]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdcore.c
Merge tag 'v4.13-rc1' into fixes
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46
47 #include "mtdcore.h"
48
49 struct backing_dev_info *mtd_bdi;
50
51 #ifdef CONFIG_PM_SLEEP
52
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58 }
59
60 static int mtd_cls_resume(struct device *dev)
61 {
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67 }
68
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74
75 static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
78 .pm = MTD_CLS_PM_OPS,
79 };
80
81 static DEFINE_IDR(mtd_idr);
82
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84 should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93
94 static LIST_HEAD(mtd_notifiers);
95
96
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102 static void mtd_release(struct device *dev)
103 {
104 struct mtd_info *mtd = dev_get_drvdata(dev);
105 dev_t index = MTD_DEVT(mtd->index);
106
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
109 }
110
111 static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct mtd_info *mtd = dev_get_drvdata(dev);
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150 static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152 {
153 struct mtd_info *mtd = dev_get_drvdata(dev);
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160 static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162 {
163 struct mtd_info *mtd = dev_get_drvdata(dev);
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181 static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214 {
215 struct mtd_info *mtd = dev_get_drvdata(dev);
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223 static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 struct mtd_info *mtd = dev_get_drvdata(dev);
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254 {
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
321 static struct attribute *mtd_attrs[] = {
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
327 &dev_attr_subpagesize.attr,
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
331 &dev_attr_ecc_strength.attr,
332 &dev_attr_ecc_step_size.attr,
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
337 &dev_attr_bitflip_threshold.attr,
338 NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341
342 static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346 };
347
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367 {
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374 }
375
376 /**
377 * mtd_wunit_to_pairing_info - get pairing information of a wunit
378 * @mtd: pointer to new MTD device info structure
379 * @wunit: write unit we are interested in
380 * @info: returned pairing information
381 *
382 * Retrieve pairing information associated to the wunit.
383 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
384 * paired together, and where programming a page may influence the page it is
385 * paired with.
386 * The notion of page is replaced by the term wunit (write-unit) to stay
387 * consistent with the ->writesize field.
388 *
389 * The @wunit argument can be extracted from an absolute offset using
390 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
391 * to @wunit.
392 *
393 * From the pairing info the MTD user can find all the wunits paired with
394 * @wunit using the following loop:
395 *
396 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
397 * info.pair = i;
398 * mtd_pairing_info_to_wunit(mtd, &info);
399 * ...
400 * }
401 */
402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
403 struct mtd_pairing_info *info)
404 {
405 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
406
407 if (wunit < 0 || wunit >= npairs)
408 return -EINVAL;
409
410 if (mtd->pairing && mtd->pairing->get_info)
411 return mtd->pairing->get_info(mtd, wunit, info);
412
413 info->group = 0;
414 info->pair = wunit;
415
416 return 0;
417 }
418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
419
420 /**
421 * mtd_wunit_to_pairing_info - get wunit from pairing information
422 * @mtd: pointer to new MTD device info structure
423 * @info: pairing information struct
424 *
425 * Returns a positive number representing the wunit associated to the info
426 * struct, or a negative error code.
427 *
428 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
429 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
430 * doc).
431 *
432 * It can also be used to only program the first page of each pair (i.e.
433 * page attached to group 0), which allows one to use an MLC NAND in
434 * software-emulated SLC mode:
435 *
436 * info.group = 0;
437 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
438 * for (info.pair = 0; info.pair < npairs; info.pair++) {
439 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
440 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
441 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
442 * }
443 */
444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
445 const struct mtd_pairing_info *info)
446 {
447 int ngroups = mtd_pairing_groups(mtd);
448 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
449
450 if (!info || info->pair < 0 || info->pair >= npairs ||
451 info->group < 0 || info->group >= ngroups)
452 return -EINVAL;
453
454 if (mtd->pairing && mtd->pairing->get_wunit)
455 return mtd->pairing->get_wunit(mtd, info);
456
457 return info->pair;
458 }
459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
460
461 /**
462 * mtd_pairing_groups - get the number of pairing groups
463 * @mtd: pointer to new MTD device info structure
464 *
465 * Returns the number of pairing groups.
466 *
467 * This number is usually equal to the number of bits exposed by a single
468 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
469 * to iterate over all pages of a given pair.
470 */
471 int mtd_pairing_groups(struct mtd_info *mtd)
472 {
473 if (!mtd->pairing || !mtd->pairing->ngroups)
474 return 1;
475
476 return mtd->pairing->ngroups;
477 }
478 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
479
480 /**
481 * add_mtd_device - register an MTD device
482 * @mtd: pointer to new MTD device info structure
483 *
484 * Add a device to the list of MTD devices present in the system, and
485 * notify each currently active MTD 'user' of its arrival. Returns
486 * zero on success or non-zero on failure.
487 */
488
489 int add_mtd_device(struct mtd_info *mtd)
490 {
491 struct mtd_notifier *not;
492 int i, error;
493
494 /*
495 * May occur, for instance, on buggy drivers which call
496 * mtd_device_parse_register() multiple times on the same master MTD,
497 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
498 */
499 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
500 return -EEXIST;
501
502 BUG_ON(mtd->writesize == 0);
503 mutex_lock(&mtd_table_mutex);
504
505 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
506 if (i < 0) {
507 error = i;
508 goto fail_locked;
509 }
510
511 mtd->index = i;
512 mtd->usecount = 0;
513
514 /* default value if not set by driver */
515 if (mtd->bitflip_threshold == 0)
516 mtd->bitflip_threshold = mtd->ecc_strength;
517
518 if (is_power_of_2(mtd->erasesize))
519 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
520 else
521 mtd->erasesize_shift = 0;
522
523 if (is_power_of_2(mtd->writesize))
524 mtd->writesize_shift = ffs(mtd->writesize) - 1;
525 else
526 mtd->writesize_shift = 0;
527
528 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
529 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
530
531 /* Some chips always power up locked. Unlock them now */
532 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
533 error = mtd_unlock(mtd, 0, mtd->size);
534 if (error && error != -EOPNOTSUPP)
535 printk(KERN_WARNING
536 "%s: unlock failed, writes may not work\n",
537 mtd->name);
538 /* Ignore unlock failures? */
539 error = 0;
540 }
541
542 /* Caller should have set dev.parent to match the
543 * physical device, if appropriate.
544 */
545 mtd->dev.type = &mtd_devtype;
546 mtd->dev.class = &mtd_class;
547 mtd->dev.devt = MTD_DEVT(i);
548 dev_set_name(&mtd->dev, "mtd%d", i);
549 dev_set_drvdata(&mtd->dev, mtd);
550 of_node_get(mtd_get_of_node(mtd));
551 error = device_register(&mtd->dev);
552 if (error)
553 goto fail_added;
554
555 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
556 "mtd%dro", i);
557
558 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
559 /* No need to get a refcount on the module containing
560 the notifier, since we hold the mtd_table_mutex */
561 list_for_each_entry(not, &mtd_notifiers, list)
562 not->add(mtd);
563
564 mutex_unlock(&mtd_table_mutex);
565 /* We _know_ we aren't being removed, because
566 our caller is still holding us here. So none
567 of this try_ nonsense, and no bitching about it
568 either. :) */
569 __module_get(THIS_MODULE);
570 return 0;
571
572 fail_added:
573 of_node_put(mtd_get_of_node(mtd));
574 idr_remove(&mtd_idr, i);
575 fail_locked:
576 mutex_unlock(&mtd_table_mutex);
577 return error;
578 }
579
580 /**
581 * del_mtd_device - unregister an MTD device
582 * @mtd: pointer to MTD device info structure
583 *
584 * Remove a device from the list of MTD devices present in the system,
585 * and notify each currently active MTD 'user' of its departure.
586 * Returns zero on success or 1 on failure, which currently will happen
587 * if the requested device does not appear to be present in the list.
588 */
589
590 int del_mtd_device(struct mtd_info *mtd)
591 {
592 int ret;
593 struct mtd_notifier *not;
594
595 mutex_lock(&mtd_table_mutex);
596
597 if (idr_find(&mtd_idr, mtd->index) != mtd) {
598 ret = -ENODEV;
599 goto out_error;
600 }
601
602 /* No need to get a refcount on the module containing
603 the notifier, since we hold the mtd_table_mutex */
604 list_for_each_entry(not, &mtd_notifiers, list)
605 not->remove(mtd);
606
607 if (mtd->usecount) {
608 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
609 mtd->index, mtd->name, mtd->usecount);
610 ret = -EBUSY;
611 } else {
612 device_unregister(&mtd->dev);
613
614 idr_remove(&mtd_idr, mtd->index);
615 of_node_put(mtd_get_of_node(mtd));
616
617 module_put(THIS_MODULE);
618 ret = 0;
619 }
620
621 out_error:
622 mutex_unlock(&mtd_table_mutex);
623 return ret;
624 }
625
626 static int mtd_add_device_partitions(struct mtd_info *mtd,
627 struct mtd_partitions *parts)
628 {
629 const struct mtd_partition *real_parts = parts->parts;
630 int nbparts = parts->nr_parts;
631 int ret;
632
633 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
634 ret = add_mtd_device(mtd);
635 if (ret)
636 return ret;
637 }
638
639 if (nbparts > 0) {
640 ret = add_mtd_partitions(mtd, real_parts, nbparts);
641 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
642 del_mtd_device(mtd);
643 return ret;
644 }
645
646 return 0;
647 }
648
649 /*
650 * Set a few defaults based on the parent devices, if not provided by the
651 * driver
652 */
653 static void mtd_set_dev_defaults(struct mtd_info *mtd)
654 {
655 if (mtd->dev.parent) {
656 if (!mtd->owner && mtd->dev.parent->driver)
657 mtd->owner = mtd->dev.parent->driver->owner;
658 if (!mtd->name)
659 mtd->name = dev_name(mtd->dev.parent);
660 } else {
661 pr_debug("mtd device won't show a device symlink in sysfs\n");
662 }
663 }
664
665 /**
666 * mtd_device_parse_register - parse partitions and register an MTD device.
667 *
668 * @mtd: the MTD device to register
669 * @types: the list of MTD partition probes to try, see
670 * 'parse_mtd_partitions()' for more information
671 * @parser_data: MTD partition parser-specific data
672 * @parts: fallback partition information to register, if parsing fails;
673 * only valid if %nr_parts > %0
674 * @nr_parts: the number of partitions in parts, if zero then the full
675 * MTD device is registered if no partition info is found
676 *
677 * This function aggregates MTD partitions parsing (done by
678 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
679 * basically follows the most common pattern found in many MTD drivers:
680 *
681 * * It first tries to probe partitions on MTD device @mtd using parsers
682 * specified in @types (if @types is %NULL, then the default list of parsers
683 * is used, see 'parse_mtd_partitions()' for more information). If none are
684 * found this functions tries to fallback to information specified in
685 * @parts/@nr_parts.
686 * * If any partitioning info was found, this function registers the found
687 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
688 * as a whole is registered first.
689 * * If no partitions were found this function just registers the MTD device
690 * @mtd and exits.
691 *
692 * Returns zero in case of success and a negative error code in case of failure.
693 */
694 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
695 struct mtd_part_parser_data *parser_data,
696 const struct mtd_partition *parts,
697 int nr_parts)
698 {
699 struct mtd_partitions parsed;
700 int ret;
701
702 mtd_set_dev_defaults(mtd);
703
704 memset(&parsed, 0, sizeof(parsed));
705
706 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
707 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
708 /* Fall back to driver-provided partitions */
709 parsed = (struct mtd_partitions){
710 .parts = parts,
711 .nr_parts = nr_parts,
712 };
713 } else if (ret < 0) {
714 /* Didn't come up with parsed OR fallback partitions */
715 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
716 ret);
717 /* Don't abort on errors; we can still use unpartitioned MTD */
718 memset(&parsed, 0, sizeof(parsed));
719 }
720
721 ret = mtd_add_device_partitions(mtd, &parsed);
722 if (ret)
723 goto out;
724
725 /*
726 * FIXME: some drivers unfortunately call this function more than once.
727 * So we have to check if we've already assigned the reboot notifier.
728 *
729 * Generally, we can make multiple calls work for most cases, but it
730 * does cause problems with parse_mtd_partitions() above (e.g.,
731 * cmdlineparts will register partitions more than once).
732 */
733 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
734 "MTD already registered\n");
735 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
736 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
737 register_reboot_notifier(&mtd->reboot_notifier);
738 }
739
740 out:
741 /* Cleanup any parsed partitions */
742 mtd_part_parser_cleanup(&parsed);
743 return ret;
744 }
745 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
746
747 /**
748 * mtd_device_unregister - unregister an existing MTD device.
749 *
750 * @master: the MTD device to unregister. This will unregister both the master
751 * and any partitions if registered.
752 */
753 int mtd_device_unregister(struct mtd_info *master)
754 {
755 int err;
756
757 if (master->_reboot)
758 unregister_reboot_notifier(&master->reboot_notifier);
759
760 err = del_mtd_partitions(master);
761 if (err)
762 return err;
763
764 if (!device_is_registered(&master->dev))
765 return 0;
766
767 return del_mtd_device(master);
768 }
769 EXPORT_SYMBOL_GPL(mtd_device_unregister);
770
771 /**
772 * register_mtd_user - register a 'user' of MTD devices.
773 * @new: pointer to notifier info structure
774 *
775 * Registers a pair of callbacks function to be called upon addition
776 * or removal of MTD devices. Causes the 'add' callback to be immediately
777 * invoked for each MTD device currently present in the system.
778 */
779 void register_mtd_user (struct mtd_notifier *new)
780 {
781 struct mtd_info *mtd;
782
783 mutex_lock(&mtd_table_mutex);
784
785 list_add(&new->list, &mtd_notifiers);
786
787 __module_get(THIS_MODULE);
788
789 mtd_for_each_device(mtd)
790 new->add(mtd);
791
792 mutex_unlock(&mtd_table_mutex);
793 }
794 EXPORT_SYMBOL_GPL(register_mtd_user);
795
796 /**
797 * unregister_mtd_user - unregister a 'user' of MTD devices.
798 * @old: pointer to notifier info structure
799 *
800 * Removes a callback function pair from the list of 'users' to be
801 * notified upon addition or removal of MTD devices. Causes the
802 * 'remove' callback to be immediately invoked for each MTD device
803 * currently present in the system.
804 */
805 int unregister_mtd_user (struct mtd_notifier *old)
806 {
807 struct mtd_info *mtd;
808
809 mutex_lock(&mtd_table_mutex);
810
811 module_put(THIS_MODULE);
812
813 mtd_for_each_device(mtd)
814 old->remove(mtd);
815
816 list_del(&old->list);
817 mutex_unlock(&mtd_table_mutex);
818 return 0;
819 }
820 EXPORT_SYMBOL_GPL(unregister_mtd_user);
821
822 /**
823 * get_mtd_device - obtain a validated handle for an MTD device
824 * @mtd: last known address of the required MTD device
825 * @num: internal device number of the required MTD device
826 *
827 * Given a number and NULL address, return the num'th entry in the device
828 * table, if any. Given an address and num == -1, search the device table
829 * for a device with that address and return if it's still present. Given
830 * both, return the num'th driver only if its address matches. Return
831 * error code if not.
832 */
833 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
834 {
835 struct mtd_info *ret = NULL, *other;
836 int err = -ENODEV;
837
838 mutex_lock(&mtd_table_mutex);
839
840 if (num == -1) {
841 mtd_for_each_device(other) {
842 if (other == mtd) {
843 ret = mtd;
844 break;
845 }
846 }
847 } else if (num >= 0) {
848 ret = idr_find(&mtd_idr, num);
849 if (mtd && mtd != ret)
850 ret = NULL;
851 }
852
853 if (!ret) {
854 ret = ERR_PTR(err);
855 goto out;
856 }
857
858 err = __get_mtd_device(ret);
859 if (err)
860 ret = ERR_PTR(err);
861 out:
862 mutex_unlock(&mtd_table_mutex);
863 return ret;
864 }
865 EXPORT_SYMBOL_GPL(get_mtd_device);
866
867
868 int __get_mtd_device(struct mtd_info *mtd)
869 {
870 int err;
871
872 if (!try_module_get(mtd->owner))
873 return -ENODEV;
874
875 if (mtd->_get_device) {
876 err = mtd->_get_device(mtd);
877
878 if (err) {
879 module_put(mtd->owner);
880 return err;
881 }
882 }
883 mtd->usecount++;
884 return 0;
885 }
886 EXPORT_SYMBOL_GPL(__get_mtd_device);
887
888 /**
889 * get_mtd_device_nm - obtain a validated handle for an MTD device by
890 * device name
891 * @name: MTD device name to open
892 *
893 * This function returns MTD device description structure in case of
894 * success and an error code in case of failure.
895 */
896 struct mtd_info *get_mtd_device_nm(const char *name)
897 {
898 int err = -ENODEV;
899 struct mtd_info *mtd = NULL, *other;
900
901 mutex_lock(&mtd_table_mutex);
902
903 mtd_for_each_device(other) {
904 if (!strcmp(name, other->name)) {
905 mtd = other;
906 break;
907 }
908 }
909
910 if (!mtd)
911 goto out_unlock;
912
913 err = __get_mtd_device(mtd);
914 if (err)
915 goto out_unlock;
916
917 mutex_unlock(&mtd_table_mutex);
918 return mtd;
919
920 out_unlock:
921 mutex_unlock(&mtd_table_mutex);
922 return ERR_PTR(err);
923 }
924 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
925
926 void put_mtd_device(struct mtd_info *mtd)
927 {
928 mutex_lock(&mtd_table_mutex);
929 __put_mtd_device(mtd);
930 mutex_unlock(&mtd_table_mutex);
931
932 }
933 EXPORT_SYMBOL_GPL(put_mtd_device);
934
935 void __put_mtd_device(struct mtd_info *mtd)
936 {
937 --mtd->usecount;
938 BUG_ON(mtd->usecount < 0);
939
940 if (mtd->_put_device)
941 mtd->_put_device(mtd);
942
943 module_put(mtd->owner);
944 }
945 EXPORT_SYMBOL_GPL(__put_mtd_device);
946
947 /*
948 * Erase is an asynchronous operation. Device drivers are supposed
949 * to call instr->callback() whenever the operation completes, even
950 * if it completes with a failure.
951 * Callers are supposed to pass a callback function and wait for it
952 * to be called before writing to the block.
953 */
954 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
955 {
956 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
957 return -EINVAL;
958 if (!(mtd->flags & MTD_WRITEABLE))
959 return -EROFS;
960 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
961 if (!instr->len) {
962 instr->state = MTD_ERASE_DONE;
963 mtd_erase_callback(instr);
964 return 0;
965 }
966 ledtrig_mtd_activity();
967 return mtd->_erase(mtd, instr);
968 }
969 EXPORT_SYMBOL_GPL(mtd_erase);
970
971 /*
972 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
973 */
974 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
975 void **virt, resource_size_t *phys)
976 {
977 *retlen = 0;
978 *virt = NULL;
979 if (phys)
980 *phys = 0;
981 if (!mtd->_point)
982 return -EOPNOTSUPP;
983 if (from < 0 || from >= mtd->size || len > mtd->size - from)
984 return -EINVAL;
985 if (!len)
986 return 0;
987 return mtd->_point(mtd, from, len, retlen, virt, phys);
988 }
989 EXPORT_SYMBOL_GPL(mtd_point);
990
991 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
992 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
993 {
994 if (!mtd->_unpoint)
995 return -EOPNOTSUPP;
996 if (from < 0 || from >= mtd->size || len > mtd->size - from)
997 return -EINVAL;
998 if (!len)
999 return 0;
1000 return mtd->_unpoint(mtd, from, len);
1001 }
1002 EXPORT_SYMBOL_GPL(mtd_unpoint);
1003
1004 /*
1005 * Allow NOMMU mmap() to directly map the device (if not NULL)
1006 * - return the address to which the offset maps
1007 * - return -ENOSYS to indicate refusal to do the mapping
1008 */
1009 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1010 unsigned long offset, unsigned long flags)
1011 {
1012 if (!mtd->_get_unmapped_area)
1013 return -EOPNOTSUPP;
1014 if (offset >= mtd->size || len > mtd->size - offset)
1015 return -EINVAL;
1016 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1017 }
1018 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1019
1020 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1021 u_char *buf)
1022 {
1023 int ret_code;
1024 *retlen = 0;
1025 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1026 return -EINVAL;
1027 if (!len)
1028 return 0;
1029
1030 ledtrig_mtd_activity();
1031 /*
1032 * In the absence of an error, drivers return a non-negative integer
1033 * representing the maximum number of bitflips that were corrected on
1034 * any one ecc region (if applicable; zero otherwise).
1035 */
1036 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1037 if (unlikely(ret_code < 0))
1038 return ret_code;
1039 if (mtd->ecc_strength == 0)
1040 return 0; /* device lacks ecc */
1041 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1042 }
1043 EXPORT_SYMBOL_GPL(mtd_read);
1044
1045 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1046 const u_char *buf)
1047 {
1048 *retlen = 0;
1049 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1050 return -EINVAL;
1051 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1052 return -EROFS;
1053 if (!len)
1054 return 0;
1055 ledtrig_mtd_activity();
1056 return mtd->_write(mtd, to, len, retlen, buf);
1057 }
1058 EXPORT_SYMBOL_GPL(mtd_write);
1059
1060 /*
1061 * In blackbox flight recorder like scenarios we want to make successful writes
1062 * in interrupt context. panic_write() is only intended to be called when its
1063 * known the kernel is about to panic and we need the write to succeed. Since
1064 * the kernel is not going to be running for much longer, this function can
1065 * break locks and delay to ensure the write succeeds (but not sleep).
1066 */
1067 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1068 const u_char *buf)
1069 {
1070 *retlen = 0;
1071 if (!mtd->_panic_write)
1072 return -EOPNOTSUPP;
1073 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074 return -EINVAL;
1075 if (!(mtd->flags & MTD_WRITEABLE))
1076 return -EROFS;
1077 if (!len)
1078 return 0;
1079 return mtd->_panic_write(mtd, to, len, retlen, buf);
1080 }
1081 EXPORT_SYMBOL_GPL(mtd_panic_write);
1082
1083 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1084 {
1085 int ret_code;
1086 ops->retlen = ops->oobretlen = 0;
1087 if (!mtd->_read_oob)
1088 return -EOPNOTSUPP;
1089
1090 ledtrig_mtd_activity();
1091 /*
1092 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1093 * similar to mtd->_read(), returning a non-negative integer
1094 * representing max bitflips. In other cases, mtd->_read_oob() may
1095 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1096 */
1097 ret_code = mtd->_read_oob(mtd, from, ops);
1098 if (unlikely(ret_code < 0))
1099 return ret_code;
1100 if (mtd->ecc_strength == 0)
1101 return 0; /* device lacks ecc */
1102 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_read_oob);
1105
1106 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1107 struct mtd_oob_ops *ops)
1108 {
1109 ops->retlen = ops->oobretlen = 0;
1110 if (!mtd->_write_oob)
1111 return -EOPNOTSUPP;
1112 if (!(mtd->flags & MTD_WRITEABLE))
1113 return -EROFS;
1114 ledtrig_mtd_activity();
1115 return mtd->_write_oob(mtd, to, ops);
1116 }
1117 EXPORT_SYMBOL_GPL(mtd_write_oob);
1118
1119 /**
1120 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1121 * @mtd: MTD device structure
1122 * @section: ECC section. Depending on the layout you may have all the ECC
1123 * bytes stored in a single contiguous section, or one section
1124 * per ECC chunk (and sometime several sections for a single ECC
1125 * ECC chunk)
1126 * @oobecc: OOB region struct filled with the appropriate ECC position
1127 * information
1128 *
1129 * This function returns ECC section information in the OOB area. If you want
1130 * to get all the ECC bytes information, then you should call
1131 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1132 *
1133 * Returns zero on success, a negative error code otherwise.
1134 */
1135 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 struct mtd_oob_region *oobecc)
1137 {
1138 memset(oobecc, 0, sizeof(*oobecc));
1139
1140 if (!mtd || section < 0)
1141 return -EINVAL;
1142
1143 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1144 return -ENOTSUPP;
1145
1146 return mtd->ooblayout->ecc(mtd, section, oobecc);
1147 }
1148 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1149
1150 /**
1151 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1152 * section
1153 * @mtd: MTD device structure
1154 * @section: Free section you are interested in. Depending on the layout
1155 * you may have all the free bytes stored in a single contiguous
1156 * section, or one section per ECC chunk plus an extra section
1157 * for the remaining bytes (or other funky layout).
1158 * @oobfree: OOB region struct filled with the appropriate free position
1159 * information
1160 *
1161 * This function returns free bytes position in the OOB area. If you want
1162 * to get all the free bytes information, then you should call
1163 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1164 *
1165 * Returns zero on success, a negative error code otherwise.
1166 */
1167 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1168 struct mtd_oob_region *oobfree)
1169 {
1170 memset(oobfree, 0, sizeof(*oobfree));
1171
1172 if (!mtd || section < 0)
1173 return -EINVAL;
1174
1175 if (!mtd->ooblayout || !mtd->ooblayout->free)
1176 return -ENOTSUPP;
1177
1178 return mtd->ooblayout->free(mtd, section, oobfree);
1179 }
1180 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1181
1182 /**
1183 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1184 * @mtd: mtd info structure
1185 * @byte: the byte we are searching for
1186 * @sectionp: pointer where the section id will be stored
1187 * @oobregion: used to retrieve the ECC position
1188 * @iter: iterator function. Should be either mtd_ooblayout_free or
1189 * mtd_ooblayout_ecc depending on the region type you're searching for
1190 *
1191 * This function returns the section id and oobregion information of a
1192 * specific byte. For example, say you want to know where the 4th ECC byte is
1193 * stored, you'll use:
1194 *
1195 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1196 *
1197 * Returns zero on success, a negative error code otherwise.
1198 */
1199 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1200 int *sectionp, struct mtd_oob_region *oobregion,
1201 int (*iter)(struct mtd_info *,
1202 int section,
1203 struct mtd_oob_region *oobregion))
1204 {
1205 int pos = 0, ret, section = 0;
1206
1207 memset(oobregion, 0, sizeof(*oobregion));
1208
1209 while (1) {
1210 ret = iter(mtd, section, oobregion);
1211 if (ret)
1212 return ret;
1213
1214 if (pos + oobregion->length > byte)
1215 break;
1216
1217 pos += oobregion->length;
1218 section++;
1219 }
1220
1221 /*
1222 * Adjust region info to make it start at the beginning at the
1223 * 'start' ECC byte.
1224 */
1225 oobregion->offset += byte - pos;
1226 oobregion->length -= byte - pos;
1227 *sectionp = section;
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1234 * ECC byte
1235 * @mtd: mtd info structure
1236 * @eccbyte: the byte we are searching for
1237 * @sectionp: pointer where the section id will be stored
1238 * @oobregion: OOB region information
1239 *
1240 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1241 * byte.
1242 *
1243 * Returns zero on success, a negative error code otherwise.
1244 */
1245 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1246 int *section,
1247 struct mtd_oob_region *oobregion)
1248 {
1249 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1250 mtd_ooblayout_ecc);
1251 }
1252 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1253
1254 /**
1255 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1256 * @mtd: mtd info structure
1257 * @buf: destination buffer to store OOB bytes
1258 * @oobbuf: OOB buffer
1259 * @start: first byte to retrieve
1260 * @nbytes: number of bytes to retrieve
1261 * @iter: section iterator
1262 *
1263 * Extract bytes attached to a specific category (ECC or free)
1264 * from the OOB buffer and copy them into buf.
1265 *
1266 * Returns zero on success, a negative error code otherwise.
1267 */
1268 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1269 const u8 *oobbuf, int start, int nbytes,
1270 int (*iter)(struct mtd_info *,
1271 int section,
1272 struct mtd_oob_region *oobregion))
1273 {
1274 struct mtd_oob_region oobregion;
1275 int section, ret;
1276
1277 ret = mtd_ooblayout_find_region(mtd, start, &section,
1278 &oobregion, iter);
1279
1280 while (!ret) {
1281 int cnt;
1282
1283 cnt = min_t(int, nbytes, oobregion.length);
1284 memcpy(buf, oobbuf + oobregion.offset, cnt);
1285 buf += cnt;
1286 nbytes -= cnt;
1287
1288 if (!nbytes)
1289 break;
1290
1291 ret = iter(mtd, ++section, &oobregion);
1292 }
1293
1294 return ret;
1295 }
1296
1297 /**
1298 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1299 * @mtd: mtd info structure
1300 * @buf: source buffer to get OOB bytes from
1301 * @oobbuf: OOB buffer
1302 * @start: first OOB byte to set
1303 * @nbytes: number of OOB bytes to set
1304 * @iter: section iterator
1305 *
1306 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1307 * is selected by passing the appropriate iterator.
1308 *
1309 * Returns zero on success, a negative error code otherwise.
1310 */
1311 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1312 u8 *oobbuf, int start, int nbytes,
1313 int (*iter)(struct mtd_info *,
1314 int section,
1315 struct mtd_oob_region *oobregion))
1316 {
1317 struct mtd_oob_region oobregion;
1318 int section, ret;
1319
1320 ret = mtd_ooblayout_find_region(mtd, start, &section,
1321 &oobregion, iter);
1322
1323 while (!ret) {
1324 int cnt;
1325
1326 cnt = min_t(int, nbytes, oobregion.length);
1327 memcpy(oobbuf + oobregion.offset, buf, cnt);
1328 buf += cnt;
1329 nbytes -= cnt;
1330
1331 if (!nbytes)
1332 break;
1333
1334 ret = iter(mtd, ++section, &oobregion);
1335 }
1336
1337 return ret;
1338 }
1339
1340 /**
1341 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1342 * @mtd: mtd info structure
1343 * @iter: category iterator
1344 *
1345 * Count the number of bytes in a given category.
1346 *
1347 * Returns a positive value on success, a negative error code otherwise.
1348 */
1349 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1350 int (*iter)(struct mtd_info *,
1351 int section,
1352 struct mtd_oob_region *oobregion))
1353 {
1354 struct mtd_oob_region oobregion;
1355 int section = 0, ret, nbytes = 0;
1356
1357 while (1) {
1358 ret = iter(mtd, section++, &oobregion);
1359 if (ret) {
1360 if (ret == -ERANGE)
1361 ret = nbytes;
1362 break;
1363 }
1364
1365 nbytes += oobregion.length;
1366 }
1367
1368 return ret;
1369 }
1370
1371 /**
1372 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1373 * @mtd: mtd info structure
1374 * @eccbuf: destination buffer to store ECC bytes
1375 * @oobbuf: OOB buffer
1376 * @start: first ECC byte to retrieve
1377 * @nbytes: number of ECC bytes to retrieve
1378 *
1379 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1380 *
1381 * Returns zero on success, a negative error code otherwise.
1382 */
1383 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1384 const u8 *oobbuf, int start, int nbytes)
1385 {
1386 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1387 mtd_ooblayout_ecc);
1388 }
1389 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1390
1391 /**
1392 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1393 * @mtd: mtd info structure
1394 * @eccbuf: source buffer to get ECC bytes from
1395 * @oobbuf: OOB buffer
1396 * @start: first ECC byte to set
1397 * @nbytes: number of ECC bytes to set
1398 *
1399 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1400 *
1401 * Returns zero on success, a negative error code otherwise.
1402 */
1403 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1404 u8 *oobbuf, int start, int nbytes)
1405 {
1406 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1407 mtd_ooblayout_ecc);
1408 }
1409 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1410
1411 /**
1412 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1413 * @mtd: mtd info structure
1414 * @databuf: destination buffer to store ECC bytes
1415 * @oobbuf: OOB buffer
1416 * @start: first ECC byte to retrieve
1417 * @nbytes: number of ECC bytes to retrieve
1418 *
1419 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1420 *
1421 * Returns zero on success, a negative error code otherwise.
1422 */
1423 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1424 const u8 *oobbuf, int start, int nbytes)
1425 {
1426 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1427 mtd_ooblayout_free);
1428 }
1429 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1430
1431 /**
1432 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1433 * @mtd: mtd info structure
1434 * @eccbuf: source buffer to get data bytes from
1435 * @oobbuf: OOB buffer
1436 * @start: first ECC byte to set
1437 * @nbytes: number of ECC bytes to set
1438 *
1439 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1440 *
1441 * Returns zero on success, a negative error code otherwise.
1442 */
1443 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1444 u8 *oobbuf, int start, int nbytes)
1445 {
1446 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1447 mtd_ooblayout_free);
1448 }
1449 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1450
1451 /**
1452 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1453 * @mtd: mtd info structure
1454 *
1455 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1456 *
1457 * Returns zero on success, a negative error code otherwise.
1458 */
1459 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1460 {
1461 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1462 }
1463 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1464
1465 /**
1466 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1467 * @mtd: mtd info structure
1468 *
1469 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1470 *
1471 * Returns zero on success, a negative error code otherwise.
1472 */
1473 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1474 {
1475 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1476 }
1477 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1478
1479 /*
1480 * Method to access the protection register area, present in some flash
1481 * devices. The user data is one time programmable but the factory data is read
1482 * only.
1483 */
1484 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1485 struct otp_info *buf)
1486 {
1487 if (!mtd->_get_fact_prot_info)
1488 return -EOPNOTSUPP;
1489 if (!len)
1490 return 0;
1491 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1492 }
1493 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1494
1495 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1496 size_t *retlen, u_char *buf)
1497 {
1498 *retlen = 0;
1499 if (!mtd->_read_fact_prot_reg)
1500 return -EOPNOTSUPP;
1501 if (!len)
1502 return 0;
1503 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1504 }
1505 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1506
1507 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1508 struct otp_info *buf)
1509 {
1510 if (!mtd->_get_user_prot_info)
1511 return -EOPNOTSUPP;
1512 if (!len)
1513 return 0;
1514 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1515 }
1516 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1517
1518 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1519 size_t *retlen, u_char *buf)
1520 {
1521 *retlen = 0;
1522 if (!mtd->_read_user_prot_reg)
1523 return -EOPNOTSUPP;
1524 if (!len)
1525 return 0;
1526 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1527 }
1528 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1529
1530 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1531 size_t *retlen, u_char *buf)
1532 {
1533 int ret;
1534
1535 *retlen = 0;
1536 if (!mtd->_write_user_prot_reg)
1537 return -EOPNOTSUPP;
1538 if (!len)
1539 return 0;
1540 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1541 if (ret)
1542 return ret;
1543
1544 /*
1545 * If no data could be written at all, we are out of memory and
1546 * must return -ENOSPC.
1547 */
1548 return (*retlen) ? 0 : -ENOSPC;
1549 }
1550 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1551
1552 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1553 {
1554 if (!mtd->_lock_user_prot_reg)
1555 return -EOPNOTSUPP;
1556 if (!len)
1557 return 0;
1558 return mtd->_lock_user_prot_reg(mtd, from, len);
1559 }
1560 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1561
1562 /* Chip-supported device locking */
1563 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1564 {
1565 if (!mtd->_lock)
1566 return -EOPNOTSUPP;
1567 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1568 return -EINVAL;
1569 if (!len)
1570 return 0;
1571 return mtd->_lock(mtd, ofs, len);
1572 }
1573 EXPORT_SYMBOL_GPL(mtd_lock);
1574
1575 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1576 {
1577 if (!mtd->_unlock)
1578 return -EOPNOTSUPP;
1579 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1580 return -EINVAL;
1581 if (!len)
1582 return 0;
1583 return mtd->_unlock(mtd, ofs, len);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_unlock);
1586
1587 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1588 {
1589 if (!mtd->_is_locked)
1590 return -EOPNOTSUPP;
1591 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1592 return -EINVAL;
1593 if (!len)
1594 return 0;
1595 return mtd->_is_locked(mtd, ofs, len);
1596 }
1597 EXPORT_SYMBOL_GPL(mtd_is_locked);
1598
1599 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1600 {
1601 if (ofs < 0 || ofs >= mtd->size)
1602 return -EINVAL;
1603 if (!mtd->_block_isreserved)
1604 return 0;
1605 return mtd->_block_isreserved(mtd, ofs);
1606 }
1607 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1608
1609 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1610 {
1611 if (ofs < 0 || ofs >= mtd->size)
1612 return -EINVAL;
1613 if (!mtd->_block_isbad)
1614 return 0;
1615 return mtd->_block_isbad(mtd, ofs);
1616 }
1617 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1618
1619 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1620 {
1621 if (!mtd->_block_markbad)
1622 return -EOPNOTSUPP;
1623 if (ofs < 0 || ofs >= mtd->size)
1624 return -EINVAL;
1625 if (!(mtd->flags & MTD_WRITEABLE))
1626 return -EROFS;
1627 return mtd->_block_markbad(mtd, ofs);
1628 }
1629 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1630
1631 /*
1632 * default_mtd_writev - the default writev method
1633 * @mtd: mtd device description object pointer
1634 * @vecs: the vectors to write
1635 * @count: count of vectors in @vecs
1636 * @to: the MTD device offset to write to
1637 * @retlen: on exit contains the count of bytes written to the MTD device.
1638 *
1639 * This function returns zero in case of success and a negative error code in
1640 * case of failure.
1641 */
1642 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1643 unsigned long count, loff_t to, size_t *retlen)
1644 {
1645 unsigned long i;
1646 size_t totlen = 0, thislen;
1647 int ret = 0;
1648
1649 for (i = 0; i < count; i++) {
1650 if (!vecs[i].iov_len)
1651 continue;
1652 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1653 vecs[i].iov_base);
1654 totlen += thislen;
1655 if (ret || thislen != vecs[i].iov_len)
1656 break;
1657 to += vecs[i].iov_len;
1658 }
1659 *retlen = totlen;
1660 return ret;
1661 }
1662
1663 /*
1664 * mtd_writev - the vector-based MTD write method
1665 * @mtd: mtd device description object pointer
1666 * @vecs: the vectors to write
1667 * @count: count of vectors in @vecs
1668 * @to: the MTD device offset to write to
1669 * @retlen: on exit contains the count of bytes written to the MTD device.
1670 *
1671 * This function returns zero in case of success and a negative error code in
1672 * case of failure.
1673 */
1674 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1675 unsigned long count, loff_t to, size_t *retlen)
1676 {
1677 *retlen = 0;
1678 if (!(mtd->flags & MTD_WRITEABLE))
1679 return -EROFS;
1680 if (!mtd->_writev)
1681 return default_mtd_writev(mtd, vecs, count, to, retlen);
1682 return mtd->_writev(mtd, vecs, count, to, retlen);
1683 }
1684 EXPORT_SYMBOL_GPL(mtd_writev);
1685
1686 /**
1687 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1688 * @mtd: mtd device description object pointer
1689 * @size: a pointer to the ideal or maximum size of the allocation, points
1690 * to the actual allocation size on success.
1691 *
1692 * This routine attempts to allocate a contiguous kernel buffer up to
1693 * the specified size, backing off the size of the request exponentially
1694 * until the request succeeds or until the allocation size falls below
1695 * the system page size. This attempts to make sure it does not adversely
1696 * impact system performance, so when allocating more than one page, we
1697 * ask the memory allocator to avoid re-trying, swapping, writing back
1698 * or performing I/O.
1699 *
1700 * Note, this function also makes sure that the allocated buffer is aligned to
1701 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1702 *
1703 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1704 * to handle smaller (i.e. degraded) buffer allocations under low- or
1705 * fragmented-memory situations where such reduced allocations, from a
1706 * requested ideal, are allowed.
1707 *
1708 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1709 */
1710 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1711 {
1712 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1713 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1714 void *kbuf;
1715
1716 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1717
1718 while (*size > min_alloc) {
1719 kbuf = kmalloc(*size, flags);
1720 if (kbuf)
1721 return kbuf;
1722
1723 *size >>= 1;
1724 *size = ALIGN(*size, mtd->writesize);
1725 }
1726
1727 /*
1728 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1729 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1730 */
1731 return kmalloc(*size, GFP_KERNEL);
1732 }
1733 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1734
1735 #ifdef CONFIG_PROC_FS
1736
1737 /*====================================================================*/
1738 /* Support for /proc/mtd */
1739
1740 static int mtd_proc_show(struct seq_file *m, void *v)
1741 {
1742 struct mtd_info *mtd;
1743
1744 seq_puts(m, "dev: size erasesize name\n");
1745 mutex_lock(&mtd_table_mutex);
1746 mtd_for_each_device(mtd) {
1747 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1748 mtd->index, (unsigned long long)mtd->size,
1749 mtd->erasesize, mtd->name);
1750 }
1751 mutex_unlock(&mtd_table_mutex);
1752 return 0;
1753 }
1754
1755 static int mtd_proc_open(struct inode *inode, struct file *file)
1756 {
1757 return single_open(file, mtd_proc_show, NULL);
1758 }
1759
1760 static const struct file_operations mtd_proc_ops = {
1761 .open = mtd_proc_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = single_release,
1765 };
1766 #endif /* CONFIG_PROC_FS */
1767
1768 /*====================================================================*/
1769 /* Init code */
1770
1771 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1772 {
1773 struct backing_dev_info *bdi;
1774 int ret;
1775
1776 bdi = bdi_alloc(GFP_KERNEL);
1777 if (!bdi)
1778 return ERR_PTR(-ENOMEM);
1779
1780 bdi->name = name;
1781 /*
1782 * We put '-0' suffix to the name to get the same name format as we
1783 * used to get. Since this is called only once, we get a unique name.
1784 */
1785 ret = bdi_register(bdi, "%.28s-0", name);
1786 if (ret)
1787 bdi_put(bdi);
1788
1789 return ret ? ERR_PTR(ret) : bdi;
1790 }
1791
1792 static struct proc_dir_entry *proc_mtd;
1793
1794 static int __init init_mtd(void)
1795 {
1796 int ret;
1797
1798 ret = class_register(&mtd_class);
1799 if (ret)
1800 goto err_reg;
1801
1802 mtd_bdi = mtd_bdi_init("mtd");
1803 if (IS_ERR(mtd_bdi)) {
1804 ret = PTR_ERR(mtd_bdi);
1805 goto err_bdi;
1806 }
1807
1808 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1809
1810 ret = init_mtdchar();
1811 if (ret)
1812 goto out_procfs;
1813
1814 return 0;
1815
1816 out_procfs:
1817 if (proc_mtd)
1818 remove_proc_entry("mtd", NULL);
1819 bdi_put(mtd_bdi);
1820 err_bdi:
1821 class_unregister(&mtd_class);
1822 err_reg:
1823 pr_err("Error registering mtd class or bdi: %d\n", ret);
1824 return ret;
1825 }
1826
1827 static void __exit cleanup_mtd(void)
1828 {
1829 cleanup_mtdchar();
1830 if (proc_mtd)
1831 remove_proc_entry("mtd", NULL);
1832 class_unregister(&mtd_class);
1833 bdi_put(mtd_bdi);
1834 idr_destroy(&mtd_idr);
1835 }
1836
1837 module_init(init_mtd);
1838 module_exit(cleanup_mtd);
1839
1840 MODULE_LICENSE("GPL");
1841 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1842 MODULE_DESCRIPTION("Core MTD registration and access routines");