]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/mtdcore.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / mtdcore.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143
144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152
153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170
171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216
217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311 static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332
333 static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337 };
338
339 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 {
341 struct mtd_info *mtd = s->private;
342
343 seq_printf(s, "%s\n", mtd->dbg.partid);
344
345 return 0;
346 }
347
348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349
350 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 {
352 struct mtd_info *mtd = s->private;
353
354 seq_printf(s, "%s\n", mtd->dbg.partname);
355
356 return 0;
357 }
358
359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360
361 static struct dentry *dfs_dir_mtd;
362
363 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 {
365 struct mtd_info *master = mtd_get_master(mtd);
366 struct device *dev = &mtd->dev;
367 struct dentry *root;
368
369 if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 return;
371
372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
373 mtd->dbg.dfs_dir = root;
374
375 if (master->dbg.partid)
376 debugfs_create_file("partid", 0400, root, master,
377 &mtd_partid_debug_fops);
378
379 if (master->dbg.partname)
380 debugfs_create_file("partname", 0400, root, master,
381 &mtd_partname_debug_fops);
382 }
383
384 #ifndef CONFIG_MMU
385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386 {
387 switch (mtd->type) {
388 case MTD_RAM:
389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 case MTD_ROM:
392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 NOMMU_MAP_READ;
394 default:
395 return NOMMU_MAP_COPY;
396 }
397 }
398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
399 #endif
400
401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 void *cmd)
403 {
404 struct mtd_info *mtd;
405
406 mtd = container_of(n, struct mtd_info, reboot_notifier);
407 mtd->_reboot(mtd);
408
409 return NOTIFY_DONE;
410 }
411
412 /**
413 * mtd_wunit_to_pairing_info - get pairing information of a wunit
414 * @mtd: pointer to new MTD device info structure
415 * @wunit: write unit we are interested in
416 * @info: returned pairing information
417 *
418 * Retrieve pairing information associated to the wunit.
419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420 * paired together, and where programming a page may influence the page it is
421 * paired with.
422 * The notion of page is replaced by the term wunit (write-unit) to stay
423 * consistent with the ->writesize field.
424 *
425 * The @wunit argument can be extracted from an absolute offset using
426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427 * to @wunit.
428 *
429 * From the pairing info the MTD user can find all the wunits paired with
430 * @wunit using the following loop:
431 *
432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433 * info.pair = i;
434 * mtd_pairing_info_to_wunit(mtd, &info);
435 * ...
436 * }
437 */
438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 struct mtd_pairing_info *info)
440 {
441 struct mtd_info *master = mtd_get_master(mtd);
442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
443
444 if (wunit < 0 || wunit >= npairs)
445 return -EINVAL;
446
447 if (master->pairing && master->pairing->get_info)
448 return master->pairing->get_info(master, wunit, info);
449
450 info->group = 0;
451 info->pair = wunit;
452
453 return 0;
454 }
455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456
457 /**
458 * mtd_pairing_info_to_wunit - get wunit from pairing information
459 * @mtd: pointer to new MTD device info structure
460 * @info: pairing information struct
461 *
462 * Returns a positive number representing the wunit associated to the info
463 * struct, or a negative error code.
464 *
465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467 * doc).
468 *
469 * It can also be used to only program the first page of each pair (i.e.
470 * page attached to group 0), which allows one to use an MLC NAND in
471 * software-emulated SLC mode:
472 *
473 * info.group = 0;
474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475 * for (info.pair = 0; info.pair < npairs; info.pair++) {
476 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 * }
480 */
481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 const struct mtd_pairing_info *info)
483 {
484 struct mtd_info *master = mtd_get_master(mtd);
485 int ngroups = mtd_pairing_groups(master);
486 int npairs = mtd_wunit_per_eb(master) / ngroups;
487
488 if (!info || info->pair < 0 || info->pair >= npairs ||
489 info->group < 0 || info->group >= ngroups)
490 return -EINVAL;
491
492 if (master->pairing && master->pairing->get_wunit)
493 return mtd->pairing->get_wunit(master, info);
494
495 return info->pair;
496 }
497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498
499 /**
500 * mtd_pairing_groups - get the number of pairing groups
501 * @mtd: pointer to new MTD device info structure
502 *
503 * Returns the number of pairing groups.
504 *
505 * This number is usually equal to the number of bits exposed by a single
506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507 * to iterate over all pages of a given pair.
508 */
509 int mtd_pairing_groups(struct mtd_info *mtd)
510 {
511 struct mtd_info *master = mtd_get_master(mtd);
512
513 if (!master->pairing || !master->pairing->ngroups)
514 return 1;
515
516 return master->pairing->ngroups;
517 }
518 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519
520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 void *val, size_t bytes)
522 {
523 struct mtd_info *mtd = priv;
524 size_t retlen;
525 int err;
526
527 err = mtd_read(mtd, offset, bytes, &retlen, val);
528 if (err && err != -EUCLEAN)
529 return err;
530
531 return retlen == bytes ? 0 : -EIO;
532 }
533
534 static int mtd_nvmem_add(struct mtd_info *mtd)
535 {
536 struct device_node *node = mtd_get_of_node(mtd);
537 struct nvmem_config config = {};
538
539 config.id = -1;
540 config.dev = &mtd->dev;
541 config.name = dev_name(&mtd->dev);
542 config.owner = THIS_MODULE;
543 config.reg_read = mtd_nvmem_reg_read;
544 config.size = mtd->size;
545 config.word_size = 1;
546 config.stride = 1;
547 config.read_only = true;
548 config.root_only = true;
549 config.ignore_wp = true;
550 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
551 config.priv = mtd;
552
553 mtd->nvmem = nvmem_register(&config);
554 if (IS_ERR(mtd->nvmem)) {
555 /* Just ignore if there is no NVMEM support in the kernel */
556 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
557 mtd->nvmem = NULL;
558 } else {
559 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
560 return PTR_ERR(mtd->nvmem);
561 }
562 }
563
564 return 0;
565 }
566
567 /**
568 * add_mtd_device - register an MTD device
569 * @mtd: pointer to new MTD device info structure
570 *
571 * Add a device to the list of MTD devices present in the system, and
572 * notify each currently active MTD 'user' of its arrival. Returns
573 * zero on success or non-zero on failure.
574 */
575
576 int add_mtd_device(struct mtd_info *mtd)
577 {
578 struct mtd_info *master = mtd_get_master(mtd);
579 struct mtd_notifier *not;
580 int i, error;
581
582 /*
583 * May occur, for instance, on buggy drivers which call
584 * mtd_device_parse_register() multiple times on the same master MTD,
585 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
586 */
587 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
588 return -EEXIST;
589
590 BUG_ON(mtd->writesize == 0);
591
592 /*
593 * MTD drivers should implement ->_{write,read}() or
594 * ->_{write,read}_oob(), but not both.
595 */
596 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
597 (mtd->_read && mtd->_read_oob)))
598 return -EINVAL;
599
600 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
601 !(mtd->flags & MTD_NO_ERASE)))
602 return -EINVAL;
603
604 /*
605 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
606 * master is an MLC NAND and has a proper pairing scheme defined.
607 * We also reject masters that implement ->_writev() for now, because
608 * NAND controller drivers don't implement this hook, and adding the
609 * SLC -> MLC address/length conversion to this path is useless if we
610 * don't have a user.
611 */
612 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
613 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
614 !master->pairing || master->_writev))
615 return -EINVAL;
616
617 mutex_lock(&mtd_table_mutex);
618
619 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
620 if (i < 0) {
621 error = i;
622 goto fail_locked;
623 }
624
625 mtd->index = i;
626 mtd->usecount = 0;
627
628 /* default value if not set by driver */
629 if (mtd->bitflip_threshold == 0)
630 mtd->bitflip_threshold = mtd->ecc_strength;
631
632 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
633 int ngroups = mtd_pairing_groups(master);
634
635 mtd->erasesize /= ngroups;
636 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
637 mtd->erasesize;
638 }
639
640 if (is_power_of_2(mtd->erasesize))
641 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
642 else
643 mtd->erasesize_shift = 0;
644
645 if (is_power_of_2(mtd->writesize))
646 mtd->writesize_shift = ffs(mtd->writesize) - 1;
647 else
648 mtd->writesize_shift = 0;
649
650 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
651 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
652
653 /* Some chips always power up locked. Unlock them now */
654 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
655 error = mtd_unlock(mtd, 0, mtd->size);
656 if (error && error != -EOPNOTSUPP)
657 printk(KERN_WARNING
658 "%s: unlock failed, writes may not work\n",
659 mtd->name);
660 /* Ignore unlock failures? */
661 error = 0;
662 }
663
664 /* Caller should have set dev.parent to match the
665 * physical device, if appropriate.
666 */
667 mtd->dev.type = &mtd_devtype;
668 mtd->dev.class = &mtd_class;
669 mtd->dev.devt = MTD_DEVT(i);
670 dev_set_name(&mtd->dev, "mtd%d", i);
671 dev_set_drvdata(&mtd->dev, mtd);
672 of_node_get(mtd_get_of_node(mtd));
673 error = device_register(&mtd->dev);
674 if (error)
675 goto fail_added;
676
677 /* Add the nvmem provider */
678 error = mtd_nvmem_add(mtd);
679 if (error)
680 goto fail_nvmem_add;
681
682 mtd_debugfs_populate(mtd);
683
684 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
685 "mtd%dro", i);
686
687 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
688 /* No need to get a refcount on the module containing
689 the notifier, since we hold the mtd_table_mutex */
690 list_for_each_entry(not, &mtd_notifiers, list)
691 not->add(mtd);
692
693 mutex_unlock(&mtd_table_mutex);
694 /* We _know_ we aren't being removed, because
695 our caller is still holding us here. So none
696 of this try_ nonsense, and no bitching about it
697 either. :) */
698 __module_get(THIS_MODULE);
699 return 0;
700
701 fail_nvmem_add:
702 device_unregister(&mtd->dev);
703 fail_added:
704 of_node_put(mtd_get_of_node(mtd));
705 idr_remove(&mtd_idr, i);
706 fail_locked:
707 mutex_unlock(&mtd_table_mutex);
708 return error;
709 }
710
711 /**
712 * del_mtd_device - unregister an MTD device
713 * @mtd: pointer to MTD device info structure
714 *
715 * Remove a device from the list of MTD devices present in the system,
716 * and notify each currently active MTD 'user' of its departure.
717 * Returns zero on success or 1 on failure, which currently will happen
718 * if the requested device does not appear to be present in the list.
719 */
720
721 int del_mtd_device(struct mtd_info *mtd)
722 {
723 int ret;
724 struct mtd_notifier *not;
725
726 mutex_lock(&mtd_table_mutex);
727
728 if (idr_find(&mtd_idr, mtd->index) != mtd) {
729 ret = -ENODEV;
730 goto out_error;
731 }
732
733 /* No need to get a refcount on the module containing
734 the notifier, since we hold the mtd_table_mutex */
735 list_for_each_entry(not, &mtd_notifiers, list)
736 not->remove(mtd);
737
738 if (mtd->usecount) {
739 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
740 mtd->index, mtd->name, mtd->usecount);
741 ret = -EBUSY;
742 } else {
743 debugfs_remove_recursive(mtd->dbg.dfs_dir);
744
745 /* Try to remove the NVMEM provider */
746 if (mtd->nvmem)
747 nvmem_unregister(mtd->nvmem);
748
749 device_unregister(&mtd->dev);
750
751 idr_remove(&mtd_idr, mtd->index);
752 of_node_put(mtd_get_of_node(mtd));
753
754 module_put(THIS_MODULE);
755 ret = 0;
756 }
757
758 out_error:
759 mutex_unlock(&mtd_table_mutex);
760 return ret;
761 }
762
763 /*
764 * Set a few defaults based on the parent devices, if not provided by the
765 * driver
766 */
767 static void mtd_set_dev_defaults(struct mtd_info *mtd)
768 {
769 if (mtd->dev.parent) {
770 if (!mtd->owner && mtd->dev.parent->driver)
771 mtd->owner = mtd->dev.parent->driver->owner;
772 if (!mtd->name)
773 mtd->name = dev_name(mtd->dev.parent);
774 } else {
775 pr_debug("mtd device won't show a device symlink in sysfs\n");
776 }
777
778 INIT_LIST_HEAD(&mtd->partitions);
779 mutex_init(&mtd->master.partitions_lock);
780 mutex_init(&mtd->master.chrdev_lock);
781 }
782
783 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
784 {
785 struct otp_info *info;
786 ssize_t size = 0;
787 unsigned int i;
788 size_t retlen;
789 int ret;
790
791 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
792 if (!info)
793 return -ENOMEM;
794
795 if (is_user)
796 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
797 else
798 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
799 if (ret)
800 goto err;
801
802 for (i = 0; i < retlen / sizeof(*info); i++)
803 size += info[i].length;
804
805 kfree(info);
806 return size;
807
808 err:
809 kfree(info);
810
811 /* ENODATA means there is no OTP region. */
812 return ret == -ENODATA ? 0 : ret;
813 }
814
815 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
816 const char *compatible,
817 int size,
818 nvmem_reg_read_t reg_read)
819 {
820 struct nvmem_device *nvmem = NULL;
821 struct nvmem_config config = {};
822 struct device_node *np;
823
824 /* DT binding is optional */
825 np = of_get_compatible_child(mtd->dev.of_node, compatible);
826
827 /* OTP nvmem will be registered on the physical device */
828 config.dev = mtd->dev.parent;
829 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
830 config.id = NVMEM_DEVID_NONE;
831 config.owner = THIS_MODULE;
832 config.type = NVMEM_TYPE_OTP;
833 config.root_only = true;
834 config.ignore_wp = true;
835 config.reg_read = reg_read;
836 config.size = size;
837 config.of_node = np;
838 config.priv = mtd;
839
840 nvmem = nvmem_register(&config);
841 /* Just ignore if there is no NVMEM support in the kernel */
842 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
843 nvmem = NULL;
844
845 of_node_put(np);
846 kfree(config.name);
847
848 return nvmem;
849 }
850
851 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
852 void *val, size_t bytes)
853 {
854 struct mtd_info *mtd = priv;
855 size_t retlen;
856 int ret;
857
858 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
859 if (ret)
860 return ret;
861
862 return retlen == bytes ? 0 : -EIO;
863 }
864
865 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
866 void *val, size_t bytes)
867 {
868 struct mtd_info *mtd = priv;
869 size_t retlen;
870 int ret;
871
872 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
873 if (ret)
874 return ret;
875
876 return retlen == bytes ? 0 : -EIO;
877 }
878
879 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
880 {
881 struct nvmem_device *nvmem;
882 ssize_t size;
883 int err;
884
885 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
886 size = mtd_otp_size(mtd, true);
887 if (size < 0)
888 return size;
889
890 if (size > 0) {
891 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
892 mtd_nvmem_user_otp_reg_read);
893 if (IS_ERR(nvmem)) {
894 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
895 return PTR_ERR(nvmem);
896 }
897 mtd->otp_user_nvmem = nvmem;
898 }
899 }
900
901 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
902 size = mtd_otp_size(mtd, false);
903 if (size < 0) {
904 err = size;
905 goto err;
906 }
907
908 if (size > 0) {
909 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
910 mtd_nvmem_fact_otp_reg_read);
911 if (IS_ERR(nvmem)) {
912 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
913 err = PTR_ERR(nvmem);
914 goto err;
915 }
916 mtd->otp_factory_nvmem = nvmem;
917 }
918 }
919
920 return 0;
921
922 err:
923 if (mtd->otp_user_nvmem)
924 nvmem_unregister(mtd->otp_user_nvmem);
925 return err;
926 }
927
928 /**
929 * mtd_device_parse_register - parse partitions and register an MTD device.
930 *
931 * @mtd: the MTD device to register
932 * @types: the list of MTD partition probes to try, see
933 * 'parse_mtd_partitions()' for more information
934 * @parser_data: MTD partition parser-specific data
935 * @parts: fallback partition information to register, if parsing fails;
936 * only valid if %nr_parts > %0
937 * @nr_parts: the number of partitions in parts, if zero then the full
938 * MTD device is registered if no partition info is found
939 *
940 * This function aggregates MTD partitions parsing (done by
941 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
942 * basically follows the most common pattern found in many MTD drivers:
943 *
944 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
945 * registered first.
946 * * Then It tries to probe partitions on MTD device @mtd using parsers
947 * specified in @types (if @types is %NULL, then the default list of parsers
948 * is used, see 'parse_mtd_partitions()' for more information). If none are
949 * found this functions tries to fallback to information specified in
950 * @parts/@nr_parts.
951 * * If no partitions were found this function just registers the MTD device
952 * @mtd and exits.
953 *
954 * Returns zero in case of success and a negative error code in case of failure.
955 */
956 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
957 struct mtd_part_parser_data *parser_data,
958 const struct mtd_partition *parts,
959 int nr_parts)
960 {
961 int ret;
962
963 mtd_set_dev_defaults(mtd);
964
965 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
966 ret = add_mtd_device(mtd);
967 if (ret)
968 return ret;
969 }
970
971 /* Prefer parsed partitions over driver-provided fallback */
972 ret = parse_mtd_partitions(mtd, types, parser_data);
973 if (ret == -EPROBE_DEFER)
974 goto out;
975
976 if (ret > 0)
977 ret = 0;
978 else if (nr_parts)
979 ret = add_mtd_partitions(mtd, parts, nr_parts);
980 else if (!device_is_registered(&mtd->dev))
981 ret = add_mtd_device(mtd);
982 else
983 ret = 0;
984
985 if (ret)
986 goto out;
987
988 /*
989 * FIXME: some drivers unfortunately call this function more than once.
990 * So we have to check if we've already assigned the reboot notifier.
991 *
992 * Generally, we can make multiple calls work for most cases, but it
993 * does cause problems with parse_mtd_partitions() above (e.g.,
994 * cmdlineparts will register partitions more than once).
995 */
996 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
997 "MTD already registered\n");
998 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
999 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1000 register_reboot_notifier(&mtd->reboot_notifier);
1001 }
1002
1003 ret = mtd_otp_nvmem_add(mtd);
1004
1005 out:
1006 if (ret && device_is_registered(&mtd->dev))
1007 del_mtd_device(mtd);
1008
1009 return ret;
1010 }
1011 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1012
1013 /**
1014 * mtd_device_unregister - unregister an existing MTD device.
1015 *
1016 * @master: the MTD device to unregister. This will unregister both the master
1017 * and any partitions if registered.
1018 */
1019 int mtd_device_unregister(struct mtd_info *master)
1020 {
1021 int err;
1022
1023 if (master->_reboot)
1024 unregister_reboot_notifier(&master->reboot_notifier);
1025
1026 if (master->otp_user_nvmem)
1027 nvmem_unregister(master->otp_user_nvmem);
1028
1029 if (master->otp_factory_nvmem)
1030 nvmem_unregister(master->otp_factory_nvmem);
1031
1032 err = del_mtd_partitions(master);
1033 if (err)
1034 return err;
1035
1036 if (!device_is_registered(&master->dev))
1037 return 0;
1038
1039 return del_mtd_device(master);
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1042
1043 /**
1044 * register_mtd_user - register a 'user' of MTD devices.
1045 * @new: pointer to notifier info structure
1046 *
1047 * Registers a pair of callbacks function to be called upon addition
1048 * or removal of MTD devices. Causes the 'add' callback to be immediately
1049 * invoked for each MTD device currently present in the system.
1050 */
1051 void register_mtd_user (struct mtd_notifier *new)
1052 {
1053 struct mtd_info *mtd;
1054
1055 mutex_lock(&mtd_table_mutex);
1056
1057 list_add(&new->list, &mtd_notifiers);
1058
1059 __module_get(THIS_MODULE);
1060
1061 mtd_for_each_device(mtd)
1062 new->add(mtd);
1063
1064 mutex_unlock(&mtd_table_mutex);
1065 }
1066 EXPORT_SYMBOL_GPL(register_mtd_user);
1067
1068 /**
1069 * unregister_mtd_user - unregister a 'user' of MTD devices.
1070 * @old: pointer to notifier info structure
1071 *
1072 * Removes a callback function pair from the list of 'users' to be
1073 * notified upon addition or removal of MTD devices. Causes the
1074 * 'remove' callback to be immediately invoked for each MTD device
1075 * currently present in the system.
1076 */
1077 int unregister_mtd_user (struct mtd_notifier *old)
1078 {
1079 struct mtd_info *mtd;
1080
1081 mutex_lock(&mtd_table_mutex);
1082
1083 module_put(THIS_MODULE);
1084
1085 mtd_for_each_device(mtd)
1086 old->remove(mtd);
1087
1088 list_del(&old->list);
1089 mutex_unlock(&mtd_table_mutex);
1090 return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1093
1094 /**
1095 * get_mtd_device - obtain a validated handle for an MTD device
1096 * @mtd: last known address of the required MTD device
1097 * @num: internal device number of the required MTD device
1098 *
1099 * Given a number and NULL address, return the num'th entry in the device
1100 * table, if any. Given an address and num == -1, search the device table
1101 * for a device with that address and return if it's still present. Given
1102 * both, return the num'th driver only if its address matches. Return
1103 * error code if not.
1104 */
1105 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1106 {
1107 struct mtd_info *ret = NULL, *other;
1108 int err = -ENODEV;
1109
1110 mutex_lock(&mtd_table_mutex);
1111
1112 if (num == -1) {
1113 mtd_for_each_device(other) {
1114 if (other == mtd) {
1115 ret = mtd;
1116 break;
1117 }
1118 }
1119 } else if (num >= 0) {
1120 ret = idr_find(&mtd_idr, num);
1121 if (mtd && mtd != ret)
1122 ret = NULL;
1123 }
1124
1125 if (!ret) {
1126 ret = ERR_PTR(err);
1127 goto out;
1128 }
1129
1130 err = __get_mtd_device(ret);
1131 if (err)
1132 ret = ERR_PTR(err);
1133 out:
1134 mutex_unlock(&mtd_table_mutex);
1135 return ret;
1136 }
1137 EXPORT_SYMBOL_GPL(get_mtd_device);
1138
1139
1140 int __get_mtd_device(struct mtd_info *mtd)
1141 {
1142 struct mtd_info *master = mtd_get_master(mtd);
1143 int err;
1144
1145 if (!try_module_get(master->owner))
1146 return -ENODEV;
1147
1148 if (master->_get_device) {
1149 err = master->_get_device(mtd);
1150
1151 if (err) {
1152 module_put(master->owner);
1153 return err;
1154 }
1155 }
1156
1157 master->usecount++;
1158
1159 while (mtd->parent) {
1160 mtd->usecount++;
1161 mtd = mtd->parent;
1162 }
1163
1164 return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(__get_mtd_device);
1167
1168 /**
1169 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1170 * device name
1171 * @name: MTD device name to open
1172 *
1173 * This function returns MTD device description structure in case of
1174 * success and an error code in case of failure.
1175 */
1176 struct mtd_info *get_mtd_device_nm(const char *name)
1177 {
1178 int err = -ENODEV;
1179 struct mtd_info *mtd = NULL, *other;
1180
1181 mutex_lock(&mtd_table_mutex);
1182
1183 mtd_for_each_device(other) {
1184 if (!strcmp(name, other->name)) {
1185 mtd = other;
1186 break;
1187 }
1188 }
1189
1190 if (!mtd)
1191 goto out_unlock;
1192
1193 err = __get_mtd_device(mtd);
1194 if (err)
1195 goto out_unlock;
1196
1197 mutex_unlock(&mtd_table_mutex);
1198 return mtd;
1199
1200 out_unlock:
1201 mutex_unlock(&mtd_table_mutex);
1202 return ERR_PTR(err);
1203 }
1204 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1205
1206 void put_mtd_device(struct mtd_info *mtd)
1207 {
1208 mutex_lock(&mtd_table_mutex);
1209 __put_mtd_device(mtd);
1210 mutex_unlock(&mtd_table_mutex);
1211
1212 }
1213 EXPORT_SYMBOL_GPL(put_mtd_device);
1214
1215 void __put_mtd_device(struct mtd_info *mtd)
1216 {
1217 struct mtd_info *master = mtd_get_master(mtd);
1218
1219 while (mtd->parent) {
1220 --mtd->usecount;
1221 BUG_ON(mtd->usecount < 0);
1222 mtd = mtd->parent;
1223 }
1224
1225 master->usecount--;
1226
1227 if (master->_put_device)
1228 master->_put_device(master);
1229
1230 module_put(master->owner);
1231 }
1232 EXPORT_SYMBOL_GPL(__put_mtd_device);
1233
1234 /*
1235 * Erase is an synchronous operation. Device drivers are epected to return a
1236 * negative error code if the operation failed and update instr->fail_addr
1237 * to point the portion that was not properly erased.
1238 */
1239 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1240 {
1241 struct mtd_info *master = mtd_get_master(mtd);
1242 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1243 struct erase_info adjinstr;
1244 int ret;
1245
1246 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1247 adjinstr = *instr;
1248
1249 if (!mtd->erasesize || !master->_erase)
1250 return -ENOTSUPP;
1251
1252 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1253 return -EINVAL;
1254 if (!(mtd->flags & MTD_WRITEABLE))
1255 return -EROFS;
1256
1257 if (!instr->len)
1258 return 0;
1259
1260 ledtrig_mtd_activity();
1261
1262 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1263 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1264 master->erasesize;
1265 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1266 master->erasesize) -
1267 adjinstr.addr;
1268 }
1269
1270 adjinstr.addr += mst_ofs;
1271
1272 ret = master->_erase(master, &adjinstr);
1273
1274 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1275 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1276 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1277 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1278 master);
1279 instr->fail_addr *= mtd->erasesize;
1280 }
1281 }
1282
1283 return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(mtd_erase);
1286
1287 /*
1288 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1289 */
1290 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1291 void **virt, resource_size_t *phys)
1292 {
1293 struct mtd_info *master = mtd_get_master(mtd);
1294
1295 *retlen = 0;
1296 *virt = NULL;
1297 if (phys)
1298 *phys = 0;
1299 if (!master->_point)
1300 return -EOPNOTSUPP;
1301 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1302 return -EINVAL;
1303 if (!len)
1304 return 0;
1305
1306 from = mtd_get_master_ofs(mtd, from);
1307 return master->_point(master, from, len, retlen, virt, phys);
1308 }
1309 EXPORT_SYMBOL_GPL(mtd_point);
1310
1311 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1312 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1313 {
1314 struct mtd_info *master = mtd_get_master(mtd);
1315
1316 if (!master->_unpoint)
1317 return -EOPNOTSUPP;
1318 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1319 return -EINVAL;
1320 if (!len)
1321 return 0;
1322 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1323 }
1324 EXPORT_SYMBOL_GPL(mtd_unpoint);
1325
1326 /*
1327 * Allow NOMMU mmap() to directly map the device (if not NULL)
1328 * - return the address to which the offset maps
1329 * - return -ENOSYS to indicate refusal to do the mapping
1330 */
1331 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1332 unsigned long offset, unsigned long flags)
1333 {
1334 size_t retlen;
1335 void *virt;
1336 int ret;
1337
1338 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1339 if (ret)
1340 return ret;
1341 if (retlen != len) {
1342 mtd_unpoint(mtd, offset, retlen);
1343 return -ENOSYS;
1344 }
1345 return (unsigned long)virt;
1346 }
1347 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1348
1349 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1350 const struct mtd_ecc_stats *old_stats)
1351 {
1352 struct mtd_ecc_stats diff;
1353
1354 if (master == mtd)
1355 return;
1356
1357 diff = master->ecc_stats;
1358 diff.failed -= old_stats->failed;
1359 diff.corrected -= old_stats->corrected;
1360
1361 while (mtd->parent) {
1362 mtd->ecc_stats.failed += diff.failed;
1363 mtd->ecc_stats.corrected += diff.corrected;
1364 mtd = mtd->parent;
1365 }
1366 }
1367
1368 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1369 u_char *buf)
1370 {
1371 struct mtd_oob_ops ops = {
1372 .len = len,
1373 .datbuf = buf,
1374 };
1375 int ret;
1376
1377 ret = mtd_read_oob(mtd, from, &ops);
1378 *retlen = ops.retlen;
1379
1380 return ret;
1381 }
1382 EXPORT_SYMBOL_GPL(mtd_read);
1383
1384 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1385 const u_char *buf)
1386 {
1387 struct mtd_oob_ops ops = {
1388 .len = len,
1389 .datbuf = (u8 *)buf,
1390 };
1391 int ret;
1392
1393 ret = mtd_write_oob(mtd, to, &ops);
1394 *retlen = ops.retlen;
1395
1396 return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(mtd_write);
1399
1400 /*
1401 * In blackbox flight recorder like scenarios we want to make successful writes
1402 * in interrupt context. panic_write() is only intended to be called when its
1403 * known the kernel is about to panic and we need the write to succeed. Since
1404 * the kernel is not going to be running for much longer, this function can
1405 * break locks and delay to ensure the write succeeds (but not sleep).
1406 */
1407 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1408 const u_char *buf)
1409 {
1410 struct mtd_info *master = mtd_get_master(mtd);
1411
1412 *retlen = 0;
1413 if (!master->_panic_write)
1414 return -EOPNOTSUPP;
1415 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1416 return -EINVAL;
1417 if (!(mtd->flags & MTD_WRITEABLE))
1418 return -EROFS;
1419 if (!len)
1420 return 0;
1421 if (!master->oops_panic_write)
1422 master->oops_panic_write = true;
1423
1424 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1425 retlen, buf);
1426 }
1427 EXPORT_SYMBOL_GPL(mtd_panic_write);
1428
1429 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1430 struct mtd_oob_ops *ops)
1431 {
1432 /*
1433 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1434 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1435 * this case.
1436 */
1437 if (!ops->datbuf)
1438 ops->len = 0;
1439
1440 if (!ops->oobbuf)
1441 ops->ooblen = 0;
1442
1443 if (offs < 0 || offs + ops->len > mtd->size)
1444 return -EINVAL;
1445
1446 if (ops->ooblen) {
1447 size_t maxooblen;
1448
1449 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1450 return -EINVAL;
1451
1452 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1453 mtd_div_by_ws(offs, mtd)) *
1454 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1455 if (ops->ooblen > maxooblen)
1456 return -EINVAL;
1457 }
1458
1459 return 0;
1460 }
1461
1462 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1463 struct mtd_oob_ops *ops)
1464 {
1465 struct mtd_info *master = mtd_get_master(mtd);
1466 int ret;
1467
1468 from = mtd_get_master_ofs(mtd, from);
1469 if (master->_read_oob)
1470 ret = master->_read_oob(master, from, ops);
1471 else
1472 ret = master->_read(master, from, ops->len, &ops->retlen,
1473 ops->datbuf);
1474
1475 return ret;
1476 }
1477
1478 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1479 struct mtd_oob_ops *ops)
1480 {
1481 struct mtd_info *master = mtd_get_master(mtd);
1482 int ret;
1483
1484 to = mtd_get_master_ofs(mtd, to);
1485 if (master->_write_oob)
1486 ret = master->_write_oob(master, to, ops);
1487 else
1488 ret = master->_write(master, to, ops->len, &ops->retlen,
1489 ops->datbuf);
1490
1491 return ret;
1492 }
1493
1494 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1495 struct mtd_oob_ops *ops)
1496 {
1497 struct mtd_info *master = mtd_get_master(mtd);
1498 int ngroups = mtd_pairing_groups(master);
1499 int npairs = mtd_wunit_per_eb(master) / ngroups;
1500 struct mtd_oob_ops adjops = *ops;
1501 unsigned int wunit, oobavail;
1502 struct mtd_pairing_info info;
1503 int max_bitflips = 0;
1504 u32 ebofs, pageofs;
1505 loff_t base, pos;
1506
1507 ebofs = mtd_mod_by_eb(start, mtd);
1508 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1509 info.group = 0;
1510 info.pair = mtd_div_by_ws(ebofs, mtd);
1511 pageofs = mtd_mod_by_ws(ebofs, mtd);
1512 oobavail = mtd_oobavail(mtd, ops);
1513
1514 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1515 int ret;
1516
1517 if (info.pair >= npairs) {
1518 info.pair = 0;
1519 base += master->erasesize;
1520 }
1521
1522 wunit = mtd_pairing_info_to_wunit(master, &info);
1523 pos = mtd_wunit_to_offset(mtd, base, wunit);
1524
1525 adjops.len = ops->len - ops->retlen;
1526 if (adjops.len > mtd->writesize - pageofs)
1527 adjops.len = mtd->writesize - pageofs;
1528
1529 adjops.ooblen = ops->ooblen - ops->oobretlen;
1530 if (adjops.ooblen > oobavail - adjops.ooboffs)
1531 adjops.ooblen = oobavail - adjops.ooboffs;
1532
1533 if (read) {
1534 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1535 if (ret > 0)
1536 max_bitflips = max(max_bitflips, ret);
1537 } else {
1538 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1539 }
1540
1541 if (ret < 0)
1542 return ret;
1543
1544 max_bitflips = max(max_bitflips, ret);
1545 ops->retlen += adjops.retlen;
1546 ops->oobretlen += adjops.oobretlen;
1547 adjops.datbuf += adjops.retlen;
1548 adjops.oobbuf += adjops.oobretlen;
1549 adjops.ooboffs = 0;
1550 pageofs = 0;
1551 info.pair++;
1552 }
1553
1554 return max_bitflips;
1555 }
1556
1557 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1558 {
1559 struct mtd_info *master = mtd_get_master(mtd);
1560 struct mtd_ecc_stats old_stats = master->ecc_stats;
1561 int ret_code;
1562
1563 ops->retlen = ops->oobretlen = 0;
1564
1565 ret_code = mtd_check_oob_ops(mtd, from, ops);
1566 if (ret_code)
1567 return ret_code;
1568
1569 ledtrig_mtd_activity();
1570
1571 /* Check the validity of a potential fallback on mtd->_read */
1572 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1573 return -EOPNOTSUPP;
1574
1575 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1576 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1577 else
1578 ret_code = mtd_read_oob_std(mtd, from, ops);
1579
1580 mtd_update_ecc_stats(mtd, master, &old_stats);
1581
1582 /*
1583 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1584 * similar to mtd->_read(), returning a non-negative integer
1585 * representing max bitflips. In other cases, mtd->_read_oob() may
1586 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1587 */
1588 if (unlikely(ret_code < 0))
1589 return ret_code;
1590 if (mtd->ecc_strength == 0)
1591 return 0; /* device lacks ecc */
1592 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1593 }
1594 EXPORT_SYMBOL_GPL(mtd_read_oob);
1595
1596 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1597 struct mtd_oob_ops *ops)
1598 {
1599 struct mtd_info *master = mtd_get_master(mtd);
1600 int ret;
1601
1602 ops->retlen = ops->oobretlen = 0;
1603
1604 if (!(mtd->flags & MTD_WRITEABLE))
1605 return -EROFS;
1606
1607 ret = mtd_check_oob_ops(mtd, to, ops);
1608 if (ret)
1609 return ret;
1610
1611 ledtrig_mtd_activity();
1612
1613 /* Check the validity of a potential fallback on mtd->_write */
1614 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1615 return -EOPNOTSUPP;
1616
1617 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1618 return mtd_io_emulated_slc(mtd, to, false, ops);
1619
1620 return mtd_write_oob_std(mtd, to, ops);
1621 }
1622 EXPORT_SYMBOL_GPL(mtd_write_oob);
1623
1624 /**
1625 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1626 * @mtd: MTD device structure
1627 * @section: ECC section. Depending on the layout you may have all the ECC
1628 * bytes stored in a single contiguous section, or one section
1629 * per ECC chunk (and sometime several sections for a single ECC
1630 * ECC chunk)
1631 * @oobecc: OOB region struct filled with the appropriate ECC position
1632 * information
1633 *
1634 * This function returns ECC section information in the OOB area. If you want
1635 * to get all the ECC bytes information, then you should call
1636 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1637 *
1638 * Returns zero on success, a negative error code otherwise.
1639 */
1640 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1641 struct mtd_oob_region *oobecc)
1642 {
1643 struct mtd_info *master = mtd_get_master(mtd);
1644
1645 memset(oobecc, 0, sizeof(*oobecc));
1646
1647 if (!master || section < 0)
1648 return -EINVAL;
1649
1650 if (!master->ooblayout || !master->ooblayout->ecc)
1651 return -ENOTSUPP;
1652
1653 return master->ooblayout->ecc(master, section, oobecc);
1654 }
1655 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1656
1657 /**
1658 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1659 * section
1660 * @mtd: MTD device structure
1661 * @section: Free section you are interested in. Depending on the layout
1662 * you may have all the free bytes stored in a single contiguous
1663 * section, or one section per ECC chunk plus an extra section
1664 * for the remaining bytes (or other funky layout).
1665 * @oobfree: OOB region struct filled with the appropriate free position
1666 * information
1667 *
1668 * This function returns free bytes position in the OOB area. If you want
1669 * to get all the free bytes information, then you should call
1670 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1671 *
1672 * Returns zero on success, a negative error code otherwise.
1673 */
1674 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1675 struct mtd_oob_region *oobfree)
1676 {
1677 struct mtd_info *master = mtd_get_master(mtd);
1678
1679 memset(oobfree, 0, sizeof(*oobfree));
1680
1681 if (!master || section < 0)
1682 return -EINVAL;
1683
1684 if (!master->ooblayout || !master->ooblayout->free)
1685 return -ENOTSUPP;
1686
1687 return master->ooblayout->free(master, section, oobfree);
1688 }
1689 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1690
1691 /**
1692 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1693 * @mtd: mtd info structure
1694 * @byte: the byte we are searching for
1695 * @sectionp: pointer where the section id will be stored
1696 * @oobregion: used to retrieve the ECC position
1697 * @iter: iterator function. Should be either mtd_ooblayout_free or
1698 * mtd_ooblayout_ecc depending on the region type you're searching for
1699 *
1700 * This function returns the section id and oobregion information of a
1701 * specific byte. For example, say you want to know where the 4th ECC byte is
1702 * stored, you'll use:
1703 *
1704 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1705 *
1706 * Returns zero on success, a negative error code otherwise.
1707 */
1708 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1709 int *sectionp, struct mtd_oob_region *oobregion,
1710 int (*iter)(struct mtd_info *,
1711 int section,
1712 struct mtd_oob_region *oobregion))
1713 {
1714 int pos = 0, ret, section = 0;
1715
1716 memset(oobregion, 0, sizeof(*oobregion));
1717
1718 while (1) {
1719 ret = iter(mtd, section, oobregion);
1720 if (ret)
1721 return ret;
1722
1723 if (pos + oobregion->length > byte)
1724 break;
1725
1726 pos += oobregion->length;
1727 section++;
1728 }
1729
1730 /*
1731 * Adjust region info to make it start at the beginning at the
1732 * 'start' ECC byte.
1733 */
1734 oobregion->offset += byte - pos;
1735 oobregion->length -= byte - pos;
1736 *sectionp = section;
1737
1738 return 0;
1739 }
1740
1741 /**
1742 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1743 * ECC byte
1744 * @mtd: mtd info structure
1745 * @eccbyte: the byte we are searching for
1746 * @section: pointer where the section id will be stored
1747 * @oobregion: OOB region information
1748 *
1749 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1750 * byte.
1751 *
1752 * Returns zero on success, a negative error code otherwise.
1753 */
1754 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1755 int *section,
1756 struct mtd_oob_region *oobregion)
1757 {
1758 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1759 mtd_ooblayout_ecc);
1760 }
1761 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1762
1763 /**
1764 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1765 * @mtd: mtd info structure
1766 * @buf: destination buffer to store OOB bytes
1767 * @oobbuf: OOB buffer
1768 * @start: first byte to retrieve
1769 * @nbytes: number of bytes to retrieve
1770 * @iter: section iterator
1771 *
1772 * Extract bytes attached to a specific category (ECC or free)
1773 * from the OOB buffer and copy them into buf.
1774 *
1775 * Returns zero on success, a negative error code otherwise.
1776 */
1777 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1778 const u8 *oobbuf, int start, int nbytes,
1779 int (*iter)(struct mtd_info *,
1780 int section,
1781 struct mtd_oob_region *oobregion))
1782 {
1783 struct mtd_oob_region oobregion;
1784 int section, ret;
1785
1786 ret = mtd_ooblayout_find_region(mtd, start, &section,
1787 &oobregion, iter);
1788
1789 while (!ret) {
1790 int cnt;
1791
1792 cnt = min_t(int, nbytes, oobregion.length);
1793 memcpy(buf, oobbuf + oobregion.offset, cnt);
1794 buf += cnt;
1795 nbytes -= cnt;
1796
1797 if (!nbytes)
1798 break;
1799
1800 ret = iter(mtd, ++section, &oobregion);
1801 }
1802
1803 return ret;
1804 }
1805
1806 /**
1807 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1808 * @mtd: mtd info structure
1809 * @buf: source buffer to get OOB bytes from
1810 * @oobbuf: OOB buffer
1811 * @start: first OOB byte to set
1812 * @nbytes: number of OOB bytes to set
1813 * @iter: section iterator
1814 *
1815 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1816 * is selected by passing the appropriate iterator.
1817 *
1818 * Returns zero on success, a negative error code otherwise.
1819 */
1820 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1821 u8 *oobbuf, int start, int nbytes,
1822 int (*iter)(struct mtd_info *,
1823 int section,
1824 struct mtd_oob_region *oobregion))
1825 {
1826 struct mtd_oob_region oobregion;
1827 int section, ret;
1828
1829 ret = mtd_ooblayout_find_region(mtd, start, &section,
1830 &oobregion, iter);
1831
1832 while (!ret) {
1833 int cnt;
1834
1835 cnt = min_t(int, nbytes, oobregion.length);
1836 memcpy(oobbuf + oobregion.offset, buf, cnt);
1837 buf += cnt;
1838 nbytes -= cnt;
1839
1840 if (!nbytes)
1841 break;
1842
1843 ret = iter(mtd, ++section, &oobregion);
1844 }
1845
1846 return ret;
1847 }
1848
1849 /**
1850 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1851 * @mtd: mtd info structure
1852 * @iter: category iterator
1853 *
1854 * Count the number of bytes in a given category.
1855 *
1856 * Returns a positive value on success, a negative error code otherwise.
1857 */
1858 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1859 int (*iter)(struct mtd_info *,
1860 int section,
1861 struct mtd_oob_region *oobregion))
1862 {
1863 struct mtd_oob_region oobregion;
1864 int section = 0, ret, nbytes = 0;
1865
1866 while (1) {
1867 ret = iter(mtd, section++, &oobregion);
1868 if (ret) {
1869 if (ret == -ERANGE)
1870 ret = nbytes;
1871 break;
1872 }
1873
1874 nbytes += oobregion.length;
1875 }
1876
1877 return ret;
1878 }
1879
1880 /**
1881 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1882 * @mtd: mtd info structure
1883 * @eccbuf: destination buffer to store ECC bytes
1884 * @oobbuf: OOB buffer
1885 * @start: first ECC byte to retrieve
1886 * @nbytes: number of ECC bytes to retrieve
1887 *
1888 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1889 *
1890 * Returns zero on success, a negative error code otherwise.
1891 */
1892 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1893 const u8 *oobbuf, int start, int nbytes)
1894 {
1895 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1896 mtd_ooblayout_ecc);
1897 }
1898 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1899
1900 /**
1901 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1902 * @mtd: mtd info structure
1903 * @eccbuf: source buffer to get ECC bytes from
1904 * @oobbuf: OOB buffer
1905 * @start: first ECC byte to set
1906 * @nbytes: number of ECC bytes to set
1907 *
1908 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1909 *
1910 * Returns zero on success, a negative error code otherwise.
1911 */
1912 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1913 u8 *oobbuf, int start, int nbytes)
1914 {
1915 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1916 mtd_ooblayout_ecc);
1917 }
1918 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1919
1920 /**
1921 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1922 * @mtd: mtd info structure
1923 * @databuf: destination buffer to store ECC bytes
1924 * @oobbuf: OOB buffer
1925 * @start: first ECC byte to retrieve
1926 * @nbytes: number of ECC bytes to retrieve
1927 *
1928 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1929 *
1930 * Returns zero on success, a negative error code otherwise.
1931 */
1932 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1933 const u8 *oobbuf, int start, int nbytes)
1934 {
1935 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1936 mtd_ooblayout_free);
1937 }
1938 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1939
1940 /**
1941 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1942 * @mtd: mtd info structure
1943 * @databuf: source buffer to get data bytes from
1944 * @oobbuf: OOB buffer
1945 * @start: first ECC byte to set
1946 * @nbytes: number of ECC bytes to set
1947 *
1948 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1949 *
1950 * Returns zero on success, a negative error code otherwise.
1951 */
1952 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1953 u8 *oobbuf, int start, int nbytes)
1954 {
1955 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1956 mtd_ooblayout_free);
1957 }
1958 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1959
1960 /**
1961 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1962 * @mtd: mtd info structure
1963 *
1964 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1965 *
1966 * Returns zero on success, a negative error code otherwise.
1967 */
1968 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1969 {
1970 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1971 }
1972 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1973
1974 /**
1975 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1976 * @mtd: mtd info structure
1977 *
1978 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1979 *
1980 * Returns zero on success, a negative error code otherwise.
1981 */
1982 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1983 {
1984 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1985 }
1986 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1987
1988 /*
1989 * Method to access the protection register area, present in some flash
1990 * devices. The user data is one time programmable but the factory data is read
1991 * only.
1992 */
1993 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1994 struct otp_info *buf)
1995 {
1996 struct mtd_info *master = mtd_get_master(mtd);
1997
1998 if (!master->_get_fact_prot_info)
1999 return -EOPNOTSUPP;
2000 if (!len)
2001 return 0;
2002 return master->_get_fact_prot_info(master, len, retlen, buf);
2003 }
2004 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2005
2006 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2007 size_t *retlen, u_char *buf)
2008 {
2009 struct mtd_info *master = mtd_get_master(mtd);
2010
2011 *retlen = 0;
2012 if (!master->_read_fact_prot_reg)
2013 return -EOPNOTSUPP;
2014 if (!len)
2015 return 0;
2016 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2017 }
2018 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2019
2020 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2021 struct otp_info *buf)
2022 {
2023 struct mtd_info *master = mtd_get_master(mtd);
2024
2025 if (!master->_get_user_prot_info)
2026 return -EOPNOTSUPP;
2027 if (!len)
2028 return 0;
2029 return master->_get_user_prot_info(master, len, retlen, buf);
2030 }
2031 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2032
2033 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2034 size_t *retlen, u_char *buf)
2035 {
2036 struct mtd_info *master = mtd_get_master(mtd);
2037
2038 *retlen = 0;
2039 if (!master->_read_user_prot_reg)
2040 return -EOPNOTSUPP;
2041 if (!len)
2042 return 0;
2043 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2044 }
2045 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2046
2047 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2048 size_t *retlen, const u_char *buf)
2049 {
2050 struct mtd_info *master = mtd_get_master(mtd);
2051 int ret;
2052
2053 *retlen = 0;
2054 if (!master->_write_user_prot_reg)
2055 return -EOPNOTSUPP;
2056 if (!len)
2057 return 0;
2058 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2059 if (ret)
2060 return ret;
2061
2062 /*
2063 * If no data could be written at all, we are out of memory and
2064 * must return -ENOSPC.
2065 */
2066 return (*retlen) ? 0 : -ENOSPC;
2067 }
2068 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2069
2070 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2071 {
2072 struct mtd_info *master = mtd_get_master(mtd);
2073
2074 if (!master->_lock_user_prot_reg)
2075 return -EOPNOTSUPP;
2076 if (!len)
2077 return 0;
2078 return master->_lock_user_prot_reg(master, from, len);
2079 }
2080 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2081
2082 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2083 {
2084 struct mtd_info *master = mtd_get_master(mtd);
2085
2086 if (!master->_erase_user_prot_reg)
2087 return -EOPNOTSUPP;
2088 if (!len)
2089 return 0;
2090 return master->_erase_user_prot_reg(master, from, len);
2091 }
2092 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2093
2094 /* Chip-supported device locking */
2095 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2096 {
2097 struct mtd_info *master = mtd_get_master(mtd);
2098
2099 if (!master->_lock)
2100 return -EOPNOTSUPP;
2101 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2102 return -EINVAL;
2103 if (!len)
2104 return 0;
2105
2106 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2107 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2108 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2109 }
2110
2111 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2112 }
2113 EXPORT_SYMBOL_GPL(mtd_lock);
2114
2115 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2116 {
2117 struct mtd_info *master = mtd_get_master(mtd);
2118
2119 if (!master->_unlock)
2120 return -EOPNOTSUPP;
2121 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2122 return -EINVAL;
2123 if (!len)
2124 return 0;
2125
2126 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2127 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2128 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2129 }
2130
2131 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2132 }
2133 EXPORT_SYMBOL_GPL(mtd_unlock);
2134
2135 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2136 {
2137 struct mtd_info *master = mtd_get_master(mtd);
2138
2139 if (!master->_is_locked)
2140 return -EOPNOTSUPP;
2141 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2142 return -EINVAL;
2143 if (!len)
2144 return 0;
2145
2146 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2147 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2148 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2149 }
2150
2151 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2152 }
2153 EXPORT_SYMBOL_GPL(mtd_is_locked);
2154
2155 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2156 {
2157 struct mtd_info *master = mtd_get_master(mtd);
2158
2159 if (ofs < 0 || ofs >= mtd->size)
2160 return -EINVAL;
2161 if (!master->_block_isreserved)
2162 return 0;
2163
2164 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2165 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2166
2167 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2168 }
2169 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2170
2171 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2172 {
2173 struct mtd_info *master = mtd_get_master(mtd);
2174
2175 if (ofs < 0 || ofs >= mtd->size)
2176 return -EINVAL;
2177 if (!master->_block_isbad)
2178 return 0;
2179
2180 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2181 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2182
2183 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2184 }
2185 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2186
2187 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2188 {
2189 struct mtd_info *master = mtd_get_master(mtd);
2190 int ret;
2191
2192 if (!master->_block_markbad)
2193 return -EOPNOTSUPP;
2194 if (ofs < 0 || ofs >= mtd->size)
2195 return -EINVAL;
2196 if (!(mtd->flags & MTD_WRITEABLE))
2197 return -EROFS;
2198
2199 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2200 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2201
2202 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2203 if (ret)
2204 return ret;
2205
2206 while (mtd->parent) {
2207 mtd->ecc_stats.badblocks++;
2208 mtd = mtd->parent;
2209 }
2210
2211 return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2214
2215 /*
2216 * default_mtd_writev - the default writev method
2217 * @mtd: mtd device description object pointer
2218 * @vecs: the vectors to write
2219 * @count: count of vectors in @vecs
2220 * @to: the MTD device offset to write to
2221 * @retlen: on exit contains the count of bytes written to the MTD device.
2222 *
2223 * This function returns zero in case of success and a negative error code in
2224 * case of failure.
2225 */
2226 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2227 unsigned long count, loff_t to, size_t *retlen)
2228 {
2229 unsigned long i;
2230 size_t totlen = 0, thislen;
2231 int ret = 0;
2232
2233 for (i = 0; i < count; i++) {
2234 if (!vecs[i].iov_len)
2235 continue;
2236 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2237 vecs[i].iov_base);
2238 totlen += thislen;
2239 if (ret || thislen != vecs[i].iov_len)
2240 break;
2241 to += vecs[i].iov_len;
2242 }
2243 *retlen = totlen;
2244 return ret;
2245 }
2246
2247 /*
2248 * mtd_writev - the vector-based MTD write method
2249 * @mtd: mtd device description object pointer
2250 * @vecs: the vectors to write
2251 * @count: count of vectors in @vecs
2252 * @to: the MTD device offset to write to
2253 * @retlen: on exit contains the count of bytes written to the MTD device.
2254 *
2255 * This function returns zero in case of success and a negative error code in
2256 * case of failure.
2257 */
2258 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2259 unsigned long count, loff_t to, size_t *retlen)
2260 {
2261 struct mtd_info *master = mtd_get_master(mtd);
2262
2263 *retlen = 0;
2264 if (!(mtd->flags & MTD_WRITEABLE))
2265 return -EROFS;
2266
2267 if (!master->_writev)
2268 return default_mtd_writev(mtd, vecs, count, to, retlen);
2269
2270 return master->_writev(master, vecs, count,
2271 mtd_get_master_ofs(mtd, to), retlen);
2272 }
2273 EXPORT_SYMBOL_GPL(mtd_writev);
2274
2275 /**
2276 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2277 * @mtd: mtd device description object pointer
2278 * @size: a pointer to the ideal or maximum size of the allocation, points
2279 * to the actual allocation size on success.
2280 *
2281 * This routine attempts to allocate a contiguous kernel buffer up to
2282 * the specified size, backing off the size of the request exponentially
2283 * until the request succeeds or until the allocation size falls below
2284 * the system page size. This attempts to make sure it does not adversely
2285 * impact system performance, so when allocating more than one page, we
2286 * ask the memory allocator to avoid re-trying, swapping, writing back
2287 * or performing I/O.
2288 *
2289 * Note, this function also makes sure that the allocated buffer is aligned to
2290 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2291 *
2292 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2293 * to handle smaller (i.e. degraded) buffer allocations under low- or
2294 * fragmented-memory situations where such reduced allocations, from a
2295 * requested ideal, are allowed.
2296 *
2297 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2298 */
2299 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2300 {
2301 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2302 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2303 void *kbuf;
2304
2305 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2306
2307 while (*size > min_alloc) {
2308 kbuf = kmalloc(*size, flags);
2309 if (kbuf)
2310 return kbuf;
2311
2312 *size >>= 1;
2313 *size = ALIGN(*size, mtd->writesize);
2314 }
2315
2316 /*
2317 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2318 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2319 */
2320 return kmalloc(*size, GFP_KERNEL);
2321 }
2322 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2323
2324 #ifdef CONFIG_PROC_FS
2325
2326 /*====================================================================*/
2327 /* Support for /proc/mtd */
2328
2329 static int mtd_proc_show(struct seq_file *m, void *v)
2330 {
2331 struct mtd_info *mtd;
2332
2333 seq_puts(m, "dev: size erasesize name\n");
2334 mutex_lock(&mtd_table_mutex);
2335 mtd_for_each_device(mtd) {
2336 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2337 mtd->index, (unsigned long long)mtd->size,
2338 mtd->erasesize, mtd->name);
2339 }
2340 mutex_unlock(&mtd_table_mutex);
2341 return 0;
2342 }
2343 #endif /* CONFIG_PROC_FS */
2344
2345 /*====================================================================*/
2346 /* Init code */
2347
2348 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2349 {
2350 struct backing_dev_info *bdi;
2351 int ret;
2352
2353 bdi = bdi_alloc(NUMA_NO_NODE);
2354 if (!bdi)
2355 return ERR_PTR(-ENOMEM);
2356 bdi->ra_pages = 0;
2357 bdi->io_pages = 0;
2358
2359 /*
2360 * We put '-0' suffix to the name to get the same name format as we
2361 * used to get. Since this is called only once, we get a unique name.
2362 */
2363 ret = bdi_register(bdi, "%.28s-0", name);
2364 if (ret)
2365 bdi_put(bdi);
2366
2367 return ret ? ERR_PTR(ret) : bdi;
2368 }
2369
2370 static struct proc_dir_entry *proc_mtd;
2371
2372 static int __init init_mtd(void)
2373 {
2374 int ret;
2375
2376 ret = class_register(&mtd_class);
2377 if (ret)
2378 goto err_reg;
2379
2380 mtd_bdi = mtd_bdi_init("mtd");
2381 if (IS_ERR(mtd_bdi)) {
2382 ret = PTR_ERR(mtd_bdi);
2383 goto err_bdi;
2384 }
2385
2386 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2387
2388 ret = init_mtdchar();
2389 if (ret)
2390 goto out_procfs;
2391
2392 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2393
2394 return 0;
2395
2396 out_procfs:
2397 if (proc_mtd)
2398 remove_proc_entry("mtd", NULL);
2399 bdi_put(mtd_bdi);
2400 err_bdi:
2401 class_unregister(&mtd_class);
2402 err_reg:
2403 pr_err("Error registering mtd class or bdi: %d\n", ret);
2404 return ret;
2405 }
2406
2407 static void __exit cleanup_mtd(void)
2408 {
2409 debugfs_remove_recursive(dfs_dir_mtd);
2410 cleanup_mtdchar();
2411 if (proc_mtd)
2412 remove_proc_entry("mtd", NULL);
2413 class_unregister(&mtd_class);
2414 bdi_put(mtd_bdi);
2415 idr_destroy(&mtd_idr);
2416 }
2417
2418 module_init(init_mtd);
2419 module_exit(cleanup_mtd);
2420
2421 MODULE_LICENSE("GPL");
2422 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2423 MODULE_DESCRIPTION("Core MTD registration and access routines");