]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdcore.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45
46 #include "mtdcore.h"
47
48 static struct backing_dev_info mtd_bdi = {
49 };
50
51 #ifdef CONFIG_PM_SLEEP
52
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58 }
59
60 static int mtd_cls_resume(struct device *dev)
61 {
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67 }
68
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74
75 static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
78 .pm = MTD_CLS_PM_OPS,
79 };
80
81 static DEFINE_IDR(mtd_idr);
82
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84 should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93
94 static LIST_HEAD(mtd_notifiers);
95
96
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102 static void mtd_release(struct device *dev)
103 {
104 struct mtd_info *mtd = dev_get_drvdata(dev);
105 dev_t index = MTD_DEVT(mtd->index);
106
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
109 }
110
111 static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct mtd_info *mtd = dev_get_drvdata(dev);
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150 static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152 {
153 struct mtd_info *mtd = dev_get_drvdata(dev);
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160 static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162 {
163 struct mtd_info *mtd = dev_get_drvdata(dev);
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181 static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214 {
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223 static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254 {
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
321 static struct attribute *mtd_attrs[] = {
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
327 &dev_attr_subpagesize.attr,
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
331 &dev_attr_ecc_strength.attr,
332 &dev_attr_ecc_step_size.attr,
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
337 &dev_attr_bitflip_threshold.attr,
338 NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341
342 static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346 };
347
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367 {
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374 }
375
376 /**
377 * add_mtd_device - register an MTD device
378 * @mtd: pointer to new MTD device info structure
379 *
380 * Add a device to the list of MTD devices present in the system, and
381 * notify each currently active MTD 'user' of its arrival. Returns
382 * zero on success or non-zero on failure.
383 */
384
385 int add_mtd_device(struct mtd_info *mtd)
386 {
387 struct mtd_notifier *not;
388 int i, error;
389
390 /*
391 * May occur, for instance, on buggy drivers which call
392 * mtd_device_parse_register() multiple times on the same master MTD,
393 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
394 */
395 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
396 return -EEXIST;
397
398 mtd->backing_dev_info = &mtd_bdi;
399
400 BUG_ON(mtd->writesize == 0);
401 mutex_lock(&mtd_table_mutex);
402
403 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
404 if (i < 0) {
405 error = i;
406 goto fail_locked;
407 }
408
409 mtd->index = i;
410 mtd->usecount = 0;
411
412 /* default value if not set by driver */
413 if (mtd->bitflip_threshold == 0)
414 mtd->bitflip_threshold = mtd->ecc_strength;
415
416 if (is_power_of_2(mtd->erasesize))
417 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
418 else
419 mtd->erasesize_shift = 0;
420
421 if (is_power_of_2(mtd->writesize))
422 mtd->writesize_shift = ffs(mtd->writesize) - 1;
423 else
424 mtd->writesize_shift = 0;
425
426 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
427 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
428
429 if (mtd->dev.parent) {
430 if (!mtd->owner && mtd->dev.parent->driver)
431 mtd->owner = mtd->dev.parent->driver->owner;
432 if (!mtd->name)
433 mtd->name = dev_name(mtd->dev.parent);
434 } else {
435 pr_debug("mtd device won't show a device symlink in sysfs\n");
436 }
437
438 /* Some chips always power up locked. Unlock them now */
439 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
440 error = mtd_unlock(mtd, 0, mtd->size);
441 if (error && error != -EOPNOTSUPP)
442 printk(KERN_WARNING
443 "%s: unlock failed, writes may not work\n",
444 mtd->name);
445 /* Ignore unlock failures? */
446 error = 0;
447 }
448
449 /* Caller should have set dev.parent to match the
450 * physical device, if appropriate.
451 */
452 mtd->dev.type = &mtd_devtype;
453 mtd->dev.class = &mtd_class;
454 mtd->dev.devt = MTD_DEVT(i);
455 dev_set_name(&mtd->dev, "mtd%d", i);
456 dev_set_drvdata(&mtd->dev, mtd);
457 error = device_register(&mtd->dev);
458 if (error)
459 goto fail_added;
460
461 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
462 "mtd%dro", i);
463
464 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
465 /* No need to get a refcount on the module containing
466 the notifier, since we hold the mtd_table_mutex */
467 list_for_each_entry(not, &mtd_notifiers, list)
468 not->add(mtd);
469
470 mutex_unlock(&mtd_table_mutex);
471 /* We _know_ we aren't being removed, because
472 our caller is still holding us here. So none
473 of this try_ nonsense, and no bitching about it
474 either. :) */
475 __module_get(THIS_MODULE);
476 return 0;
477
478 fail_added:
479 idr_remove(&mtd_idr, i);
480 fail_locked:
481 mutex_unlock(&mtd_table_mutex);
482 return error;
483 }
484
485 /**
486 * del_mtd_device - unregister an MTD device
487 * @mtd: pointer to MTD device info structure
488 *
489 * Remove a device from the list of MTD devices present in the system,
490 * and notify each currently active MTD 'user' of its departure.
491 * Returns zero on success or 1 on failure, which currently will happen
492 * if the requested device does not appear to be present in the list.
493 */
494
495 int del_mtd_device(struct mtd_info *mtd)
496 {
497 int ret;
498 struct mtd_notifier *not;
499
500 mutex_lock(&mtd_table_mutex);
501
502 if (idr_find(&mtd_idr, mtd->index) != mtd) {
503 ret = -ENODEV;
504 goto out_error;
505 }
506
507 /* No need to get a refcount on the module containing
508 the notifier, since we hold the mtd_table_mutex */
509 list_for_each_entry(not, &mtd_notifiers, list)
510 not->remove(mtd);
511
512 if (mtd->usecount) {
513 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
514 mtd->index, mtd->name, mtd->usecount);
515 ret = -EBUSY;
516 } else {
517 device_unregister(&mtd->dev);
518
519 idr_remove(&mtd_idr, mtd->index);
520
521 module_put(THIS_MODULE);
522 ret = 0;
523 }
524
525 out_error:
526 mutex_unlock(&mtd_table_mutex);
527 return ret;
528 }
529
530 static int mtd_add_device_partitions(struct mtd_info *mtd,
531 struct mtd_partition *real_parts,
532 int nbparts)
533 {
534 int ret;
535
536 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
537 ret = add_mtd_device(mtd);
538 if (ret)
539 return ret;
540 }
541
542 if (nbparts > 0) {
543 ret = add_mtd_partitions(mtd, real_parts, nbparts);
544 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
545 del_mtd_device(mtd);
546 return ret;
547 }
548
549 return 0;
550 }
551
552
553 /**
554 * mtd_device_parse_register - parse partitions and register an MTD device.
555 *
556 * @mtd: the MTD device to register
557 * @types: the list of MTD partition probes to try, see
558 * 'parse_mtd_partitions()' for more information
559 * @parser_data: MTD partition parser-specific data
560 * @parts: fallback partition information to register, if parsing fails;
561 * only valid if %nr_parts > %0
562 * @nr_parts: the number of partitions in parts, if zero then the full
563 * MTD device is registered if no partition info is found
564 *
565 * This function aggregates MTD partitions parsing (done by
566 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
567 * basically follows the most common pattern found in many MTD drivers:
568 *
569 * * It first tries to probe partitions on MTD device @mtd using parsers
570 * specified in @types (if @types is %NULL, then the default list of parsers
571 * is used, see 'parse_mtd_partitions()' for more information). If none are
572 * found this functions tries to fallback to information specified in
573 * @parts/@nr_parts.
574 * * If any partitioning info was found, this function registers the found
575 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
576 * as a whole is registered first.
577 * * If no partitions were found this function just registers the MTD device
578 * @mtd and exits.
579 *
580 * Returns zero in case of success and a negative error code in case of failure.
581 */
582 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
583 struct mtd_part_parser_data *parser_data,
584 const struct mtd_partition *parts,
585 int nr_parts)
586 {
587 int ret;
588 struct mtd_partition *real_parts = NULL;
589
590 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
591 if (ret <= 0 && nr_parts && parts) {
592 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
593 GFP_KERNEL);
594 if (!real_parts)
595 ret = -ENOMEM;
596 else
597 ret = nr_parts;
598 }
599 /* Didn't come up with either parsed OR fallback partitions */
600 if (ret < 0) {
601 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
602 ret);
603 /* Don't abort on errors; we can still use unpartitioned MTD */
604 ret = 0;
605 }
606
607 ret = mtd_add_device_partitions(mtd, real_parts, ret);
608 if (ret)
609 goto out;
610
611 /*
612 * FIXME: some drivers unfortunately call this function more than once.
613 * So we have to check if we've already assigned the reboot notifier.
614 *
615 * Generally, we can make multiple calls work for most cases, but it
616 * does cause problems with parse_mtd_partitions() above (e.g.,
617 * cmdlineparts will register partitions more than once).
618 */
619 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
620 "MTD already registered\n");
621 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
622 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
623 register_reboot_notifier(&mtd->reboot_notifier);
624 }
625
626 out:
627 kfree(real_parts);
628 return ret;
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631
632 /**
633 * mtd_device_unregister - unregister an existing MTD device.
634 *
635 * @master: the MTD device to unregister. This will unregister both the master
636 * and any partitions if registered.
637 */
638 int mtd_device_unregister(struct mtd_info *master)
639 {
640 int err;
641
642 if (master->_reboot)
643 unregister_reboot_notifier(&master->reboot_notifier);
644
645 err = del_mtd_partitions(master);
646 if (err)
647 return err;
648
649 if (!device_is_registered(&master->dev))
650 return 0;
651
652 return del_mtd_device(master);
653 }
654 EXPORT_SYMBOL_GPL(mtd_device_unregister);
655
656 /**
657 * register_mtd_user - register a 'user' of MTD devices.
658 * @new: pointer to notifier info structure
659 *
660 * Registers a pair of callbacks function to be called upon addition
661 * or removal of MTD devices. Causes the 'add' callback to be immediately
662 * invoked for each MTD device currently present in the system.
663 */
664 void register_mtd_user (struct mtd_notifier *new)
665 {
666 struct mtd_info *mtd;
667
668 mutex_lock(&mtd_table_mutex);
669
670 list_add(&new->list, &mtd_notifiers);
671
672 __module_get(THIS_MODULE);
673
674 mtd_for_each_device(mtd)
675 new->add(mtd);
676
677 mutex_unlock(&mtd_table_mutex);
678 }
679 EXPORT_SYMBOL_GPL(register_mtd_user);
680
681 /**
682 * unregister_mtd_user - unregister a 'user' of MTD devices.
683 * @old: pointer to notifier info structure
684 *
685 * Removes a callback function pair from the list of 'users' to be
686 * notified upon addition or removal of MTD devices. Causes the
687 * 'remove' callback to be immediately invoked for each MTD device
688 * currently present in the system.
689 */
690 int unregister_mtd_user (struct mtd_notifier *old)
691 {
692 struct mtd_info *mtd;
693
694 mutex_lock(&mtd_table_mutex);
695
696 module_put(THIS_MODULE);
697
698 mtd_for_each_device(mtd)
699 old->remove(mtd);
700
701 list_del(&old->list);
702 mutex_unlock(&mtd_table_mutex);
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(unregister_mtd_user);
706
707 /**
708 * get_mtd_device - obtain a validated handle for an MTD device
709 * @mtd: last known address of the required MTD device
710 * @num: internal device number of the required MTD device
711 *
712 * Given a number and NULL address, return the num'th entry in the device
713 * table, if any. Given an address and num == -1, search the device table
714 * for a device with that address and return if it's still present. Given
715 * both, return the num'th driver only if its address matches. Return
716 * error code if not.
717 */
718 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
719 {
720 struct mtd_info *ret = NULL, *other;
721 int err = -ENODEV;
722
723 mutex_lock(&mtd_table_mutex);
724
725 if (num == -1) {
726 mtd_for_each_device(other) {
727 if (other == mtd) {
728 ret = mtd;
729 break;
730 }
731 }
732 } else if (num >= 0) {
733 ret = idr_find(&mtd_idr, num);
734 if (mtd && mtd != ret)
735 ret = NULL;
736 }
737
738 if (!ret) {
739 ret = ERR_PTR(err);
740 goto out;
741 }
742
743 err = __get_mtd_device(ret);
744 if (err)
745 ret = ERR_PTR(err);
746 out:
747 mutex_unlock(&mtd_table_mutex);
748 return ret;
749 }
750 EXPORT_SYMBOL_GPL(get_mtd_device);
751
752
753 int __get_mtd_device(struct mtd_info *mtd)
754 {
755 int err;
756
757 if (!try_module_get(mtd->owner))
758 return -ENODEV;
759
760 if (mtd->_get_device) {
761 err = mtd->_get_device(mtd);
762
763 if (err) {
764 module_put(mtd->owner);
765 return err;
766 }
767 }
768 mtd->usecount++;
769 return 0;
770 }
771 EXPORT_SYMBOL_GPL(__get_mtd_device);
772
773 /**
774 * get_mtd_device_nm - obtain a validated handle for an MTD device by
775 * device name
776 * @name: MTD device name to open
777 *
778 * This function returns MTD device description structure in case of
779 * success and an error code in case of failure.
780 */
781 struct mtd_info *get_mtd_device_nm(const char *name)
782 {
783 int err = -ENODEV;
784 struct mtd_info *mtd = NULL, *other;
785
786 mutex_lock(&mtd_table_mutex);
787
788 mtd_for_each_device(other) {
789 if (!strcmp(name, other->name)) {
790 mtd = other;
791 break;
792 }
793 }
794
795 if (!mtd)
796 goto out_unlock;
797
798 err = __get_mtd_device(mtd);
799 if (err)
800 goto out_unlock;
801
802 mutex_unlock(&mtd_table_mutex);
803 return mtd;
804
805 out_unlock:
806 mutex_unlock(&mtd_table_mutex);
807 return ERR_PTR(err);
808 }
809 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
810
811 void put_mtd_device(struct mtd_info *mtd)
812 {
813 mutex_lock(&mtd_table_mutex);
814 __put_mtd_device(mtd);
815 mutex_unlock(&mtd_table_mutex);
816
817 }
818 EXPORT_SYMBOL_GPL(put_mtd_device);
819
820 void __put_mtd_device(struct mtd_info *mtd)
821 {
822 --mtd->usecount;
823 BUG_ON(mtd->usecount < 0);
824
825 if (mtd->_put_device)
826 mtd->_put_device(mtd);
827
828 module_put(mtd->owner);
829 }
830 EXPORT_SYMBOL_GPL(__put_mtd_device);
831
832 /*
833 * Erase is an asynchronous operation. Device drivers are supposed
834 * to call instr->callback() whenever the operation completes, even
835 * if it completes with a failure.
836 * Callers are supposed to pass a callback function and wait for it
837 * to be called before writing to the block.
838 */
839 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
840 {
841 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
842 return -EINVAL;
843 if (!(mtd->flags & MTD_WRITEABLE))
844 return -EROFS;
845 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
846 if (!instr->len) {
847 instr->state = MTD_ERASE_DONE;
848 mtd_erase_callback(instr);
849 return 0;
850 }
851 return mtd->_erase(mtd, instr);
852 }
853 EXPORT_SYMBOL_GPL(mtd_erase);
854
855 /*
856 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
857 */
858 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
859 void **virt, resource_size_t *phys)
860 {
861 *retlen = 0;
862 *virt = NULL;
863 if (phys)
864 *phys = 0;
865 if (!mtd->_point)
866 return -EOPNOTSUPP;
867 if (from < 0 || from >= mtd->size || len > mtd->size - from)
868 return -EINVAL;
869 if (!len)
870 return 0;
871 return mtd->_point(mtd, from, len, retlen, virt, phys);
872 }
873 EXPORT_SYMBOL_GPL(mtd_point);
874
875 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
876 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
877 {
878 if (!mtd->_point)
879 return -EOPNOTSUPP;
880 if (from < 0 || from >= mtd->size || len > mtd->size - from)
881 return -EINVAL;
882 if (!len)
883 return 0;
884 return mtd->_unpoint(mtd, from, len);
885 }
886 EXPORT_SYMBOL_GPL(mtd_unpoint);
887
888 /*
889 * Allow NOMMU mmap() to directly map the device (if not NULL)
890 * - return the address to which the offset maps
891 * - return -ENOSYS to indicate refusal to do the mapping
892 */
893 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
894 unsigned long offset, unsigned long flags)
895 {
896 if (!mtd->_get_unmapped_area)
897 return -EOPNOTSUPP;
898 if (offset >= mtd->size || len > mtd->size - offset)
899 return -EINVAL;
900 return mtd->_get_unmapped_area(mtd, len, offset, flags);
901 }
902 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
903
904 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
905 u_char *buf)
906 {
907 int ret_code;
908 *retlen = 0;
909 if (from < 0 || from >= mtd->size || len > mtd->size - from)
910 return -EINVAL;
911 if (!len)
912 return 0;
913
914 /*
915 * In the absence of an error, drivers return a non-negative integer
916 * representing the maximum number of bitflips that were corrected on
917 * any one ecc region (if applicable; zero otherwise).
918 */
919 ret_code = mtd->_read(mtd, from, len, retlen, buf);
920 if (unlikely(ret_code < 0))
921 return ret_code;
922 if (mtd->ecc_strength == 0)
923 return 0; /* device lacks ecc */
924 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
925 }
926 EXPORT_SYMBOL_GPL(mtd_read);
927
928 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
929 const u_char *buf)
930 {
931 *retlen = 0;
932 if (to < 0 || to >= mtd->size || len > mtd->size - to)
933 return -EINVAL;
934 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
935 return -EROFS;
936 if (!len)
937 return 0;
938 return mtd->_write(mtd, to, len, retlen, buf);
939 }
940 EXPORT_SYMBOL_GPL(mtd_write);
941
942 /*
943 * In blackbox flight recorder like scenarios we want to make successful writes
944 * in interrupt context. panic_write() is only intended to be called when its
945 * known the kernel is about to panic and we need the write to succeed. Since
946 * the kernel is not going to be running for much longer, this function can
947 * break locks and delay to ensure the write succeeds (but not sleep).
948 */
949 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
950 const u_char *buf)
951 {
952 *retlen = 0;
953 if (!mtd->_panic_write)
954 return -EOPNOTSUPP;
955 if (to < 0 || to >= mtd->size || len > mtd->size - to)
956 return -EINVAL;
957 if (!(mtd->flags & MTD_WRITEABLE))
958 return -EROFS;
959 if (!len)
960 return 0;
961 return mtd->_panic_write(mtd, to, len, retlen, buf);
962 }
963 EXPORT_SYMBOL_GPL(mtd_panic_write);
964
965 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
966 {
967 int ret_code;
968 ops->retlen = ops->oobretlen = 0;
969 if (!mtd->_read_oob)
970 return -EOPNOTSUPP;
971 /*
972 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
973 * similar to mtd->_read(), returning a non-negative integer
974 * representing max bitflips. In other cases, mtd->_read_oob() may
975 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
976 */
977 ret_code = mtd->_read_oob(mtd, from, ops);
978 if (unlikely(ret_code < 0))
979 return ret_code;
980 if (mtd->ecc_strength == 0)
981 return 0; /* device lacks ecc */
982 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
983 }
984 EXPORT_SYMBOL_GPL(mtd_read_oob);
985
986 /*
987 * Method to access the protection register area, present in some flash
988 * devices. The user data is one time programmable but the factory data is read
989 * only.
990 */
991 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
992 struct otp_info *buf)
993 {
994 if (!mtd->_get_fact_prot_info)
995 return -EOPNOTSUPP;
996 if (!len)
997 return 0;
998 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
999 }
1000 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1001
1002 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1003 size_t *retlen, u_char *buf)
1004 {
1005 *retlen = 0;
1006 if (!mtd->_read_fact_prot_reg)
1007 return -EOPNOTSUPP;
1008 if (!len)
1009 return 0;
1010 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1011 }
1012 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1013
1014 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1015 struct otp_info *buf)
1016 {
1017 if (!mtd->_get_user_prot_info)
1018 return -EOPNOTSUPP;
1019 if (!len)
1020 return 0;
1021 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1022 }
1023 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1024
1025 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1026 size_t *retlen, u_char *buf)
1027 {
1028 *retlen = 0;
1029 if (!mtd->_read_user_prot_reg)
1030 return -EOPNOTSUPP;
1031 if (!len)
1032 return 0;
1033 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1034 }
1035 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1036
1037 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1038 size_t *retlen, u_char *buf)
1039 {
1040 int ret;
1041
1042 *retlen = 0;
1043 if (!mtd->_write_user_prot_reg)
1044 return -EOPNOTSUPP;
1045 if (!len)
1046 return 0;
1047 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1048 if (ret)
1049 return ret;
1050
1051 /*
1052 * If no data could be written at all, we are out of memory and
1053 * must return -ENOSPC.
1054 */
1055 return (*retlen) ? 0 : -ENOSPC;
1056 }
1057 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1058
1059 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1060 {
1061 if (!mtd->_lock_user_prot_reg)
1062 return -EOPNOTSUPP;
1063 if (!len)
1064 return 0;
1065 return mtd->_lock_user_prot_reg(mtd, from, len);
1066 }
1067 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1068
1069 /* Chip-supported device locking */
1070 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1071 {
1072 if (!mtd->_lock)
1073 return -EOPNOTSUPP;
1074 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1075 return -EINVAL;
1076 if (!len)
1077 return 0;
1078 return mtd->_lock(mtd, ofs, len);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_lock);
1081
1082 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1083 {
1084 if (!mtd->_unlock)
1085 return -EOPNOTSUPP;
1086 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1087 return -EINVAL;
1088 if (!len)
1089 return 0;
1090 return mtd->_unlock(mtd, ofs, len);
1091 }
1092 EXPORT_SYMBOL_GPL(mtd_unlock);
1093
1094 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1095 {
1096 if (!mtd->_is_locked)
1097 return -EOPNOTSUPP;
1098 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1099 return -EINVAL;
1100 if (!len)
1101 return 0;
1102 return mtd->_is_locked(mtd, ofs, len);
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_is_locked);
1105
1106 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1107 {
1108 if (ofs < 0 || ofs >= mtd->size)
1109 return -EINVAL;
1110 if (!mtd->_block_isreserved)
1111 return 0;
1112 return mtd->_block_isreserved(mtd, ofs);
1113 }
1114 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1115
1116 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1117 {
1118 if (ofs < 0 || ofs >= mtd->size)
1119 return -EINVAL;
1120 if (!mtd->_block_isbad)
1121 return 0;
1122 return mtd->_block_isbad(mtd, ofs);
1123 }
1124 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1125
1126 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1127 {
1128 if (!mtd->_block_markbad)
1129 return -EOPNOTSUPP;
1130 if (ofs < 0 || ofs >= mtd->size)
1131 return -EINVAL;
1132 if (!(mtd->flags & MTD_WRITEABLE))
1133 return -EROFS;
1134 return mtd->_block_markbad(mtd, ofs);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1137
1138 /*
1139 * default_mtd_writev - the default writev method
1140 * @mtd: mtd device description object pointer
1141 * @vecs: the vectors to write
1142 * @count: count of vectors in @vecs
1143 * @to: the MTD device offset to write to
1144 * @retlen: on exit contains the count of bytes written to the MTD device.
1145 *
1146 * This function returns zero in case of success and a negative error code in
1147 * case of failure.
1148 */
1149 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1150 unsigned long count, loff_t to, size_t *retlen)
1151 {
1152 unsigned long i;
1153 size_t totlen = 0, thislen;
1154 int ret = 0;
1155
1156 for (i = 0; i < count; i++) {
1157 if (!vecs[i].iov_len)
1158 continue;
1159 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1160 vecs[i].iov_base);
1161 totlen += thislen;
1162 if (ret || thislen != vecs[i].iov_len)
1163 break;
1164 to += vecs[i].iov_len;
1165 }
1166 *retlen = totlen;
1167 return ret;
1168 }
1169
1170 /*
1171 * mtd_writev - the vector-based MTD write method
1172 * @mtd: mtd device description object pointer
1173 * @vecs: the vectors to write
1174 * @count: count of vectors in @vecs
1175 * @to: the MTD device offset to write to
1176 * @retlen: on exit contains the count of bytes written to the MTD device.
1177 *
1178 * This function returns zero in case of success and a negative error code in
1179 * case of failure.
1180 */
1181 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1182 unsigned long count, loff_t to, size_t *retlen)
1183 {
1184 *retlen = 0;
1185 if (!(mtd->flags & MTD_WRITEABLE))
1186 return -EROFS;
1187 if (!mtd->_writev)
1188 return default_mtd_writev(mtd, vecs, count, to, retlen);
1189 return mtd->_writev(mtd, vecs, count, to, retlen);
1190 }
1191 EXPORT_SYMBOL_GPL(mtd_writev);
1192
1193 /**
1194 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1195 * @mtd: mtd device description object pointer
1196 * @size: a pointer to the ideal or maximum size of the allocation, points
1197 * to the actual allocation size on success.
1198 *
1199 * This routine attempts to allocate a contiguous kernel buffer up to
1200 * the specified size, backing off the size of the request exponentially
1201 * until the request succeeds or until the allocation size falls below
1202 * the system page size. This attempts to make sure it does not adversely
1203 * impact system performance, so when allocating more than one page, we
1204 * ask the memory allocator to avoid re-trying, swapping, writing back
1205 * or performing I/O.
1206 *
1207 * Note, this function also makes sure that the allocated buffer is aligned to
1208 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1209 *
1210 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1211 * to handle smaller (i.e. degraded) buffer allocations under low- or
1212 * fragmented-memory situations where such reduced allocations, from a
1213 * requested ideal, are allowed.
1214 *
1215 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1216 */
1217 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1218 {
1219 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1220 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1221 void *kbuf;
1222
1223 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1224
1225 while (*size > min_alloc) {
1226 kbuf = kmalloc(*size, flags);
1227 if (kbuf)
1228 return kbuf;
1229
1230 *size >>= 1;
1231 *size = ALIGN(*size, mtd->writesize);
1232 }
1233
1234 /*
1235 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1236 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1237 */
1238 return kmalloc(*size, GFP_KERNEL);
1239 }
1240 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1241
1242 #ifdef CONFIG_PROC_FS
1243
1244 /*====================================================================*/
1245 /* Support for /proc/mtd */
1246
1247 static int mtd_proc_show(struct seq_file *m, void *v)
1248 {
1249 struct mtd_info *mtd;
1250
1251 seq_puts(m, "dev: size erasesize name\n");
1252 mutex_lock(&mtd_table_mutex);
1253 mtd_for_each_device(mtd) {
1254 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1255 mtd->index, (unsigned long long)mtd->size,
1256 mtd->erasesize, mtd->name);
1257 }
1258 mutex_unlock(&mtd_table_mutex);
1259 return 0;
1260 }
1261
1262 static int mtd_proc_open(struct inode *inode, struct file *file)
1263 {
1264 return single_open(file, mtd_proc_show, NULL);
1265 }
1266
1267 static const struct file_operations mtd_proc_ops = {
1268 .open = mtd_proc_open,
1269 .read = seq_read,
1270 .llseek = seq_lseek,
1271 .release = single_release,
1272 };
1273 #endif /* CONFIG_PROC_FS */
1274
1275 /*====================================================================*/
1276 /* Init code */
1277
1278 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1279 {
1280 int ret;
1281
1282 ret = bdi_init(bdi);
1283 if (!ret)
1284 ret = bdi_register(bdi, NULL, "%s", name);
1285
1286 if (ret)
1287 bdi_destroy(bdi);
1288
1289 return ret;
1290 }
1291
1292 static struct proc_dir_entry *proc_mtd;
1293
1294 static int __init init_mtd(void)
1295 {
1296 int ret;
1297
1298 ret = class_register(&mtd_class);
1299 if (ret)
1300 goto err_reg;
1301
1302 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1303 if (ret)
1304 goto err_bdi;
1305
1306 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1307
1308 ret = init_mtdchar();
1309 if (ret)
1310 goto out_procfs;
1311
1312 return 0;
1313
1314 out_procfs:
1315 if (proc_mtd)
1316 remove_proc_entry("mtd", NULL);
1317 err_bdi:
1318 class_unregister(&mtd_class);
1319 err_reg:
1320 pr_err("Error registering mtd class or bdi: %d\n", ret);
1321 return ret;
1322 }
1323
1324 static void __exit cleanup_mtd(void)
1325 {
1326 cleanup_mtdchar();
1327 if (proc_mtd)
1328 remove_proc_entry("mtd", NULL);
1329 class_unregister(&mtd_class);
1330 bdi_destroy(&mtd_bdi);
1331 idr_destroy(&mtd_idr);
1332 }
1333
1334 module_init(init_mtd);
1335 module_exit(cleanup_mtd);
1336
1337 MODULE_LICENSE("GPL");
1338 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1339 MODULE_DESCRIPTION("Core MTD registration and access routines");