]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/mtdcore.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / mtdcore.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101 {
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138 static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140 {
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147 static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149 {
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159 {
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166 static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168 {
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177 {
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187 {
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196 {
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213 static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234 {
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243 {
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261 {
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271 {
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292 {
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310 static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331
332 static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336 };
337
338 static int mtd_partid_debug_show(struct seq_file *s, void *p)
339 {
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345 }
346
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
348
349 static int mtd_partname_debug_show(struct seq_file *s, void *p)
350 {
351 struct mtd_info *mtd = s->private;
352
353 seq_printf(s, "%s\n", mtd->dbg.partname);
354
355 return 0;
356 }
357
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
359
360 static struct dentry *dfs_dir_mtd;
361
362 static void mtd_debugfs_populate(struct mtd_info *mtd)
363 {
364 struct device *dev = &mtd->dev;
365 struct dentry *root;
366
367 if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 return;
369
370 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
371 mtd->dbg.dfs_dir = root;
372
373 if (mtd->dbg.partid)
374 debugfs_create_file("partid", 0400, root, mtd,
375 &mtd_partid_debug_fops);
376
377 if (mtd->dbg.partname)
378 debugfs_create_file("partname", 0400, root, mtd,
379 &mtd_partname_debug_fops);
380 }
381
382 #ifndef CONFIG_MMU
383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
384 {
385 switch (mtd->type) {
386 case MTD_RAM:
387 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 case MTD_ROM:
390 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 NOMMU_MAP_READ;
392 default:
393 return NOMMU_MAP_COPY;
394 }
395 }
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
397 #endif
398
399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 void *cmd)
401 {
402 struct mtd_info *mtd;
403
404 mtd = container_of(n, struct mtd_info, reboot_notifier);
405 mtd->_reboot(mtd);
406
407 return NOTIFY_DONE;
408 }
409
410 /**
411 * mtd_wunit_to_pairing_info - get pairing information of a wunit
412 * @mtd: pointer to new MTD device info structure
413 * @wunit: write unit we are interested in
414 * @info: returned pairing information
415 *
416 * Retrieve pairing information associated to the wunit.
417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418 * paired together, and where programming a page may influence the page it is
419 * paired with.
420 * The notion of page is replaced by the term wunit (write-unit) to stay
421 * consistent with the ->writesize field.
422 *
423 * The @wunit argument can be extracted from an absolute offset using
424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425 * to @wunit.
426 *
427 * From the pairing info the MTD user can find all the wunits paired with
428 * @wunit using the following loop:
429 *
430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431 * info.pair = i;
432 * mtd_pairing_info_to_wunit(mtd, &info);
433 * ...
434 * }
435 */
436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 struct mtd_pairing_info *info)
438 {
439 struct mtd_info *master = mtd_get_master(mtd);
440 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
441
442 if (wunit < 0 || wunit >= npairs)
443 return -EINVAL;
444
445 if (master->pairing && master->pairing->get_info)
446 return master->pairing->get_info(master, wunit, info);
447
448 info->group = 0;
449 info->pair = wunit;
450
451 return 0;
452 }
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
454
455 /**
456 * mtd_pairing_info_to_wunit - get wunit from pairing information
457 * @mtd: pointer to new MTD device info structure
458 * @info: pairing information struct
459 *
460 * Returns a positive number representing the wunit associated to the info
461 * struct, or a negative error code.
462 *
463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465 * doc).
466 *
467 * It can also be used to only program the first page of each pair (i.e.
468 * page attached to group 0), which allows one to use an MLC NAND in
469 * software-emulated SLC mode:
470 *
471 * info.group = 0;
472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473 * for (info.pair = 0; info.pair < npairs; info.pair++) {
474 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
475 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
477 * }
478 */
479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 const struct mtd_pairing_info *info)
481 {
482 struct mtd_info *master = mtd_get_master(mtd);
483 int ngroups = mtd_pairing_groups(master);
484 int npairs = mtd_wunit_per_eb(master) / ngroups;
485
486 if (!info || info->pair < 0 || info->pair >= npairs ||
487 info->group < 0 || info->group >= ngroups)
488 return -EINVAL;
489
490 if (master->pairing && master->pairing->get_wunit)
491 return mtd->pairing->get_wunit(master, info);
492
493 return info->pair;
494 }
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
496
497 /**
498 * mtd_pairing_groups - get the number of pairing groups
499 * @mtd: pointer to new MTD device info structure
500 *
501 * Returns the number of pairing groups.
502 *
503 * This number is usually equal to the number of bits exposed by a single
504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505 * to iterate over all pages of a given pair.
506 */
507 int mtd_pairing_groups(struct mtd_info *mtd)
508 {
509 struct mtd_info *master = mtd_get_master(mtd);
510
511 if (!master->pairing || !master->pairing->ngroups)
512 return 1;
513
514 return master->pairing->ngroups;
515 }
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
517
518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 void *val, size_t bytes)
520 {
521 struct mtd_info *mtd = priv;
522 size_t retlen;
523 int err;
524
525 err = mtd_read(mtd, offset, bytes, &retlen, val);
526 if (err && err != -EUCLEAN)
527 return err;
528
529 return retlen == bytes ? 0 : -EIO;
530 }
531
532 static int mtd_nvmem_add(struct mtd_info *mtd)
533 {
534 struct nvmem_config config = {};
535
536 config.id = -1;
537 config.dev = &mtd->dev;
538 config.name = dev_name(&mtd->dev);
539 config.owner = THIS_MODULE;
540 config.reg_read = mtd_nvmem_reg_read;
541 config.size = mtd->size;
542 config.word_size = 1;
543 config.stride = 1;
544 config.read_only = true;
545 config.root_only = true;
546 config.no_of_node = true;
547 config.priv = mtd;
548
549 mtd->nvmem = nvmem_register(&config);
550 if (IS_ERR(mtd->nvmem)) {
551 /* Just ignore if there is no NVMEM support in the kernel */
552 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
553 mtd->nvmem = NULL;
554 } else {
555 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
556 return PTR_ERR(mtd->nvmem);
557 }
558 }
559
560 return 0;
561 }
562
563 /**
564 * add_mtd_device - register an MTD device
565 * @mtd: pointer to new MTD device info structure
566 *
567 * Add a device to the list of MTD devices present in the system, and
568 * notify each currently active MTD 'user' of its arrival. Returns
569 * zero on success or non-zero on failure.
570 */
571
572 int add_mtd_device(struct mtd_info *mtd)
573 {
574 struct mtd_info *master = mtd_get_master(mtd);
575 struct mtd_notifier *not;
576 int i, error;
577
578 /*
579 * May occur, for instance, on buggy drivers which call
580 * mtd_device_parse_register() multiple times on the same master MTD,
581 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
582 */
583 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
584 return -EEXIST;
585
586 BUG_ON(mtd->writesize == 0);
587
588 /*
589 * MTD drivers should implement ->_{write,read}() or
590 * ->_{write,read}_oob(), but not both.
591 */
592 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
593 (mtd->_read && mtd->_read_oob)))
594 return -EINVAL;
595
596 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
597 !(mtd->flags & MTD_NO_ERASE)))
598 return -EINVAL;
599
600 /*
601 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 * master is an MLC NAND and has a proper pairing scheme defined.
603 * We also reject masters that implement ->_writev() for now, because
604 * NAND controller drivers don't implement this hook, and adding the
605 * SLC -> MLC address/length conversion to this path is useless if we
606 * don't have a user.
607 */
608 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
609 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
610 !master->pairing || master->_writev))
611 return -EINVAL;
612
613 mutex_lock(&mtd_table_mutex);
614
615 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
616 if (i < 0) {
617 error = i;
618 goto fail_locked;
619 }
620
621 mtd->index = i;
622 mtd->usecount = 0;
623
624 /* default value if not set by driver */
625 if (mtd->bitflip_threshold == 0)
626 mtd->bitflip_threshold = mtd->ecc_strength;
627
628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
629 int ngroups = mtd_pairing_groups(master);
630
631 mtd->erasesize /= ngroups;
632 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
633 mtd->erasesize;
634 }
635
636 if (is_power_of_2(mtd->erasesize))
637 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
638 else
639 mtd->erasesize_shift = 0;
640
641 if (is_power_of_2(mtd->writesize))
642 mtd->writesize_shift = ffs(mtd->writesize) - 1;
643 else
644 mtd->writesize_shift = 0;
645
646 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
647 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
648
649 /* Some chips always power up locked. Unlock them now */
650 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
651 error = mtd_unlock(mtd, 0, mtd->size);
652 if (error && error != -EOPNOTSUPP)
653 printk(KERN_WARNING
654 "%s: unlock failed, writes may not work\n",
655 mtd->name);
656 /* Ignore unlock failures? */
657 error = 0;
658 }
659
660 /* Caller should have set dev.parent to match the
661 * physical device, if appropriate.
662 */
663 mtd->dev.type = &mtd_devtype;
664 mtd->dev.class = &mtd_class;
665 mtd->dev.devt = MTD_DEVT(i);
666 dev_set_name(&mtd->dev, "mtd%d", i);
667 dev_set_drvdata(&mtd->dev, mtd);
668 of_node_get(mtd_get_of_node(mtd));
669 error = device_register(&mtd->dev);
670 if (error)
671 goto fail_added;
672
673 /* Add the nvmem provider */
674 error = mtd_nvmem_add(mtd);
675 if (error)
676 goto fail_nvmem_add;
677
678 mtd_debugfs_populate(mtd);
679
680 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
681 "mtd%dro", i);
682
683 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
684 /* No need to get a refcount on the module containing
685 the notifier, since we hold the mtd_table_mutex */
686 list_for_each_entry(not, &mtd_notifiers, list)
687 not->add(mtd);
688
689 mutex_unlock(&mtd_table_mutex);
690 /* We _know_ we aren't being removed, because
691 our caller is still holding us here. So none
692 of this try_ nonsense, and no bitching about it
693 either. :) */
694 __module_get(THIS_MODULE);
695 return 0;
696
697 fail_nvmem_add:
698 device_unregister(&mtd->dev);
699 fail_added:
700 of_node_put(mtd_get_of_node(mtd));
701 idr_remove(&mtd_idr, i);
702 fail_locked:
703 mutex_unlock(&mtd_table_mutex);
704 return error;
705 }
706
707 /**
708 * del_mtd_device - unregister an MTD device
709 * @mtd: pointer to MTD device info structure
710 *
711 * Remove a device from the list of MTD devices present in the system,
712 * and notify each currently active MTD 'user' of its departure.
713 * Returns zero on success or 1 on failure, which currently will happen
714 * if the requested device does not appear to be present in the list.
715 */
716
717 int del_mtd_device(struct mtd_info *mtd)
718 {
719 int ret;
720 struct mtd_notifier *not;
721
722 mutex_lock(&mtd_table_mutex);
723
724 debugfs_remove_recursive(mtd->dbg.dfs_dir);
725
726 if (idr_find(&mtd_idr, mtd->index) != mtd) {
727 ret = -ENODEV;
728 goto out_error;
729 }
730
731 /* No need to get a refcount on the module containing
732 the notifier, since we hold the mtd_table_mutex */
733 list_for_each_entry(not, &mtd_notifiers, list)
734 not->remove(mtd);
735
736 if (mtd->usecount) {
737 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
738 mtd->index, mtd->name, mtd->usecount);
739 ret = -EBUSY;
740 } else {
741 /* Try to remove the NVMEM provider */
742 if (mtd->nvmem)
743 nvmem_unregister(mtd->nvmem);
744
745 device_unregister(&mtd->dev);
746
747 idr_remove(&mtd_idr, mtd->index);
748 of_node_put(mtd_get_of_node(mtd));
749
750 module_put(THIS_MODULE);
751 ret = 0;
752 }
753
754 out_error:
755 mutex_unlock(&mtd_table_mutex);
756 return ret;
757 }
758
759 /*
760 * Set a few defaults based on the parent devices, if not provided by the
761 * driver
762 */
763 static void mtd_set_dev_defaults(struct mtd_info *mtd)
764 {
765 if (mtd->dev.parent) {
766 if (!mtd->owner && mtd->dev.parent->driver)
767 mtd->owner = mtd->dev.parent->driver->owner;
768 if (!mtd->name)
769 mtd->name = dev_name(mtd->dev.parent);
770 } else {
771 pr_debug("mtd device won't show a device symlink in sysfs\n");
772 }
773
774 INIT_LIST_HEAD(&mtd->partitions);
775 mutex_init(&mtd->master.partitions_lock);
776 }
777
778 /**
779 * mtd_device_parse_register - parse partitions and register an MTD device.
780 *
781 * @mtd: the MTD device to register
782 * @types: the list of MTD partition probes to try, see
783 * 'parse_mtd_partitions()' for more information
784 * @parser_data: MTD partition parser-specific data
785 * @parts: fallback partition information to register, if parsing fails;
786 * only valid if %nr_parts > %0
787 * @nr_parts: the number of partitions in parts, if zero then the full
788 * MTD device is registered if no partition info is found
789 *
790 * This function aggregates MTD partitions parsing (done by
791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792 * basically follows the most common pattern found in many MTD drivers:
793 *
794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
795 * registered first.
796 * * Then It tries to probe partitions on MTD device @mtd using parsers
797 * specified in @types (if @types is %NULL, then the default list of parsers
798 * is used, see 'parse_mtd_partitions()' for more information). If none are
799 * found this functions tries to fallback to information specified in
800 * @parts/@nr_parts.
801 * * If no partitions were found this function just registers the MTD device
802 * @mtd and exits.
803 *
804 * Returns zero in case of success and a negative error code in case of failure.
805 */
806 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
807 struct mtd_part_parser_data *parser_data,
808 const struct mtd_partition *parts,
809 int nr_parts)
810 {
811 int ret;
812
813 mtd_set_dev_defaults(mtd);
814
815 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
816 ret = add_mtd_device(mtd);
817 if (ret)
818 return ret;
819 }
820
821 /* Prefer parsed partitions over driver-provided fallback */
822 ret = parse_mtd_partitions(mtd, types, parser_data);
823 if (ret > 0)
824 ret = 0;
825 else if (nr_parts)
826 ret = add_mtd_partitions(mtd, parts, nr_parts);
827 else if (!device_is_registered(&mtd->dev))
828 ret = add_mtd_device(mtd);
829 else
830 ret = 0;
831
832 if (ret)
833 goto out;
834
835 /*
836 * FIXME: some drivers unfortunately call this function more than once.
837 * So we have to check if we've already assigned the reboot notifier.
838 *
839 * Generally, we can make multiple calls work for most cases, but it
840 * does cause problems with parse_mtd_partitions() above (e.g.,
841 * cmdlineparts will register partitions more than once).
842 */
843 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
844 "MTD already registered\n");
845 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
846 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
847 register_reboot_notifier(&mtd->reboot_notifier);
848 }
849
850 out:
851 if (ret && device_is_registered(&mtd->dev))
852 del_mtd_device(mtd);
853
854 return ret;
855 }
856 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
857
858 /**
859 * mtd_device_unregister - unregister an existing MTD device.
860 *
861 * @master: the MTD device to unregister. This will unregister both the master
862 * and any partitions if registered.
863 */
864 int mtd_device_unregister(struct mtd_info *master)
865 {
866 int err;
867
868 if (master->_reboot)
869 unregister_reboot_notifier(&master->reboot_notifier);
870
871 err = del_mtd_partitions(master);
872 if (err)
873 return err;
874
875 if (!device_is_registered(&master->dev))
876 return 0;
877
878 return del_mtd_device(master);
879 }
880 EXPORT_SYMBOL_GPL(mtd_device_unregister);
881
882 /**
883 * register_mtd_user - register a 'user' of MTD devices.
884 * @new: pointer to notifier info structure
885 *
886 * Registers a pair of callbacks function to be called upon addition
887 * or removal of MTD devices. Causes the 'add' callback to be immediately
888 * invoked for each MTD device currently present in the system.
889 */
890 void register_mtd_user (struct mtd_notifier *new)
891 {
892 struct mtd_info *mtd;
893
894 mutex_lock(&mtd_table_mutex);
895
896 list_add(&new->list, &mtd_notifiers);
897
898 __module_get(THIS_MODULE);
899
900 mtd_for_each_device(mtd)
901 new->add(mtd);
902
903 mutex_unlock(&mtd_table_mutex);
904 }
905 EXPORT_SYMBOL_GPL(register_mtd_user);
906
907 /**
908 * unregister_mtd_user - unregister a 'user' of MTD devices.
909 * @old: pointer to notifier info structure
910 *
911 * Removes a callback function pair from the list of 'users' to be
912 * notified upon addition or removal of MTD devices. Causes the
913 * 'remove' callback to be immediately invoked for each MTD device
914 * currently present in the system.
915 */
916 int unregister_mtd_user (struct mtd_notifier *old)
917 {
918 struct mtd_info *mtd;
919
920 mutex_lock(&mtd_table_mutex);
921
922 module_put(THIS_MODULE);
923
924 mtd_for_each_device(mtd)
925 old->remove(mtd);
926
927 list_del(&old->list);
928 mutex_unlock(&mtd_table_mutex);
929 return 0;
930 }
931 EXPORT_SYMBOL_GPL(unregister_mtd_user);
932
933 /**
934 * get_mtd_device - obtain a validated handle for an MTD device
935 * @mtd: last known address of the required MTD device
936 * @num: internal device number of the required MTD device
937 *
938 * Given a number and NULL address, return the num'th entry in the device
939 * table, if any. Given an address and num == -1, search the device table
940 * for a device with that address and return if it's still present. Given
941 * both, return the num'th driver only if its address matches. Return
942 * error code if not.
943 */
944 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
945 {
946 struct mtd_info *ret = NULL, *other;
947 int err = -ENODEV;
948
949 mutex_lock(&mtd_table_mutex);
950
951 if (num == -1) {
952 mtd_for_each_device(other) {
953 if (other == mtd) {
954 ret = mtd;
955 break;
956 }
957 }
958 } else if (num >= 0) {
959 ret = idr_find(&mtd_idr, num);
960 if (mtd && mtd != ret)
961 ret = NULL;
962 }
963
964 if (!ret) {
965 ret = ERR_PTR(err);
966 goto out;
967 }
968
969 err = __get_mtd_device(ret);
970 if (err)
971 ret = ERR_PTR(err);
972 out:
973 mutex_unlock(&mtd_table_mutex);
974 return ret;
975 }
976 EXPORT_SYMBOL_GPL(get_mtd_device);
977
978
979 int __get_mtd_device(struct mtd_info *mtd)
980 {
981 struct mtd_info *master = mtd_get_master(mtd);
982 int err;
983
984 if (!try_module_get(master->owner))
985 return -ENODEV;
986
987 if (master->_get_device) {
988 err = master->_get_device(mtd);
989
990 if (err) {
991 module_put(master->owner);
992 return err;
993 }
994 }
995
996 while (mtd->parent) {
997 mtd->usecount++;
998 mtd = mtd->parent;
999 }
1000
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(__get_mtd_device);
1004
1005 /**
1006 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1007 * device name
1008 * @name: MTD device name to open
1009 *
1010 * This function returns MTD device description structure in case of
1011 * success and an error code in case of failure.
1012 */
1013 struct mtd_info *get_mtd_device_nm(const char *name)
1014 {
1015 int err = -ENODEV;
1016 struct mtd_info *mtd = NULL, *other;
1017
1018 mutex_lock(&mtd_table_mutex);
1019
1020 mtd_for_each_device(other) {
1021 if (!strcmp(name, other->name)) {
1022 mtd = other;
1023 break;
1024 }
1025 }
1026
1027 if (!mtd)
1028 goto out_unlock;
1029
1030 err = __get_mtd_device(mtd);
1031 if (err)
1032 goto out_unlock;
1033
1034 mutex_unlock(&mtd_table_mutex);
1035 return mtd;
1036
1037 out_unlock:
1038 mutex_unlock(&mtd_table_mutex);
1039 return ERR_PTR(err);
1040 }
1041 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1042
1043 void put_mtd_device(struct mtd_info *mtd)
1044 {
1045 mutex_lock(&mtd_table_mutex);
1046 __put_mtd_device(mtd);
1047 mutex_unlock(&mtd_table_mutex);
1048
1049 }
1050 EXPORT_SYMBOL_GPL(put_mtd_device);
1051
1052 void __put_mtd_device(struct mtd_info *mtd)
1053 {
1054 struct mtd_info *master = mtd_get_master(mtd);
1055
1056 while (mtd->parent) {
1057 --mtd->usecount;
1058 BUG_ON(mtd->usecount < 0);
1059 mtd = mtd->parent;
1060 }
1061
1062 if (master->_put_device)
1063 master->_put_device(master);
1064
1065 module_put(master->owner);
1066 }
1067 EXPORT_SYMBOL_GPL(__put_mtd_device);
1068
1069 /*
1070 * Erase is an synchronous operation. Device drivers are epected to return a
1071 * negative error code if the operation failed and update instr->fail_addr
1072 * to point the portion that was not properly erased.
1073 */
1074 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1075 {
1076 struct mtd_info *master = mtd_get_master(mtd);
1077 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1078 struct erase_info adjinstr;
1079 int ret;
1080
1081 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1082 adjinstr = *instr;
1083
1084 if (!mtd->erasesize || !master->_erase)
1085 return -ENOTSUPP;
1086
1087 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1088 return -EINVAL;
1089 if (!(mtd->flags & MTD_WRITEABLE))
1090 return -EROFS;
1091
1092 if (!instr->len)
1093 return 0;
1094
1095 ledtrig_mtd_activity();
1096
1097 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1098 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1099 master->erasesize;
1100 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1101 master->erasesize) -
1102 adjinstr.addr;
1103 }
1104
1105 adjinstr.addr += mst_ofs;
1106
1107 ret = master->_erase(master, &adjinstr);
1108
1109 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1110 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1111 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1112 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1113 master);
1114 instr->fail_addr *= mtd->erasesize;
1115 }
1116 }
1117
1118 return ret;
1119 }
1120 EXPORT_SYMBOL_GPL(mtd_erase);
1121
1122 /*
1123 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1124 */
1125 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1126 void **virt, resource_size_t *phys)
1127 {
1128 struct mtd_info *master = mtd_get_master(mtd);
1129
1130 *retlen = 0;
1131 *virt = NULL;
1132 if (phys)
1133 *phys = 0;
1134 if (!master->_point)
1135 return -EOPNOTSUPP;
1136 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1137 return -EINVAL;
1138 if (!len)
1139 return 0;
1140
1141 from = mtd_get_master_ofs(mtd, from);
1142 return master->_point(master, from, len, retlen, virt, phys);
1143 }
1144 EXPORT_SYMBOL_GPL(mtd_point);
1145
1146 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1147 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1148 {
1149 struct mtd_info *master = mtd_get_master(mtd);
1150
1151 if (!master->_unpoint)
1152 return -EOPNOTSUPP;
1153 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1154 return -EINVAL;
1155 if (!len)
1156 return 0;
1157 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1158 }
1159 EXPORT_SYMBOL_GPL(mtd_unpoint);
1160
1161 /*
1162 * Allow NOMMU mmap() to directly map the device (if not NULL)
1163 * - return the address to which the offset maps
1164 * - return -ENOSYS to indicate refusal to do the mapping
1165 */
1166 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1167 unsigned long offset, unsigned long flags)
1168 {
1169 size_t retlen;
1170 void *virt;
1171 int ret;
1172
1173 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1174 if (ret)
1175 return ret;
1176 if (retlen != len) {
1177 mtd_unpoint(mtd, offset, retlen);
1178 return -ENOSYS;
1179 }
1180 return (unsigned long)virt;
1181 }
1182 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1183
1184 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1185 const struct mtd_ecc_stats *old_stats)
1186 {
1187 struct mtd_ecc_stats diff;
1188
1189 if (master == mtd)
1190 return;
1191
1192 diff = master->ecc_stats;
1193 diff.failed -= old_stats->failed;
1194 diff.corrected -= old_stats->corrected;
1195
1196 while (mtd->parent) {
1197 mtd->ecc_stats.failed += diff.failed;
1198 mtd->ecc_stats.corrected += diff.corrected;
1199 mtd = mtd->parent;
1200 }
1201 }
1202
1203 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1204 u_char *buf)
1205 {
1206 struct mtd_oob_ops ops = {
1207 .len = len,
1208 .datbuf = buf,
1209 };
1210 int ret;
1211
1212 ret = mtd_read_oob(mtd, from, &ops);
1213 *retlen = ops.retlen;
1214
1215 return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(mtd_read);
1218
1219 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1220 const u_char *buf)
1221 {
1222 struct mtd_oob_ops ops = {
1223 .len = len,
1224 .datbuf = (u8 *)buf,
1225 };
1226 int ret;
1227
1228 ret = mtd_write_oob(mtd, to, &ops);
1229 *retlen = ops.retlen;
1230
1231 return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(mtd_write);
1234
1235 /*
1236 * In blackbox flight recorder like scenarios we want to make successful writes
1237 * in interrupt context. panic_write() is only intended to be called when its
1238 * known the kernel is about to panic and we need the write to succeed. Since
1239 * the kernel is not going to be running for much longer, this function can
1240 * break locks and delay to ensure the write succeeds (but not sleep).
1241 */
1242 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1243 const u_char *buf)
1244 {
1245 struct mtd_info *master = mtd_get_master(mtd);
1246
1247 *retlen = 0;
1248 if (!master->_panic_write)
1249 return -EOPNOTSUPP;
1250 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1251 return -EINVAL;
1252 if (!(mtd->flags & MTD_WRITEABLE))
1253 return -EROFS;
1254 if (!len)
1255 return 0;
1256 if (!master->oops_panic_write)
1257 master->oops_panic_write = true;
1258
1259 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1260 retlen, buf);
1261 }
1262 EXPORT_SYMBOL_GPL(mtd_panic_write);
1263
1264 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1265 struct mtd_oob_ops *ops)
1266 {
1267 /*
1268 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1269 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1270 * this case.
1271 */
1272 if (!ops->datbuf)
1273 ops->len = 0;
1274
1275 if (!ops->oobbuf)
1276 ops->ooblen = 0;
1277
1278 if (offs < 0 || offs + ops->len > mtd->size)
1279 return -EINVAL;
1280
1281 if (ops->ooblen) {
1282 size_t maxooblen;
1283
1284 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1285 return -EINVAL;
1286
1287 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1288 mtd_div_by_ws(offs, mtd)) *
1289 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1290 if (ops->ooblen > maxooblen)
1291 return -EINVAL;
1292 }
1293
1294 return 0;
1295 }
1296
1297 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1298 struct mtd_oob_ops *ops)
1299 {
1300 struct mtd_info *master = mtd_get_master(mtd);
1301 int ret;
1302
1303 from = mtd_get_master_ofs(mtd, from);
1304 if (master->_read_oob)
1305 ret = master->_read_oob(master, from, ops);
1306 else
1307 ret = master->_read(master, from, ops->len, &ops->retlen,
1308 ops->datbuf);
1309
1310 return ret;
1311 }
1312
1313 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1314 struct mtd_oob_ops *ops)
1315 {
1316 struct mtd_info *master = mtd_get_master(mtd);
1317 int ret;
1318
1319 to = mtd_get_master_ofs(mtd, to);
1320 if (master->_write_oob)
1321 ret = master->_write_oob(master, to, ops);
1322 else
1323 ret = master->_write(master, to, ops->len, &ops->retlen,
1324 ops->datbuf);
1325
1326 return ret;
1327 }
1328
1329 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1330 struct mtd_oob_ops *ops)
1331 {
1332 struct mtd_info *master = mtd_get_master(mtd);
1333 int ngroups = mtd_pairing_groups(master);
1334 int npairs = mtd_wunit_per_eb(master) / ngroups;
1335 struct mtd_oob_ops adjops = *ops;
1336 unsigned int wunit, oobavail;
1337 struct mtd_pairing_info info;
1338 int max_bitflips = 0;
1339 u32 ebofs, pageofs;
1340 loff_t base, pos;
1341
1342 ebofs = mtd_mod_by_eb(start, mtd);
1343 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1344 info.group = 0;
1345 info.pair = mtd_div_by_ws(ebofs, mtd);
1346 pageofs = mtd_mod_by_ws(ebofs, mtd);
1347 oobavail = mtd_oobavail(mtd, ops);
1348
1349 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1350 int ret;
1351
1352 if (info.pair >= npairs) {
1353 info.pair = 0;
1354 base += master->erasesize;
1355 }
1356
1357 wunit = mtd_pairing_info_to_wunit(master, &info);
1358 pos = mtd_wunit_to_offset(mtd, base, wunit);
1359
1360 adjops.len = ops->len - ops->retlen;
1361 if (adjops.len > mtd->writesize - pageofs)
1362 adjops.len = mtd->writesize - pageofs;
1363
1364 adjops.ooblen = ops->ooblen - ops->oobretlen;
1365 if (adjops.ooblen > oobavail - adjops.ooboffs)
1366 adjops.ooblen = oobavail - adjops.ooboffs;
1367
1368 if (read) {
1369 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1370 if (ret > 0)
1371 max_bitflips = max(max_bitflips, ret);
1372 } else {
1373 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1374 }
1375
1376 if (ret < 0)
1377 return ret;
1378
1379 max_bitflips = max(max_bitflips, ret);
1380 ops->retlen += adjops.retlen;
1381 ops->oobretlen += adjops.oobretlen;
1382 adjops.datbuf += adjops.retlen;
1383 adjops.oobbuf += adjops.oobretlen;
1384 adjops.ooboffs = 0;
1385 pageofs = 0;
1386 info.pair++;
1387 }
1388
1389 return max_bitflips;
1390 }
1391
1392 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1393 {
1394 struct mtd_info *master = mtd_get_master(mtd);
1395 struct mtd_ecc_stats old_stats = master->ecc_stats;
1396 int ret_code;
1397
1398 ops->retlen = ops->oobretlen = 0;
1399
1400 ret_code = mtd_check_oob_ops(mtd, from, ops);
1401 if (ret_code)
1402 return ret_code;
1403
1404 ledtrig_mtd_activity();
1405
1406 /* Check the validity of a potential fallback on mtd->_read */
1407 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1408 return -EOPNOTSUPP;
1409
1410 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1411 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1412 else
1413 ret_code = mtd_read_oob_std(mtd, from, ops);
1414
1415 mtd_update_ecc_stats(mtd, master, &old_stats);
1416
1417 /*
1418 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1419 * similar to mtd->_read(), returning a non-negative integer
1420 * representing max bitflips. In other cases, mtd->_read_oob() may
1421 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1422 */
1423 if (unlikely(ret_code < 0))
1424 return ret_code;
1425 if (mtd->ecc_strength == 0)
1426 return 0; /* device lacks ecc */
1427 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1428 }
1429 EXPORT_SYMBOL_GPL(mtd_read_oob);
1430
1431 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1432 struct mtd_oob_ops *ops)
1433 {
1434 struct mtd_info *master = mtd_get_master(mtd);
1435 int ret;
1436
1437 ops->retlen = ops->oobretlen = 0;
1438
1439 if (!(mtd->flags & MTD_WRITEABLE))
1440 return -EROFS;
1441
1442 ret = mtd_check_oob_ops(mtd, to, ops);
1443 if (ret)
1444 return ret;
1445
1446 ledtrig_mtd_activity();
1447
1448 /* Check the validity of a potential fallback on mtd->_write */
1449 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1450 return -EOPNOTSUPP;
1451
1452 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1453 return mtd_io_emulated_slc(mtd, to, false, ops);
1454
1455 return mtd_write_oob_std(mtd, to, ops);
1456 }
1457 EXPORT_SYMBOL_GPL(mtd_write_oob);
1458
1459 /**
1460 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1461 * @mtd: MTD device structure
1462 * @section: ECC section. Depending on the layout you may have all the ECC
1463 * bytes stored in a single contiguous section, or one section
1464 * per ECC chunk (and sometime several sections for a single ECC
1465 * ECC chunk)
1466 * @oobecc: OOB region struct filled with the appropriate ECC position
1467 * information
1468 *
1469 * This function returns ECC section information in the OOB area. If you want
1470 * to get all the ECC bytes information, then you should call
1471 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1472 *
1473 * Returns zero on success, a negative error code otherwise.
1474 */
1475 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1476 struct mtd_oob_region *oobecc)
1477 {
1478 struct mtd_info *master = mtd_get_master(mtd);
1479
1480 memset(oobecc, 0, sizeof(*oobecc));
1481
1482 if (!master || section < 0)
1483 return -EINVAL;
1484
1485 if (!master->ooblayout || !master->ooblayout->ecc)
1486 return -ENOTSUPP;
1487
1488 return master->ooblayout->ecc(master, section, oobecc);
1489 }
1490 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1491
1492 /**
1493 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1494 * section
1495 * @mtd: MTD device structure
1496 * @section: Free section you are interested in. Depending on the layout
1497 * you may have all the free bytes stored in a single contiguous
1498 * section, or one section per ECC chunk plus an extra section
1499 * for the remaining bytes (or other funky layout).
1500 * @oobfree: OOB region struct filled with the appropriate free position
1501 * information
1502 *
1503 * This function returns free bytes position in the OOB area. If you want
1504 * to get all the free bytes information, then you should call
1505 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1506 *
1507 * Returns zero on success, a negative error code otherwise.
1508 */
1509 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1510 struct mtd_oob_region *oobfree)
1511 {
1512 struct mtd_info *master = mtd_get_master(mtd);
1513
1514 memset(oobfree, 0, sizeof(*oobfree));
1515
1516 if (!master || section < 0)
1517 return -EINVAL;
1518
1519 if (!master->ooblayout || !master->ooblayout->free)
1520 return -ENOTSUPP;
1521
1522 return master->ooblayout->free(master, section, oobfree);
1523 }
1524 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1525
1526 /**
1527 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1528 * @mtd: mtd info structure
1529 * @byte: the byte we are searching for
1530 * @sectionp: pointer where the section id will be stored
1531 * @oobregion: used to retrieve the ECC position
1532 * @iter: iterator function. Should be either mtd_ooblayout_free or
1533 * mtd_ooblayout_ecc depending on the region type you're searching for
1534 *
1535 * This function returns the section id and oobregion information of a
1536 * specific byte. For example, say you want to know where the 4th ECC byte is
1537 * stored, you'll use:
1538 *
1539 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1540 *
1541 * Returns zero on success, a negative error code otherwise.
1542 */
1543 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1544 int *sectionp, struct mtd_oob_region *oobregion,
1545 int (*iter)(struct mtd_info *,
1546 int section,
1547 struct mtd_oob_region *oobregion))
1548 {
1549 int pos = 0, ret, section = 0;
1550
1551 memset(oobregion, 0, sizeof(*oobregion));
1552
1553 while (1) {
1554 ret = iter(mtd, section, oobregion);
1555 if (ret)
1556 return ret;
1557
1558 if (pos + oobregion->length > byte)
1559 break;
1560
1561 pos += oobregion->length;
1562 section++;
1563 }
1564
1565 /*
1566 * Adjust region info to make it start at the beginning at the
1567 * 'start' ECC byte.
1568 */
1569 oobregion->offset += byte - pos;
1570 oobregion->length -= byte - pos;
1571 *sectionp = section;
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1578 * ECC byte
1579 * @mtd: mtd info structure
1580 * @eccbyte: the byte we are searching for
1581 * @sectionp: pointer where the section id will be stored
1582 * @oobregion: OOB region information
1583 *
1584 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1585 * byte.
1586 *
1587 * Returns zero on success, a negative error code otherwise.
1588 */
1589 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1590 int *section,
1591 struct mtd_oob_region *oobregion)
1592 {
1593 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1594 mtd_ooblayout_ecc);
1595 }
1596 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1597
1598 /**
1599 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1600 * @mtd: mtd info structure
1601 * @buf: destination buffer to store OOB bytes
1602 * @oobbuf: OOB buffer
1603 * @start: first byte to retrieve
1604 * @nbytes: number of bytes to retrieve
1605 * @iter: section iterator
1606 *
1607 * Extract bytes attached to a specific category (ECC or free)
1608 * from the OOB buffer and copy them into buf.
1609 *
1610 * Returns zero on success, a negative error code otherwise.
1611 */
1612 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1613 const u8 *oobbuf, int start, int nbytes,
1614 int (*iter)(struct mtd_info *,
1615 int section,
1616 struct mtd_oob_region *oobregion))
1617 {
1618 struct mtd_oob_region oobregion;
1619 int section, ret;
1620
1621 ret = mtd_ooblayout_find_region(mtd, start, &section,
1622 &oobregion, iter);
1623
1624 while (!ret) {
1625 int cnt;
1626
1627 cnt = min_t(int, nbytes, oobregion.length);
1628 memcpy(buf, oobbuf + oobregion.offset, cnt);
1629 buf += cnt;
1630 nbytes -= cnt;
1631
1632 if (!nbytes)
1633 break;
1634
1635 ret = iter(mtd, ++section, &oobregion);
1636 }
1637
1638 return ret;
1639 }
1640
1641 /**
1642 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1643 * @mtd: mtd info structure
1644 * @buf: source buffer to get OOB bytes from
1645 * @oobbuf: OOB buffer
1646 * @start: first OOB byte to set
1647 * @nbytes: number of OOB bytes to set
1648 * @iter: section iterator
1649 *
1650 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1651 * is selected by passing the appropriate iterator.
1652 *
1653 * Returns zero on success, a negative error code otherwise.
1654 */
1655 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1656 u8 *oobbuf, int start, int nbytes,
1657 int (*iter)(struct mtd_info *,
1658 int section,
1659 struct mtd_oob_region *oobregion))
1660 {
1661 struct mtd_oob_region oobregion;
1662 int section, ret;
1663
1664 ret = mtd_ooblayout_find_region(mtd, start, &section,
1665 &oobregion, iter);
1666
1667 while (!ret) {
1668 int cnt;
1669
1670 cnt = min_t(int, nbytes, oobregion.length);
1671 memcpy(oobbuf + oobregion.offset, buf, cnt);
1672 buf += cnt;
1673 nbytes -= cnt;
1674
1675 if (!nbytes)
1676 break;
1677
1678 ret = iter(mtd, ++section, &oobregion);
1679 }
1680
1681 return ret;
1682 }
1683
1684 /**
1685 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1686 * @mtd: mtd info structure
1687 * @iter: category iterator
1688 *
1689 * Count the number of bytes in a given category.
1690 *
1691 * Returns a positive value on success, a negative error code otherwise.
1692 */
1693 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1694 int (*iter)(struct mtd_info *,
1695 int section,
1696 struct mtd_oob_region *oobregion))
1697 {
1698 struct mtd_oob_region oobregion;
1699 int section = 0, ret, nbytes = 0;
1700
1701 while (1) {
1702 ret = iter(mtd, section++, &oobregion);
1703 if (ret) {
1704 if (ret == -ERANGE)
1705 ret = nbytes;
1706 break;
1707 }
1708
1709 nbytes += oobregion.length;
1710 }
1711
1712 return ret;
1713 }
1714
1715 /**
1716 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1717 * @mtd: mtd info structure
1718 * @eccbuf: destination buffer to store ECC bytes
1719 * @oobbuf: OOB buffer
1720 * @start: first ECC byte to retrieve
1721 * @nbytes: number of ECC bytes to retrieve
1722 *
1723 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1724 *
1725 * Returns zero on success, a negative error code otherwise.
1726 */
1727 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1728 const u8 *oobbuf, int start, int nbytes)
1729 {
1730 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1731 mtd_ooblayout_ecc);
1732 }
1733 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1734
1735 /**
1736 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: source buffer to get ECC bytes from
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to set
1741 * @nbytes: number of ECC bytes to set
1742 *
1743 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1748 u8 *oobbuf, int start, int nbytes)
1749 {
1750 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 mtd_ooblayout_ecc);
1752 }
1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1754
1755 /**
1756 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1757 * @mtd: mtd info structure
1758 * @databuf: destination buffer to store ECC bytes
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to retrieve
1761 * @nbytes: number of ECC bytes to retrieve
1762 *
1763 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1768 const u8 *oobbuf, int start, int nbytes)
1769 {
1770 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1771 mtd_ooblayout_free);
1772 }
1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1774
1775 /**
1776 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: source buffer to get data bytes from
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to set
1781 * @nbytes: number of ECC bytes to set
1782 *
1783 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1788 u8 *oobbuf, int start, int nbytes)
1789 {
1790 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 mtd_ooblayout_free);
1792 }
1793 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1794
1795 /**
1796 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1797 * @mtd: mtd info structure
1798 *
1799 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1800 *
1801 * Returns zero on success, a negative error code otherwise.
1802 */
1803 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1804 {
1805 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1806 }
1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1808
1809 /**
1810 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1811 * @mtd: mtd info structure
1812 *
1813 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1814 *
1815 * Returns zero on success, a negative error code otherwise.
1816 */
1817 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1818 {
1819 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1820 }
1821 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1822
1823 /*
1824 * Method to access the protection register area, present in some flash
1825 * devices. The user data is one time programmable but the factory data is read
1826 * only.
1827 */
1828 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1829 struct otp_info *buf)
1830 {
1831 struct mtd_info *master = mtd_get_master(mtd);
1832
1833 if (!master->_get_fact_prot_info)
1834 return -EOPNOTSUPP;
1835 if (!len)
1836 return 0;
1837 return master->_get_fact_prot_info(master, len, retlen, buf);
1838 }
1839 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1840
1841 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1842 size_t *retlen, u_char *buf)
1843 {
1844 struct mtd_info *master = mtd_get_master(mtd);
1845
1846 *retlen = 0;
1847 if (!master->_read_fact_prot_reg)
1848 return -EOPNOTSUPP;
1849 if (!len)
1850 return 0;
1851 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1852 }
1853 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1854
1855 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1856 struct otp_info *buf)
1857 {
1858 struct mtd_info *master = mtd_get_master(mtd);
1859
1860 if (!master->_get_user_prot_info)
1861 return -EOPNOTSUPP;
1862 if (!len)
1863 return 0;
1864 return master->_get_user_prot_info(master, len, retlen, buf);
1865 }
1866 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1867
1868 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1869 size_t *retlen, u_char *buf)
1870 {
1871 struct mtd_info *master = mtd_get_master(mtd);
1872
1873 *retlen = 0;
1874 if (!master->_read_user_prot_reg)
1875 return -EOPNOTSUPP;
1876 if (!len)
1877 return 0;
1878 return master->_read_user_prot_reg(master, from, len, retlen, buf);
1879 }
1880 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1881
1882 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1883 size_t *retlen, u_char *buf)
1884 {
1885 struct mtd_info *master = mtd_get_master(mtd);
1886 int ret;
1887
1888 *retlen = 0;
1889 if (!master->_write_user_prot_reg)
1890 return -EOPNOTSUPP;
1891 if (!len)
1892 return 0;
1893 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1894 if (ret)
1895 return ret;
1896
1897 /*
1898 * If no data could be written at all, we are out of memory and
1899 * must return -ENOSPC.
1900 */
1901 return (*retlen) ? 0 : -ENOSPC;
1902 }
1903 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1904
1905 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1906 {
1907 struct mtd_info *master = mtd_get_master(mtd);
1908
1909 if (!master->_lock_user_prot_reg)
1910 return -EOPNOTSUPP;
1911 if (!len)
1912 return 0;
1913 return master->_lock_user_prot_reg(master, from, len);
1914 }
1915 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1916
1917 /* Chip-supported device locking */
1918 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1919 {
1920 struct mtd_info *master = mtd_get_master(mtd);
1921
1922 if (!master->_lock)
1923 return -EOPNOTSUPP;
1924 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1925 return -EINVAL;
1926 if (!len)
1927 return 0;
1928
1929 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1930 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1931 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1932 }
1933
1934 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1935 }
1936 EXPORT_SYMBOL_GPL(mtd_lock);
1937
1938 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939 {
1940 struct mtd_info *master = mtd_get_master(mtd);
1941
1942 if (!master->_unlock)
1943 return -EOPNOTSUPP;
1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945 return -EINVAL;
1946 if (!len)
1947 return 0;
1948
1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 }
1953
1954 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1955 }
1956 EXPORT_SYMBOL_GPL(mtd_unlock);
1957
1958 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959 {
1960 struct mtd_info *master = mtd_get_master(mtd);
1961
1962 if (!master->_is_locked)
1963 return -EOPNOTSUPP;
1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965 return -EINVAL;
1966 if (!len)
1967 return 0;
1968
1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 }
1973
1974 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1975 }
1976 EXPORT_SYMBOL_GPL(mtd_is_locked);
1977
1978 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1979 {
1980 struct mtd_info *master = mtd_get_master(mtd);
1981
1982 if (ofs < 0 || ofs >= mtd->size)
1983 return -EINVAL;
1984 if (!master->_block_isreserved)
1985 return 0;
1986
1987 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1988 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1989
1990 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1991 }
1992 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1993
1994 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1995 {
1996 struct mtd_info *master = mtd_get_master(mtd);
1997
1998 if (ofs < 0 || ofs >= mtd->size)
1999 return -EINVAL;
2000 if (!master->_block_isbad)
2001 return 0;
2002
2003 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2004 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2005
2006 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2007 }
2008 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2009
2010 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2011 {
2012 struct mtd_info *master = mtd_get_master(mtd);
2013 int ret;
2014
2015 if (!master->_block_markbad)
2016 return -EOPNOTSUPP;
2017 if (ofs < 0 || ofs >= mtd->size)
2018 return -EINVAL;
2019 if (!(mtd->flags & MTD_WRITEABLE))
2020 return -EROFS;
2021
2022 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2023 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2024
2025 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2026 if (ret)
2027 return ret;
2028
2029 while (mtd->parent) {
2030 mtd->ecc_stats.badblocks++;
2031 mtd = mtd->parent;
2032 }
2033
2034 return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2037
2038 /*
2039 * default_mtd_writev - the default writev method
2040 * @mtd: mtd device description object pointer
2041 * @vecs: the vectors to write
2042 * @count: count of vectors in @vecs
2043 * @to: the MTD device offset to write to
2044 * @retlen: on exit contains the count of bytes written to the MTD device.
2045 *
2046 * This function returns zero in case of success and a negative error code in
2047 * case of failure.
2048 */
2049 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2050 unsigned long count, loff_t to, size_t *retlen)
2051 {
2052 unsigned long i;
2053 size_t totlen = 0, thislen;
2054 int ret = 0;
2055
2056 for (i = 0; i < count; i++) {
2057 if (!vecs[i].iov_len)
2058 continue;
2059 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2060 vecs[i].iov_base);
2061 totlen += thislen;
2062 if (ret || thislen != vecs[i].iov_len)
2063 break;
2064 to += vecs[i].iov_len;
2065 }
2066 *retlen = totlen;
2067 return ret;
2068 }
2069
2070 /*
2071 * mtd_writev - the vector-based MTD write method
2072 * @mtd: mtd device description object pointer
2073 * @vecs: the vectors to write
2074 * @count: count of vectors in @vecs
2075 * @to: the MTD device offset to write to
2076 * @retlen: on exit contains the count of bytes written to the MTD device.
2077 *
2078 * This function returns zero in case of success and a negative error code in
2079 * case of failure.
2080 */
2081 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2082 unsigned long count, loff_t to, size_t *retlen)
2083 {
2084 struct mtd_info *master = mtd_get_master(mtd);
2085
2086 *retlen = 0;
2087 if (!(mtd->flags & MTD_WRITEABLE))
2088 return -EROFS;
2089
2090 if (!master->_writev)
2091 return default_mtd_writev(mtd, vecs, count, to, retlen);
2092
2093 return master->_writev(master, vecs, count,
2094 mtd_get_master_ofs(mtd, to), retlen);
2095 }
2096 EXPORT_SYMBOL_GPL(mtd_writev);
2097
2098 /**
2099 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2100 * @mtd: mtd device description object pointer
2101 * @size: a pointer to the ideal or maximum size of the allocation, points
2102 * to the actual allocation size on success.
2103 *
2104 * This routine attempts to allocate a contiguous kernel buffer up to
2105 * the specified size, backing off the size of the request exponentially
2106 * until the request succeeds or until the allocation size falls below
2107 * the system page size. This attempts to make sure it does not adversely
2108 * impact system performance, so when allocating more than one page, we
2109 * ask the memory allocator to avoid re-trying, swapping, writing back
2110 * or performing I/O.
2111 *
2112 * Note, this function also makes sure that the allocated buffer is aligned to
2113 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2114 *
2115 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2116 * to handle smaller (i.e. degraded) buffer allocations under low- or
2117 * fragmented-memory situations where such reduced allocations, from a
2118 * requested ideal, are allowed.
2119 *
2120 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2121 */
2122 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2123 {
2124 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2125 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2126 void *kbuf;
2127
2128 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2129
2130 while (*size > min_alloc) {
2131 kbuf = kmalloc(*size, flags);
2132 if (kbuf)
2133 return kbuf;
2134
2135 *size >>= 1;
2136 *size = ALIGN(*size, mtd->writesize);
2137 }
2138
2139 /*
2140 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2141 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2142 */
2143 return kmalloc(*size, GFP_KERNEL);
2144 }
2145 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2146
2147 #ifdef CONFIG_PROC_FS
2148
2149 /*====================================================================*/
2150 /* Support for /proc/mtd */
2151
2152 static int mtd_proc_show(struct seq_file *m, void *v)
2153 {
2154 struct mtd_info *mtd;
2155
2156 seq_puts(m, "dev: size erasesize name\n");
2157 mutex_lock(&mtd_table_mutex);
2158 mtd_for_each_device(mtd) {
2159 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2160 mtd->index, (unsigned long long)mtd->size,
2161 mtd->erasesize, mtd->name);
2162 }
2163 mutex_unlock(&mtd_table_mutex);
2164 return 0;
2165 }
2166 #endif /* CONFIG_PROC_FS */
2167
2168 /*====================================================================*/
2169 /* Init code */
2170
2171 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2172 {
2173 struct backing_dev_info *bdi;
2174 int ret;
2175
2176 bdi = bdi_alloc(NUMA_NO_NODE);
2177 if (!bdi)
2178 return ERR_PTR(-ENOMEM);
2179 bdi->ra_pages = 0;
2180 bdi->io_pages = 0;
2181
2182 /*
2183 * We put '-0' suffix to the name to get the same name format as we
2184 * used to get. Since this is called only once, we get a unique name.
2185 */
2186 ret = bdi_register(bdi, "%.28s-0", name);
2187 if (ret)
2188 bdi_put(bdi);
2189
2190 return ret ? ERR_PTR(ret) : bdi;
2191 }
2192
2193 static struct proc_dir_entry *proc_mtd;
2194
2195 static int __init init_mtd(void)
2196 {
2197 int ret;
2198
2199 ret = class_register(&mtd_class);
2200 if (ret)
2201 goto err_reg;
2202
2203 mtd_bdi = mtd_bdi_init("mtd");
2204 if (IS_ERR(mtd_bdi)) {
2205 ret = PTR_ERR(mtd_bdi);
2206 goto err_bdi;
2207 }
2208
2209 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2210
2211 ret = init_mtdchar();
2212 if (ret)
2213 goto out_procfs;
2214
2215 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2216
2217 return 0;
2218
2219 out_procfs:
2220 if (proc_mtd)
2221 remove_proc_entry("mtd", NULL);
2222 bdi_put(mtd_bdi);
2223 err_bdi:
2224 class_unregister(&mtd_class);
2225 err_reg:
2226 pr_err("Error registering mtd class or bdi: %d\n", ret);
2227 return ret;
2228 }
2229
2230 static void __exit cleanup_mtd(void)
2231 {
2232 debugfs_remove_recursive(dfs_dir_mtd);
2233 cleanup_mtdchar();
2234 if (proc_mtd)
2235 remove_proc_entry("mtd", NULL);
2236 class_unregister(&mtd_class);
2237 bdi_put(mtd_bdi);
2238 idr_destroy(&mtd_idr);
2239 }
2240
2241 module_init(init_mtd);
2242 module_exit(cleanup_mtd);
2243
2244 MODULE_LICENSE("GPL");
2245 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2246 MODULE_DESCRIPTION("Core MTD registration and access routines");