687 * found this functions tries to fallback to information specified in
688 * @parts/@nr_parts.
689 * * If any partitioning info was found, this function registers the found
690 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
691 * as a whole is registered first.
692 * * If no partitions were found this function just registers the MTD device
693 * @mtd and exits.
694 *
695 * Returns zero in case of success and a negative error code in case of failure.
696 */
697 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
698 struct mtd_part_parser_data *parser_data,
699 const struct mtd_partition *parts,
700 int nr_parts)
701 {
702 struct mtd_partitions parsed;
703 int ret;
704
705 mtd_set_dev_defaults(mtd);
706
707 memset(&parsed, 0, sizeof(parsed));
708
709 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
710 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
711 /* Fall back to driver-provided partitions */
712 parsed = (struct mtd_partitions){
713 .parts = parts,
714 .nr_parts = nr_parts,
715 };
716 } else if (ret < 0) {
717 /* Didn't come up with parsed OR fallback partitions */
718 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
719 ret);
720 /* Don't abort on errors; we can still use unpartitioned MTD */
721 memset(&parsed, 0, sizeof(parsed));
722 }
723
724 ret = mtd_add_device_partitions(mtd, &parsed);
725 if (ret)
726 goto out;
727
728 /*
729 * FIXME: some drivers unfortunately call this function more than once.
730 * So we have to check if we've already assigned the reboot notifier.
731 *
732 * Generally, we can make multiple calls work for most cases, but it
733 * does cause problems with parse_mtd_partitions() above (e.g.,
734 * cmdlineparts will register partitions more than once).
735 */
736 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
737 "MTD already registered\n");
738 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
739 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
740 register_reboot_notifier(&mtd->reboot_notifier);
741 }
742
743 out:
744 /* Cleanup any parsed partitions */
745 mtd_part_parser_cleanup(&parsed);
746 return ret;
747 }
748 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
749
750 /**
751 * mtd_device_unregister - unregister an existing MTD device.
752 *
753 * @master: the MTD device to unregister. This will unregister both the master
754 * and any partitions if registered.
755 */
756 int mtd_device_unregister(struct mtd_info *master)
757 {
758 int err;
759
760 if (master->_reboot)
761 unregister_reboot_notifier(&master->reboot_notifier);
762
763 err = del_mtd_partitions(master);
764 if (err)
765 return err;
766
767 if (!device_is_registered(&master->dev))
768 return 0;
769
770 return del_mtd_device(master);
771 }
772 EXPORT_SYMBOL_GPL(mtd_device_unregister);
773
774 /**
775 * register_mtd_user - register a 'user' of MTD devices.
776 * @new: pointer to notifier info structure
777 *
778 * Registers a pair of callbacks function to be called upon addition
779 * or removal of MTD devices. Causes the 'add' callback to be immediately
780 * invoked for each MTD device currently present in the system.
781 */
782 void register_mtd_user (struct mtd_notifier *new)
783 {
784 struct mtd_info *mtd;
785
786 mutex_lock(&mtd_table_mutex);
787
788 list_add(&new->list, &mtd_notifiers);
789
790 __module_get(THIS_MODULE);
791
792 mtd_for_each_device(mtd)
793 new->add(mtd);
794
795 mutex_unlock(&mtd_table_mutex);
796 }
797 EXPORT_SYMBOL_GPL(register_mtd_user);
798
799 /**
800 * unregister_mtd_user - unregister a 'user' of MTD devices.
801 * @old: pointer to notifier info structure
802 *
803 * Removes a callback function pair from the list of 'users' to be
804 * notified upon addition or removal of MTD devices. Causes the
805 * 'remove' callback to be immediately invoked for each MTD device
806 * currently present in the system.
807 */
808 int unregister_mtd_user (struct mtd_notifier *old)
809 {
810 struct mtd_info *mtd;
811
812 mutex_lock(&mtd_table_mutex);
813
814 module_put(THIS_MODULE);
815
816 mtd_for_each_device(mtd)
817 old->remove(mtd);
818
819 list_del(&old->list);
820 mutex_unlock(&mtd_table_mutex);
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(unregister_mtd_user);
824
825 /**
826 * get_mtd_device - obtain a validated handle for an MTD device
827 * @mtd: last known address of the required MTD device
828 * @num: internal device number of the required MTD device
829 *
830 * Given a number and NULL address, return the num'th entry in the device
831 * table, if any. Given an address and num == -1, search the device table
832 * for a device with that address and return if it's still present. Given
833 * both, return the num'th driver only if its address matches. Return
834 * error code if not.
835 */
836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
837 {
838 struct mtd_info *ret = NULL, *other;
839 int err = -ENODEV;
840
841 mutex_lock(&mtd_table_mutex);
842
843 if (num == -1) {
844 mtd_for_each_device(other) {
845 if (other == mtd) {
846 ret = mtd;
847 break;
848 }
849 }
850 } else if (num >= 0) {
851 ret = idr_find(&mtd_idr, num);
852 if (mtd && mtd != ret)
853 ret = NULL;
854 }
855
856 if (!ret) {
857 ret = ERR_PTR(err);
858 goto out;
859 }
860
861 err = __get_mtd_device(ret);
862 if (err)
863 ret = ERR_PTR(err);
864 out:
865 mutex_unlock(&mtd_table_mutex);
866 return ret;
867 }
868 EXPORT_SYMBOL_GPL(get_mtd_device);
869
870
871 int __get_mtd_device(struct mtd_info *mtd)
872 {
873 int err;
874
875 if (!try_module_get(mtd->owner))
876 return -ENODEV;
877
878 if (mtd->_get_device) {
879 err = mtd->_get_device(mtd);
880
881 if (err) {
882 module_put(mtd->owner);
883 return err;
884 }
885 }
886 mtd->usecount++;
887 return 0;
888 }
889 EXPORT_SYMBOL_GPL(__get_mtd_device);
890
891 /**
892 * get_mtd_device_nm - obtain a validated handle for an MTD device by
893 * device name
894 * @name: MTD device name to open
895 *
896 * This function returns MTD device description structure in case of
897 * success and an error code in case of failure.
898 */
899 struct mtd_info *get_mtd_device_nm(const char *name)
900 {
901 int err = -ENODEV;
902 struct mtd_info *mtd = NULL, *other;
903
904 mutex_lock(&mtd_table_mutex);
905
906 mtd_for_each_device(other) {
907 if (!strcmp(name, other->name)) {
908 mtd = other;
909 break;
910 }
911 }
912
913 if (!mtd)
914 goto out_unlock;
915
916 err = __get_mtd_device(mtd);
917 if (err)
918 goto out_unlock;
919
920 mutex_unlock(&mtd_table_mutex);
921 return mtd;
922
923 out_unlock:
924 mutex_unlock(&mtd_table_mutex);
925 return ERR_PTR(err);
926 }
927 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
928
929 void put_mtd_device(struct mtd_info *mtd)
930 {
931 mutex_lock(&mtd_table_mutex);
932 __put_mtd_device(mtd);
933 mutex_unlock(&mtd_table_mutex);
934
935 }
936 EXPORT_SYMBOL_GPL(put_mtd_device);
937
938 void __put_mtd_device(struct mtd_info *mtd)
939 {
940 --mtd->usecount;
941 BUG_ON(mtd->usecount < 0);
942
943 if (mtd->_put_device)
944 mtd->_put_device(mtd);
945
946 module_put(mtd->owner);
947 }
948 EXPORT_SYMBOL_GPL(__put_mtd_device);
949
950 /*
951 * Erase is an asynchronous operation. Device drivers are supposed
952 * to call instr->callback() whenever the operation completes, even
953 * if it completes with a failure.
954 * Callers are supposed to pass a callback function and wait for it
955 * to be called before writing to the block.
956 */
957 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
958 {
959 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
960 return -EINVAL;
961 if (!(mtd->flags & MTD_WRITEABLE))
962 return -EROFS;
963 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
964 if (!instr->len) {
965 instr->state = MTD_ERASE_DONE;
966 mtd_erase_callback(instr);
967 return 0;
968 }
969 ledtrig_mtd_activity();
970 return mtd->_erase(mtd, instr);
971 }
972 EXPORT_SYMBOL_GPL(mtd_erase);
973
974 /*
975 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
976 */
977 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
978 void **virt, resource_size_t *phys)
979 {
980 *retlen = 0;
981 *virt = NULL;
982 if (phys)
983 *phys = 0;
984 if (!mtd->_point)
985 return -EOPNOTSUPP;
986 if (from < 0 || from >= mtd->size || len > mtd->size - from)
987 return -EINVAL;
988 if (!len)
989 return 0;
990 return mtd->_point(mtd, from, len, retlen, virt, phys);
991 }
992 EXPORT_SYMBOL_GPL(mtd_point);
993
994 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
995 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
996 {
997 if (!mtd->_point)
998 return -EOPNOTSUPP;
999 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1000 return -EINVAL;
1001 if (!len)
1002 return 0;
1003 return mtd->_unpoint(mtd, from, len);
1004 }
1005 EXPORT_SYMBOL_GPL(mtd_unpoint);
1006
1007 /*
1008 * Allow NOMMU mmap() to directly map the device (if not NULL)
1009 * - return the address to which the offset maps
1010 * - return -ENOSYS to indicate refusal to do the mapping
1011 */
1012 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1013 unsigned long offset, unsigned long flags)
1014 {
1015 if (!mtd->_get_unmapped_area)
1016 return -EOPNOTSUPP;
1017 if (offset >= mtd->size || len > mtd->size - offset)
1018 return -EINVAL;
1019 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1022
1023 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1024 u_char *buf)
1025 {
1026 int ret_code;
1027 *retlen = 0;
1028 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1029 return -EINVAL;
1030 if (!len)
1031 return 0;
1032
1033 ledtrig_mtd_activity();
1034 /*
1035 * In the absence of an error, drivers return a non-negative integer
1036 * representing the maximum number of bitflips that were corrected on
1037 * any one ecc region (if applicable; zero otherwise).
1038 */
1039 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1040 if (unlikely(ret_code < 0))
1041 return ret_code;
1042 if (mtd->ecc_strength == 0)
1043 return 0; /* device lacks ecc */
1044 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1045 }
1046 EXPORT_SYMBOL_GPL(mtd_read);
1047
1048 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1049 const u_char *buf)
1050 {
1051 *retlen = 0;
1052 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1053 return -EINVAL;
1054 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1055 return -EROFS;
1056 if (!len)
1057 return 0;
1058 ledtrig_mtd_activity();
1059 return mtd->_write(mtd, to, len, retlen, buf);
1060 }
1061 EXPORT_SYMBOL_GPL(mtd_write);
1062
1063 /*
1064 * In blackbox flight recorder like scenarios we want to make successful writes
1065 * in interrupt context. panic_write() is only intended to be called when its
1066 * known the kernel is about to panic and we need the write to succeed. Since
1067 * the kernel is not going to be running for much longer, this function can
1068 * break locks and delay to ensure the write succeeds (but not sleep).
1069 */
1070 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1071 const u_char *buf)
1072 {
1073 *retlen = 0;
1074 if (!mtd->_panic_write)
1075 return -EOPNOTSUPP;
1076 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1077 return -EINVAL;
1078 if (!(mtd->flags & MTD_WRITEABLE))
1079 return -EROFS;
1080 if (!len)
1081 return 0;
1082 return mtd->_panic_write(mtd, to, len, retlen, buf);
1083 }
1084 EXPORT_SYMBOL_GPL(mtd_panic_write);
1085
1086 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1087 {
1088 int ret_code;
1089 ops->retlen = ops->oobretlen = 0;
1090 if (!mtd->_read_oob)
1091 return -EOPNOTSUPP;
1092
1093 ledtrig_mtd_activity();
1094 /*
1095 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1096 * similar to mtd->_read(), returning a non-negative integer
1097 * representing max bitflips. In other cases, mtd->_read_oob() may
1098 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1099 */
1100 ret_code = mtd->_read_oob(mtd, from, ops);
1101 if (unlikely(ret_code < 0))
1102 return ret_code;
1103 if (mtd->ecc_strength == 0)
1104 return 0; /* device lacks ecc */
1105 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1106 }
1107 EXPORT_SYMBOL_GPL(mtd_read_oob);
1108
1109 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1110 struct mtd_oob_ops *ops)
1111 {
1112 ops->retlen = ops->oobretlen = 0;
1113 if (!mtd->_write_oob)
1114 return -EOPNOTSUPP;
1115 if (!(mtd->flags & MTD_WRITEABLE))
1116 return -EROFS;
1117 ledtrig_mtd_activity();
1118 return mtd->_write_oob(mtd, to, ops);
1119 }
1120 EXPORT_SYMBOL_GPL(mtd_write_oob);
1121
1122 /**
1123 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1124 * @mtd: MTD device structure
1125 * @section: ECC section. Depending on the layout you may have all the ECC
1126 * bytes stored in a single contiguous section, or one section
1127 * per ECC chunk (and sometime several sections for a single ECC
1128 * ECC chunk)
1129 * @oobecc: OOB region struct filled with the appropriate ECC position
1130 * information
1131 *
1132 * This functions return ECC section information in the OOB area. I you want
1133 * to get all the ECC bytes information, then you should call
1134 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1135 *
1136 * Returns zero on success, a negative error code otherwise.
1137 */
1138 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1139 struct mtd_oob_region *oobecc)
1140 {
1141 memset(oobecc, 0, sizeof(*oobecc));
1142
1143 if (!mtd || section < 0)
1144 return -EINVAL;
1145
1146 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1147 return -ENOTSUPP;
1148
1149 return mtd->ooblayout->ecc(mtd, section, oobecc);
1150 }
1151 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1152
1153 /**
1154 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1155 * section
1156 * @mtd: MTD device structure
1157 * @section: Free section you are interested in. Depending on the layout
1158 * you may have all the free bytes stored in a single contiguous
1159 * section, or one section per ECC chunk plus an extra section
1160 * for the remaining bytes (or other funky layout).
1161 * @oobfree: OOB region struct filled with the appropriate free position
1162 * information
1163 *
1164 * This functions return free bytes position in the OOB area. I you want
1165 * to get all the free bytes information, then you should call
1166 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1167 *
1168 * Returns zero on success, a negative error code otherwise.
1169 */
1170 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1171 struct mtd_oob_region *oobfree)
1172 {
1173 memset(oobfree, 0, sizeof(*oobfree));
1174
1175 if (!mtd || section < 0)
1176 return -EINVAL;
1177
1178 if (!mtd->ooblayout || !mtd->ooblayout->free)
1179 return -ENOTSUPP;
1180
1181 return mtd->ooblayout->free(mtd, section, oobfree);
1182 }
1183 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1184
1185 /**
1186 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1187 * @mtd: mtd info structure
1188 * @byte: the byte we are searching for
1189 * @sectionp: pointer where the section id will be stored
1190 * @oobregion: used to retrieve the ECC position
1191 * @iter: iterator function. Should be either mtd_ooblayout_free or
1192 * mtd_ooblayout_ecc depending on the region type you're searching for
1193 *
1194 * This functions returns the section id and oobregion information of a
1195 * specific byte. For example, say you want to know where the 4th ECC byte is
1196 * stored, you'll use:
1197 *
1198 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1199 *
1200 * Returns zero on success, a negative error code otherwise.
1201 */
1202 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1203 int *sectionp, struct mtd_oob_region *oobregion,
1204 int (*iter)(struct mtd_info *,
1205 int section,
1206 struct mtd_oob_region *oobregion))
1207 {
1208 int pos = 0, ret, section = 0;
1209
1210 memset(oobregion, 0, sizeof(*oobregion));
1211
1212 while (1) {
1213 ret = iter(mtd, section, oobregion);
1214 if (ret)
1215 return ret;
1216
1217 if (pos + oobregion->length > byte)
1218 break;
1219
1220 pos += oobregion->length;
1221 section++;
1222 }
1223
1224 /*
1225 * Adjust region info to make it start at the beginning at the
1226 * 'start' ECC byte.
1227 */
1228 oobregion->offset += byte - pos;
1229 oobregion->length -= byte - pos;
1230 *sectionp = section;
1231
1232 return 0;
1233 }
1234
1235 /**
1236 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1237 * ECC byte
1238 * @mtd: mtd info structure
1239 * @eccbyte: the byte we are searching for
1240 * @sectionp: pointer where the section id will be stored
1241 * @oobregion: OOB region information
1242 *
1243 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1244 * byte.
1245 *
1246 * Returns zero on success, a negative error code otherwise.
1247 */
1248 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1249 int *section,
1250 struct mtd_oob_region *oobregion)
1251 {
1252 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1253 mtd_ooblayout_ecc);
1254 }
1255 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1256
1257 /**
1258 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1259 * @mtd: mtd info structure
1260 * @buf: destination buffer to store OOB bytes
1261 * @oobbuf: OOB buffer
1262 * @start: first byte to retrieve
1263 * @nbytes: number of bytes to retrieve
1264 * @iter: section iterator
1265 *
1266 * Extract bytes attached to a specific category (ECC or free)
1267 * from the OOB buffer and copy them into buf.
1268 *
1269 * Returns zero on success, a negative error code otherwise.
1270 */
1271 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1272 const u8 *oobbuf, int start, int nbytes,
1273 int (*iter)(struct mtd_info *,
1274 int section,
1275 struct mtd_oob_region *oobregion))
1276 {
1277 struct mtd_oob_region oobregion = { };
1278 int section = 0, ret;
1279
1280 ret = mtd_ooblayout_find_region(mtd, start, &section,
1281 &oobregion, iter);
1282
1283 while (!ret) {
1284 int cnt;
1285
1286 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1287 memcpy(buf, oobbuf + oobregion.offset, cnt);
1288 buf += cnt;
1289 nbytes -= cnt;
1290
1291 if (!nbytes)
1292 break;
1293
1294 ret = iter(mtd, ++section, &oobregion);
1295 }
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1302 * @mtd: mtd info structure
1303 * @buf: source buffer to get OOB bytes from
1304 * @oobbuf: OOB buffer
1305 * @start: first OOB byte to set
1306 * @nbytes: number of OOB bytes to set
1307 * @iter: section iterator
1308 *
1309 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1310 * is selected by passing the appropriate iterator.
1311 *
1312 * Returns zero on success, a negative error code otherwise.
1313 */
1314 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1315 u8 *oobbuf, int start, int nbytes,
1316 int (*iter)(struct mtd_info *,
1317 int section,
1318 struct mtd_oob_region *oobregion))
1319 {
1320 struct mtd_oob_region oobregion = { };
1321 int section = 0, ret;
1322
1323 ret = mtd_ooblayout_find_region(mtd, start, &section,
1324 &oobregion, iter);
1325
1326 while (!ret) {
1327 int cnt;
1328
1329 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1330 memcpy(oobbuf + oobregion.offset, buf, cnt);
1331 buf += cnt;
1332 nbytes -= cnt;
1333
1334 if (!nbytes)
1335 break;
1336
1337 ret = iter(mtd, ++section, &oobregion);
1338 }
1339
1340 return ret;
1341 }
1342
1343 /**
1344 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1345 * @mtd: mtd info structure
1346 * @iter: category iterator
1347 *
1348 * Count the number of bytes in a given category.
1349 *
1350 * Returns a positive value on success, a negative error code otherwise.
1351 */
1352 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1353 int (*iter)(struct mtd_info *,
1354 int section,
1355 struct mtd_oob_region *oobregion))
1356 {
1357 struct mtd_oob_region oobregion = { };
1358 int section = 0, ret, nbytes = 0;
1359
1360 while (1) {
1361 ret = iter(mtd, section++, &oobregion);
1362 if (ret) {
1363 if (ret == -ERANGE)
1364 ret = nbytes;
1365 break;
1366 }
1367
1368 nbytes += oobregion.length;
1369 }
1370
1371 return ret;
1372 }
1373
1374 /**
1375 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1376 * @mtd: mtd info structure
1377 * @eccbuf: destination buffer to store ECC bytes
1378 * @oobbuf: OOB buffer
1379 * @start: first ECC byte to retrieve
1380 * @nbytes: number of ECC bytes to retrieve
1381 *
1382 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1383 *
1384 * Returns zero on success, a negative error code otherwise.
1385 */
1386 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1387 const u8 *oobbuf, int start, int nbytes)
1388 {
1389 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1390 mtd_ooblayout_ecc);
1391 }
1392 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1393
1394 /**
1395 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1396 * @mtd: mtd info structure
1397 * @eccbuf: source buffer to get ECC bytes from
1398 * @oobbuf: OOB buffer
1399 * @start: first ECC byte to set
1400 * @nbytes: number of ECC bytes to set
1401 *
1402 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1403 *
1404 * Returns zero on success, a negative error code otherwise.
1405 */
1406 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1407 u8 *oobbuf, int start, int nbytes)
1408 {
1409 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1410 mtd_ooblayout_ecc);
1411 }
1412 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1413
1414 /**
1415 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1416 * @mtd: mtd info structure
1417 * @databuf: destination buffer to store ECC bytes
1418 * @oobbuf: OOB buffer
1419 * @start: first ECC byte to retrieve
1420 * @nbytes: number of ECC bytes to retrieve
1421 *
1422 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1423 *
1424 * Returns zero on success, a negative error code otherwise.
1425 */
1426 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1427 const u8 *oobbuf, int start, int nbytes)
1428 {
1429 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1430 mtd_ooblayout_free);
1431 }
1432 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1433
1434 /**
1435 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1436 * @mtd: mtd info structure
1437 * @eccbuf: source buffer to get data bytes from
1438 * @oobbuf: OOB buffer
1439 * @start: first ECC byte to set
1440 * @nbytes: number of ECC bytes to set
1441 *
1442 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1443 *
1444 * Returns zero on success, a negative error code otherwise.
1445 */
1446 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1447 u8 *oobbuf, int start, int nbytes)
1448 {
1449 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1450 mtd_ooblayout_free);
1451 }
1452 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1453
1454 /**
1455 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1456 * @mtd: mtd info structure
1457 *
1458 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1459 *
1460 * Returns zero on success, a negative error code otherwise.
1461 */
1462 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1463 {
1464 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1465 }
1466 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1467
1468 /**
1469 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1470 * @mtd: mtd info structure
1471 *
1472 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1473 *
1474 * Returns zero on success, a negative error code otherwise.
1475 */
1476 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1477 {
1478 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1479 }
1480 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1481
1482 /*
1483 * Method to access the protection register area, present in some flash
1484 * devices. The user data is one time programmable but the factory data is read
1485 * only.
1486 */
1487 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1488 struct otp_info *buf)
1489 {
1490 if (!mtd->_get_fact_prot_info)
1491 return -EOPNOTSUPP;
1492 if (!len)
1493 return 0;
1494 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1495 }
1496 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1497
1498 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1499 size_t *retlen, u_char *buf)
1500 {
1501 *retlen = 0;
1502 if (!mtd->_read_fact_prot_reg)
1503 return -EOPNOTSUPP;
1504 if (!len)
1505 return 0;
1506 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1507 }
1508 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1509
1510 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1511 struct otp_info *buf)
1512 {
1513 if (!mtd->_get_user_prot_info)
1514 return -EOPNOTSUPP;
1515 if (!len)
1516 return 0;
1517 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1518 }
1519 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1520
1521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1522 size_t *retlen, u_char *buf)
1523 {
1524 *retlen = 0;
1525 if (!mtd->_read_user_prot_reg)
1526 return -EOPNOTSUPP;
1527 if (!len)
1528 return 0;
1529 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1530 }
1531 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1532
1533 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1534 size_t *retlen, u_char *buf)
1535 {
1536 int ret;
1537
1538 *retlen = 0;
1539 if (!mtd->_write_user_prot_reg)
1540 return -EOPNOTSUPP;
1541 if (!len)
1542 return 0;
1543 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1544 if (ret)
1545 return ret;
1546
1547 /*
1548 * If no data could be written at all, we are out of memory and
1549 * must return -ENOSPC.
1550 */
1551 return (*retlen) ? 0 : -ENOSPC;
1552 }
1553 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1554
1555 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1556 {
1557 if (!mtd->_lock_user_prot_reg)
1558 return -EOPNOTSUPP;
1559 if (!len)
1560 return 0;
1561 return mtd->_lock_user_prot_reg(mtd, from, len);
1562 }
1563 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1564
1565 /* Chip-supported device locking */
1566 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1567 {
1568 if (!mtd->_lock)
1569 return -EOPNOTSUPP;
1570 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1571 return -EINVAL;
1572 if (!len)
1573 return 0;
1574 return mtd->_lock(mtd, ofs, len);
1575 }
1576 EXPORT_SYMBOL_GPL(mtd_lock);
1577
1578 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1579 {
1580 if (!mtd->_unlock)
1581 return -EOPNOTSUPP;
1582 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1583 return -EINVAL;
1584 if (!len)
1585 return 0;
1586 return mtd->_unlock(mtd, ofs, len);
1587 }
1588 EXPORT_SYMBOL_GPL(mtd_unlock);
1589
1590 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1591 {
1592 if (!mtd->_is_locked)
1593 return -EOPNOTSUPP;
1594 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1595 return -EINVAL;
1596 if (!len)
1597 return 0;
1598 return mtd->_is_locked(mtd, ofs, len);
1599 }
1600 EXPORT_SYMBOL_GPL(mtd_is_locked);
1601
1602 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1603 {
1604 if (ofs < 0 || ofs >= mtd->size)
1605 return -EINVAL;
1606 if (!mtd->_block_isreserved)
1607 return 0;
1608 return mtd->_block_isreserved(mtd, ofs);
1609 }
1610 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1611
1612 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1613 {
1614 if (ofs < 0 || ofs >= mtd->size)
1615 return -EINVAL;
1616 if (!mtd->_block_isbad)
1617 return 0;
1618 return mtd->_block_isbad(mtd, ofs);
1619 }
1620 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1621
1622 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1623 {
1624 if (!mtd->_block_markbad)
1625 return -EOPNOTSUPP;
1626 if (ofs < 0 || ofs >= mtd->size)
1627 return -EINVAL;
1628 if (!(mtd->flags & MTD_WRITEABLE))
1629 return -EROFS;
1630 return mtd->_block_markbad(mtd, ofs);
1631 }
1632 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1633
1634 /*
1635 * default_mtd_writev - the default writev method
1636 * @mtd: mtd device description object pointer
1637 * @vecs: the vectors to write
1638 * @count: count of vectors in @vecs
1639 * @to: the MTD device offset to write to
1640 * @retlen: on exit contains the count of bytes written to the MTD device.
1641 *
1642 * This function returns zero in case of success and a negative error code in
1643 * case of failure.
1644 */
1645 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1646 unsigned long count, loff_t to, size_t *retlen)
1647 {
1648 unsigned long i;
1649 size_t totlen = 0, thislen;
1650 int ret = 0;
1651
1652 for (i = 0; i < count; i++) {
1653 if (!vecs[i].iov_len)
1654 continue;
1655 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1656 vecs[i].iov_base);
1657 totlen += thislen;
1658 if (ret || thislen != vecs[i].iov_len)
1659 break;
1660 to += vecs[i].iov_len;
1661 }
1662 *retlen = totlen;
1663 return ret;
1664 }
1665
1666 /*
1667 * mtd_writev - the vector-based MTD write method
1668 * @mtd: mtd device description object pointer
1669 * @vecs: the vectors to write
1670 * @count: count of vectors in @vecs
1671 * @to: the MTD device offset to write to
1672 * @retlen: on exit contains the count of bytes written to the MTD device.
1673 *
1674 * This function returns zero in case of success and a negative error code in
1675 * case of failure.
1676 */
1677 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1678 unsigned long count, loff_t to, size_t *retlen)
1679 {
1680 *retlen = 0;
1681 if (!(mtd->flags & MTD_WRITEABLE))
1682 return -EROFS;
1683 if (!mtd->_writev)
1684 return default_mtd_writev(mtd, vecs, count, to, retlen);
1685 return mtd->_writev(mtd, vecs, count, to, retlen);
1686 }
1687 EXPORT_SYMBOL_GPL(mtd_writev);
1688
1689 /**
1690 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1691 * @mtd: mtd device description object pointer
1692 * @size: a pointer to the ideal or maximum size of the allocation, points
1693 * to the actual allocation size on success.
1694 *
1695 * This routine attempts to allocate a contiguous kernel buffer up to
1696 * the specified size, backing off the size of the request exponentially
1697 * until the request succeeds or until the allocation size falls below
1698 * the system page size. This attempts to make sure it does not adversely
1699 * impact system performance, so when allocating more than one page, we
1700 * ask the memory allocator to avoid re-trying, swapping, writing back
1701 * or performing I/O.
1702 *
1703 * Note, this function also makes sure that the allocated buffer is aligned to
1704 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1705 *
1706 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1707 * to handle smaller (i.e. degraded) buffer allocations under low- or
1708 * fragmented-memory situations where such reduced allocations, from a
1709 * requested ideal, are allowed.
1710 *
1711 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1712 */
1713 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1714 {
1715 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1716 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1717 void *kbuf;
1718
1719 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1720
1721 while (*size > min_alloc) {
1722 kbuf = kmalloc(*size, flags);
1723 if (kbuf)
1724 return kbuf;
1725
1726 *size >>= 1;
1727 *size = ALIGN(*size, mtd->writesize);
1728 }
1729
1730 /*
1731 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1732 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1733 */
1734 return kmalloc(*size, GFP_KERNEL);
1735 }
1736 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1737
1738 #ifdef CONFIG_PROC_FS
1739
1740 /*====================================================================*/
1741 /* Support for /proc/mtd */
1742
1743 static int mtd_proc_show(struct seq_file *m, void *v)
1744 {
1745 struct mtd_info *mtd;
1746
1747 seq_puts(m, "dev: size erasesize name\n");
1748 mutex_lock(&mtd_table_mutex);
1749 mtd_for_each_device(mtd) {
1750 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1751 mtd->index, (unsigned long long)mtd->size,
1752 mtd->erasesize, mtd->name);
1753 }
1754 mutex_unlock(&mtd_table_mutex);
1755 return 0;
1756 }
1757
1758 static int mtd_proc_open(struct inode *inode, struct file *file)
1759 {
1760 return single_open(file, mtd_proc_show, NULL);
1761 }
1762
1763 static const struct file_operations mtd_proc_ops = {
1764 .open = mtd_proc_open,
1765 .read = seq_read,
1766 .llseek = seq_lseek,
1767 .release = single_release,
1768 };
1769 #endif /* CONFIG_PROC_FS */
1770
1771 /*====================================================================*/
1772 /* Init code */
1773
1774 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1775 {
1776 int ret;
1777
1778 ret = bdi_init(bdi);
1779 if (!ret)
1780 ret = bdi_register(bdi, NULL, "%s", name);
1781
1782 if (ret)
1783 bdi_destroy(bdi);
1784
1785 return ret;
1786 }
1787
1788 static struct proc_dir_entry *proc_mtd;
1789
1790 static int __init init_mtd(void)
1791 {
1792 int ret;
1793
1794 ret = class_register(&mtd_class);
1795 if (ret)
1796 goto err_reg;
1797
1798 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1799 if (ret)
1800 goto err_bdi;
1801
1802 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1803
1804 ret = init_mtdchar();
1805 if (ret)
1806 goto out_procfs;
1807
1808 return 0;
1809
1810 out_procfs:
1811 if (proc_mtd)
1812 remove_proc_entry("mtd", NULL);
1813 err_bdi:
1814 class_unregister(&mtd_class);
1815 err_reg:
1816 pr_err("Error registering mtd class or bdi: %d\n", ret);
1817 return ret;
1818 }
1819
1820 static void __exit cleanup_mtd(void)
1821 {
1822 cleanup_mtdchar();
1823 if (proc_mtd)
1824 remove_proc_entry("mtd", NULL);
1825 class_unregister(&mtd_class);
1826 bdi_destroy(&mtd_bdi);
1827 idr_destroy(&mtd_idr);
1828 }
1829
1830 module_init(init_mtd);
1831 module_exit(cleanup_mtd);
1832
1833 MODULE_LICENSE("GPL");
1834 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1835 MODULE_DESCRIPTION("Core MTD registration and access routines");