]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mtd/mtdpart.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/of.h>
34
35 #include "mtdcore.h"
36
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40
41 /**
42 * struct mtd_part - our partition node structure
43 *
44 * @mtd: struct holding partition details
45 * @parent: parent mtd - flash device or another partition
46 * @offset: partition offset relative to the *flash device*
47 */
48 struct mtd_part {
49 struct mtd_info mtd;
50 struct mtd_info *parent;
51 uint64_t offset;
52 struct list_head list;
53 };
54
55 /*
56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
57 * the pointer to that structure.
58 */
59 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
60 {
61 return container_of(mtd, struct mtd_part, mtd);
62 }
63
64 static u64 part_absolute_offset(struct mtd_info *mtd)
65 {
66 struct mtd_part *part = mtd_to_part(mtd);
67
68 if (!mtd_is_partition(mtd))
69 return 0;
70
71 return part_absolute_offset(part->parent) + part->offset;
72 }
73
74 /*
75 * MTD methods which simply translate the effective address and pass through
76 * to the _real_ device.
77 */
78
79 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, u_char *buf)
81 {
82 struct mtd_part *part = mtd_to_part(mtd);
83 struct mtd_ecc_stats stats;
84 int res;
85
86 stats = part->parent->ecc_stats;
87 res = part->parent->_read(part->parent, from + part->offset, len,
88 retlen, buf);
89 if (unlikely(mtd_is_eccerr(res)))
90 mtd->ecc_stats.failed +=
91 part->parent->ecc_stats.failed - stats.failed;
92 else
93 mtd->ecc_stats.corrected +=
94 part->parent->ecc_stats.corrected - stats.corrected;
95 return res;
96 }
97
98 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
99 size_t *retlen, void **virt, resource_size_t *phys)
100 {
101 struct mtd_part *part = mtd_to_part(mtd);
102
103 return part->parent->_point(part->parent, from + part->offset, len,
104 retlen, virt, phys);
105 }
106
107 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
108 {
109 struct mtd_part *part = mtd_to_part(mtd);
110
111 return part->parent->_unpoint(part->parent, from + part->offset, len);
112 }
113
114 static int part_read_oob(struct mtd_info *mtd, loff_t from,
115 struct mtd_oob_ops *ops)
116 {
117 struct mtd_part *part = mtd_to_part(mtd);
118 struct mtd_ecc_stats stats;
119 int res;
120
121 stats = part->parent->ecc_stats;
122 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
123 if (unlikely(mtd_is_eccerr(res)))
124 mtd->ecc_stats.failed +=
125 part->parent->ecc_stats.failed - stats.failed;
126 else
127 mtd->ecc_stats.corrected +=
128 part->parent->ecc_stats.corrected - stats.corrected;
129 return res;
130 }
131
132 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
133 size_t len, size_t *retlen, u_char *buf)
134 {
135 struct mtd_part *part = mtd_to_part(mtd);
136 return part->parent->_read_user_prot_reg(part->parent, from, len,
137 retlen, buf);
138 }
139
140 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
141 size_t *retlen, struct otp_info *buf)
142 {
143 struct mtd_part *part = mtd_to_part(mtd);
144 return part->parent->_get_user_prot_info(part->parent, len, retlen,
145 buf);
146 }
147
148 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
149 size_t len, size_t *retlen, u_char *buf)
150 {
151 struct mtd_part *part = mtd_to_part(mtd);
152 return part->parent->_read_fact_prot_reg(part->parent, from, len,
153 retlen, buf);
154 }
155
156 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
157 size_t *retlen, struct otp_info *buf)
158 {
159 struct mtd_part *part = mtd_to_part(mtd);
160 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
161 buf);
162 }
163
164 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
165 size_t *retlen, const u_char *buf)
166 {
167 struct mtd_part *part = mtd_to_part(mtd);
168 return part->parent->_write(part->parent, to + part->offset, len,
169 retlen, buf);
170 }
171
172 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
173 size_t *retlen, const u_char *buf)
174 {
175 struct mtd_part *part = mtd_to_part(mtd);
176 return part->parent->_panic_write(part->parent, to + part->offset, len,
177 retlen, buf);
178 }
179
180 static int part_write_oob(struct mtd_info *mtd, loff_t to,
181 struct mtd_oob_ops *ops)
182 {
183 struct mtd_part *part = mtd_to_part(mtd);
184
185 return part->parent->_write_oob(part->parent, to + part->offset, ops);
186 }
187
188 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
189 size_t len, size_t *retlen, u_char *buf)
190 {
191 struct mtd_part *part = mtd_to_part(mtd);
192 return part->parent->_write_user_prot_reg(part->parent, from, len,
193 retlen, buf);
194 }
195
196 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
197 size_t len)
198 {
199 struct mtd_part *part = mtd_to_part(mtd);
200 return part->parent->_lock_user_prot_reg(part->parent, from, len);
201 }
202
203 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
204 unsigned long count, loff_t to, size_t *retlen)
205 {
206 struct mtd_part *part = mtd_to_part(mtd);
207 return part->parent->_writev(part->parent, vecs, count,
208 to + part->offset, retlen);
209 }
210
211 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
212 {
213 struct mtd_part *part = mtd_to_part(mtd);
214 int ret;
215
216 instr->addr += part->offset;
217 ret = part->parent->_erase(part->parent, instr);
218 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
219 instr->fail_addr -= part->offset;
220 instr->addr -= part->offset;
221
222 return ret;
223 }
224
225 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
226 {
227 struct mtd_part *part = mtd_to_part(mtd);
228 return part->parent->_lock(part->parent, ofs + part->offset, len);
229 }
230
231 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
232 {
233 struct mtd_part *part = mtd_to_part(mtd);
234 return part->parent->_unlock(part->parent, ofs + part->offset, len);
235 }
236
237 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
238 {
239 struct mtd_part *part = mtd_to_part(mtd);
240 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
241 }
242
243 static void part_sync(struct mtd_info *mtd)
244 {
245 struct mtd_part *part = mtd_to_part(mtd);
246 part->parent->_sync(part->parent);
247 }
248
249 static int part_suspend(struct mtd_info *mtd)
250 {
251 struct mtd_part *part = mtd_to_part(mtd);
252 return part->parent->_suspend(part->parent);
253 }
254
255 static void part_resume(struct mtd_info *mtd)
256 {
257 struct mtd_part *part = mtd_to_part(mtd);
258 part->parent->_resume(part->parent);
259 }
260
261 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
262 {
263 struct mtd_part *part = mtd_to_part(mtd);
264 ofs += part->offset;
265 return part->parent->_block_isreserved(part->parent, ofs);
266 }
267
268 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
269 {
270 struct mtd_part *part = mtd_to_part(mtd);
271 ofs += part->offset;
272 return part->parent->_block_isbad(part->parent, ofs);
273 }
274
275 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
276 {
277 struct mtd_part *part = mtd_to_part(mtd);
278 int res;
279
280 ofs += part->offset;
281 res = part->parent->_block_markbad(part->parent, ofs);
282 if (!res)
283 mtd->ecc_stats.badblocks++;
284 return res;
285 }
286
287 static int part_get_device(struct mtd_info *mtd)
288 {
289 struct mtd_part *part = mtd_to_part(mtd);
290 return part->parent->_get_device(part->parent);
291 }
292
293 static void part_put_device(struct mtd_info *mtd)
294 {
295 struct mtd_part *part = mtd_to_part(mtd);
296 part->parent->_put_device(part->parent);
297 }
298
299 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
300 struct mtd_oob_region *oobregion)
301 {
302 struct mtd_part *part = mtd_to_part(mtd);
303
304 return mtd_ooblayout_ecc(part->parent, section, oobregion);
305 }
306
307 static int part_ooblayout_free(struct mtd_info *mtd, int section,
308 struct mtd_oob_region *oobregion)
309 {
310 struct mtd_part *part = mtd_to_part(mtd);
311
312 return mtd_ooblayout_free(part->parent, section, oobregion);
313 }
314
315 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
316 .ecc = part_ooblayout_ecc,
317 .free = part_ooblayout_free,
318 };
319
320 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
321 {
322 struct mtd_part *part = mtd_to_part(mtd);
323
324 return part->parent->_max_bad_blocks(part->parent,
325 ofs + part->offset, len);
326 }
327
328 static inline void free_partition(struct mtd_part *p)
329 {
330 kfree(p->mtd.name);
331 kfree(p);
332 }
333
334 static struct mtd_part *allocate_partition(struct mtd_info *parent,
335 const struct mtd_partition *part, int partno,
336 uint64_t cur_offset)
337 {
338 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
339 parent->erasesize;
340 struct mtd_part *slave;
341 u32 remainder;
342 char *name;
343 u64 tmp;
344
345 /* allocate the partition structure */
346 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
347 name = kstrdup(part->name, GFP_KERNEL);
348 if (!name || !slave) {
349 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
350 parent->name);
351 kfree(name);
352 kfree(slave);
353 return ERR_PTR(-ENOMEM);
354 }
355
356 /* set up the MTD object for this partition */
357 slave->mtd.type = parent->type;
358 slave->mtd.flags = parent->orig_flags & ~part->mask_flags;
359 slave->mtd.orig_flags = slave->mtd.flags;
360 slave->mtd.size = part->size;
361 slave->mtd.writesize = parent->writesize;
362 slave->mtd.writebufsize = parent->writebufsize;
363 slave->mtd.oobsize = parent->oobsize;
364 slave->mtd.oobavail = parent->oobavail;
365 slave->mtd.subpage_sft = parent->subpage_sft;
366 slave->mtd.pairing = parent->pairing;
367
368 slave->mtd.name = name;
369 slave->mtd.owner = parent->owner;
370
371 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
372 * concern for showing the same data in multiple partitions.
373 * However, it is very useful to have the master node present,
374 * so the MTD_PARTITIONED_MASTER option allows that. The master
375 * will have device nodes etc only if this is set, so make the
376 * parent conditional on that option. Note, this is a way to
377 * distinguish between the master and the partition in sysfs.
378 */
379 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
380 &parent->dev :
381 parent->dev.parent;
382 slave->mtd.dev.of_node = part->of_node;
383
384 if (parent->_read)
385 slave->mtd._read = part_read;
386 if (parent->_write)
387 slave->mtd._write = part_write;
388
389 if (parent->_panic_write)
390 slave->mtd._panic_write = part_panic_write;
391
392 if (parent->_point && parent->_unpoint) {
393 slave->mtd._point = part_point;
394 slave->mtd._unpoint = part_unpoint;
395 }
396
397 if (parent->_read_oob)
398 slave->mtd._read_oob = part_read_oob;
399 if (parent->_write_oob)
400 slave->mtd._write_oob = part_write_oob;
401 if (parent->_read_user_prot_reg)
402 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
403 if (parent->_read_fact_prot_reg)
404 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
405 if (parent->_write_user_prot_reg)
406 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
407 if (parent->_lock_user_prot_reg)
408 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
409 if (parent->_get_user_prot_info)
410 slave->mtd._get_user_prot_info = part_get_user_prot_info;
411 if (parent->_get_fact_prot_info)
412 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
413 if (parent->_sync)
414 slave->mtd._sync = part_sync;
415 if (!partno && !parent->dev.class && parent->_suspend &&
416 parent->_resume) {
417 slave->mtd._suspend = part_suspend;
418 slave->mtd._resume = part_resume;
419 }
420 if (parent->_writev)
421 slave->mtd._writev = part_writev;
422 if (parent->_lock)
423 slave->mtd._lock = part_lock;
424 if (parent->_unlock)
425 slave->mtd._unlock = part_unlock;
426 if (parent->_is_locked)
427 slave->mtd._is_locked = part_is_locked;
428 if (parent->_block_isreserved)
429 slave->mtd._block_isreserved = part_block_isreserved;
430 if (parent->_block_isbad)
431 slave->mtd._block_isbad = part_block_isbad;
432 if (parent->_block_markbad)
433 slave->mtd._block_markbad = part_block_markbad;
434 if (parent->_max_bad_blocks)
435 slave->mtd._max_bad_blocks = part_max_bad_blocks;
436
437 if (parent->_get_device)
438 slave->mtd._get_device = part_get_device;
439 if (parent->_put_device)
440 slave->mtd._put_device = part_put_device;
441
442 slave->mtd._erase = part_erase;
443 slave->parent = parent;
444 slave->offset = part->offset;
445
446 if (slave->offset == MTDPART_OFS_APPEND)
447 slave->offset = cur_offset;
448 if (slave->offset == MTDPART_OFS_NXTBLK) {
449 tmp = cur_offset;
450 slave->offset = cur_offset;
451 remainder = do_div(tmp, wr_alignment);
452 if (remainder) {
453 slave->offset += wr_alignment - remainder;
454 printk(KERN_NOTICE "Moving partition %d: "
455 "0x%012llx -> 0x%012llx\n", partno,
456 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
457 }
458 }
459 if (slave->offset == MTDPART_OFS_RETAIN) {
460 slave->offset = cur_offset;
461 if (parent->size - slave->offset >= slave->mtd.size) {
462 slave->mtd.size = parent->size - slave->offset
463 - slave->mtd.size;
464 } else {
465 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
466 part->name, parent->size - slave->offset,
467 slave->mtd.size);
468 /* register to preserve ordering */
469 goto out_register;
470 }
471 }
472 if (slave->mtd.size == MTDPART_SIZ_FULL)
473 slave->mtd.size = parent->size - slave->offset;
474
475 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
476 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
477
478 /* let's do some sanity checks */
479 if (slave->offset >= parent->size) {
480 /* let's register it anyway to preserve ordering */
481 slave->offset = 0;
482 slave->mtd.size = 0;
483 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
484 part->name);
485 goto out_register;
486 }
487 if (slave->offset + slave->mtd.size > parent->size) {
488 slave->mtd.size = parent->size - slave->offset;
489 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
490 part->name, parent->name, (unsigned long long)slave->mtd.size);
491 }
492 if (parent->numeraseregions > 1) {
493 /* Deal with variable erase size stuff */
494 int i, max = parent->numeraseregions;
495 u64 end = slave->offset + slave->mtd.size;
496 struct mtd_erase_region_info *regions = parent->eraseregions;
497
498 /* Find the first erase regions which is part of this
499 * partition. */
500 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
501 ;
502 /* The loop searched for the region _behind_ the first one */
503 if (i > 0)
504 i--;
505
506 /* Pick biggest erasesize */
507 for (; i < max && regions[i].offset < end; i++) {
508 if (slave->mtd.erasesize < regions[i].erasesize) {
509 slave->mtd.erasesize = regions[i].erasesize;
510 }
511 }
512 BUG_ON(slave->mtd.erasesize == 0);
513 } else {
514 /* Single erase size */
515 slave->mtd.erasesize = parent->erasesize;
516 }
517
518 /*
519 * Slave erasesize might differ from the master one if the master
520 * exposes several regions with different erasesize. Adjust
521 * wr_alignment accordingly.
522 */
523 if (!(slave->mtd.flags & MTD_NO_ERASE))
524 wr_alignment = slave->mtd.erasesize;
525
526 tmp = part_absolute_offset(parent) + slave->offset;
527 remainder = do_div(tmp, wr_alignment);
528 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
529 /* Doesn't start on a boundary of major erase size */
530 /* FIXME: Let it be writable if it is on a boundary of
531 * _minor_ erase size though */
532 slave->mtd.flags &= ~MTD_WRITEABLE;
533 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
534 part->name);
535 }
536
537 tmp = part_absolute_offset(parent) + slave->mtd.size;
538 remainder = do_div(tmp, wr_alignment);
539 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
540 slave->mtd.flags &= ~MTD_WRITEABLE;
541 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
542 part->name);
543 }
544
545 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
546 slave->mtd.ecc_step_size = parent->ecc_step_size;
547 slave->mtd.ecc_strength = parent->ecc_strength;
548 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
549
550 if (parent->_block_isbad) {
551 uint64_t offs = 0;
552
553 while (offs < slave->mtd.size) {
554 if (mtd_block_isreserved(parent, offs + slave->offset))
555 slave->mtd.ecc_stats.bbtblocks++;
556 else if (mtd_block_isbad(parent, offs + slave->offset))
557 slave->mtd.ecc_stats.badblocks++;
558 offs += slave->mtd.erasesize;
559 }
560 }
561
562 out_register:
563 return slave;
564 }
565
566 static ssize_t mtd_partition_offset_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
568 {
569 struct mtd_info *mtd = dev_get_drvdata(dev);
570 struct mtd_part *part = mtd_to_part(mtd);
571 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
572 }
573
574 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
575
576 static const struct attribute *mtd_partition_attrs[] = {
577 &dev_attr_offset.attr,
578 NULL
579 };
580
581 static int mtd_add_partition_attrs(struct mtd_part *new)
582 {
583 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
584 if (ret)
585 printk(KERN_WARNING
586 "mtd: failed to create partition attrs, err=%d\n", ret);
587 return ret;
588 }
589
590 int mtd_add_partition(struct mtd_info *parent, const char *name,
591 long long offset, long long length)
592 {
593 struct mtd_partition part;
594 struct mtd_part *new;
595 int ret = 0;
596
597 /* the direct offset is expected */
598 if (offset == MTDPART_OFS_APPEND ||
599 offset == MTDPART_OFS_NXTBLK)
600 return -EINVAL;
601
602 if (length == MTDPART_SIZ_FULL)
603 length = parent->size - offset;
604
605 if (length <= 0)
606 return -EINVAL;
607
608 memset(&part, 0, sizeof(part));
609 part.name = name;
610 part.size = length;
611 part.offset = offset;
612
613 new = allocate_partition(parent, &part, -1, offset);
614 if (IS_ERR(new))
615 return PTR_ERR(new);
616
617 mutex_lock(&mtd_partitions_mutex);
618 list_add(&new->list, &mtd_partitions);
619 mutex_unlock(&mtd_partitions_mutex);
620
621 add_mtd_device(&new->mtd);
622
623 mtd_add_partition_attrs(new);
624
625 return ret;
626 }
627 EXPORT_SYMBOL_GPL(mtd_add_partition);
628
629 /**
630 * __mtd_del_partition - delete MTD partition
631 *
632 * @priv: internal MTD struct for partition to be deleted
633 *
634 * This function must be called with the partitions mutex locked.
635 */
636 static int __mtd_del_partition(struct mtd_part *priv)
637 {
638 struct mtd_part *child, *next;
639 int err;
640
641 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
642 if (child->parent == &priv->mtd) {
643 err = __mtd_del_partition(child);
644 if (err)
645 return err;
646 }
647 }
648
649 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
650
651 err = del_mtd_device(&priv->mtd);
652 if (err)
653 return err;
654
655 list_del(&priv->list);
656 free_partition(priv);
657
658 return 0;
659 }
660
661 /*
662 * This function unregisters and destroy all slave MTD objects which are
663 * attached to the given MTD object.
664 */
665 int del_mtd_partitions(struct mtd_info *mtd)
666 {
667 struct mtd_part *slave, *next;
668 int ret, err = 0;
669
670 mutex_lock(&mtd_partitions_mutex);
671 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
672 if (slave->parent == mtd) {
673 ret = __mtd_del_partition(slave);
674 if (ret < 0)
675 err = ret;
676 }
677 mutex_unlock(&mtd_partitions_mutex);
678
679 return err;
680 }
681
682 int mtd_del_partition(struct mtd_info *mtd, int partno)
683 {
684 struct mtd_part *slave, *next;
685 int ret = -EINVAL;
686
687 mutex_lock(&mtd_partitions_mutex);
688 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
689 if ((slave->parent == mtd) &&
690 (slave->mtd.index == partno)) {
691 ret = __mtd_del_partition(slave);
692 break;
693 }
694 mutex_unlock(&mtd_partitions_mutex);
695
696 return ret;
697 }
698 EXPORT_SYMBOL_GPL(mtd_del_partition);
699
700 /*
701 * This function, given a master MTD object and a partition table, creates
702 * and registers slave MTD objects which are bound to the master according to
703 * the partition definitions.
704 *
705 * For historical reasons, this function's caller only registers the master
706 * if the MTD_PARTITIONED_MASTER config option is set.
707 */
708
709 int add_mtd_partitions(struct mtd_info *master,
710 const struct mtd_partition *parts,
711 int nbparts)
712 {
713 struct mtd_part *slave;
714 uint64_t cur_offset = 0;
715 int i;
716
717 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
718
719 for (i = 0; i < nbparts; i++) {
720 slave = allocate_partition(master, parts + i, i, cur_offset);
721 if (IS_ERR(slave)) {
722 del_mtd_partitions(master);
723 return PTR_ERR(slave);
724 }
725
726 mutex_lock(&mtd_partitions_mutex);
727 list_add(&slave->list, &mtd_partitions);
728 mutex_unlock(&mtd_partitions_mutex);
729
730 add_mtd_device(&slave->mtd);
731 mtd_add_partition_attrs(slave);
732 /* Look for subpartitions */
733 parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
734
735 cur_offset = slave->offset + slave->mtd.size;
736 }
737
738 return 0;
739 }
740
741 static DEFINE_SPINLOCK(part_parser_lock);
742 static LIST_HEAD(part_parsers);
743
744 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
745 {
746 struct mtd_part_parser *p, *ret = NULL;
747
748 spin_lock(&part_parser_lock);
749
750 list_for_each_entry(p, &part_parsers, list)
751 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
752 ret = p;
753 break;
754 }
755
756 spin_unlock(&part_parser_lock);
757
758 return ret;
759 }
760
761 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
762 {
763 module_put(p->owner);
764 }
765
766 /*
767 * Many partition parsers just expected the core to kfree() all their data in
768 * one chunk. Do that by default.
769 */
770 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
771 int nr_parts)
772 {
773 kfree(pparts);
774 }
775
776 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
777 {
778 p->owner = owner;
779
780 if (!p->cleanup)
781 p->cleanup = &mtd_part_parser_cleanup_default;
782
783 spin_lock(&part_parser_lock);
784 list_add(&p->list, &part_parsers);
785 spin_unlock(&part_parser_lock);
786
787 return 0;
788 }
789 EXPORT_SYMBOL_GPL(__register_mtd_parser);
790
791 void deregister_mtd_parser(struct mtd_part_parser *p)
792 {
793 spin_lock(&part_parser_lock);
794 list_del(&p->list);
795 spin_unlock(&part_parser_lock);
796 }
797 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
798
799 /*
800 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
801 * are changing this array!
802 */
803 static const char * const default_mtd_part_types[] = {
804 "cmdlinepart",
805 "ofpart",
806 NULL
807 };
808
809 /* Check DT only when looking for subpartitions. */
810 static const char * const default_subpartition_types[] = {
811 "ofpart",
812 NULL
813 };
814
815 static int mtd_part_do_parse(struct mtd_part_parser *parser,
816 struct mtd_info *master,
817 struct mtd_partitions *pparts,
818 struct mtd_part_parser_data *data)
819 {
820 int ret;
821
822 ret = (*parser->parse_fn)(master, &pparts->parts, data);
823 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
824 if (ret <= 0)
825 return ret;
826
827 pr_notice("%d %s partitions found on MTD device %s\n", ret,
828 parser->name, master->name);
829
830 pparts->nr_parts = ret;
831 pparts->parser = parser;
832
833 return ret;
834 }
835
836 /**
837 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
838 *
839 * @compat: compatible string describing partitions in a device tree
840 *
841 * MTD parsers can specify supported partitions by providing a table of
842 * compatibility strings. This function finds a parser that advertises support
843 * for a passed value of "compatible".
844 */
845 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
846 {
847 struct mtd_part_parser *p, *ret = NULL;
848
849 spin_lock(&part_parser_lock);
850
851 list_for_each_entry(p, &part_parsers, list) {
852 const struct of_device_id *matches;
853
854 matches = p->of_match_table;
855 if (!matches)
856 continue;
857
858 for (; matches->compatible[0]; matches++) {
859 if (!strcmp(matches->compatible, compat) &&
860 try_module_get(p->owner)) {
861 ret = p;
862 break;
863 }
864 }
865
866 if (ret)
867 break;
868 }
869
870 spin_unlock(&part_parser_lock);
871
872 return ret;
873 }
874
875 static int mtd_part_of_parse(struct mtd_info *master,
876 struct mtd_partitions *pparts)
877 {
878 struct mtd_part_parser *parser;
879 struct device_node *np;
880 struct property *prop;
881 const char *compat;
882 const char *fixed = "fixed-partitions";
883 int ret, err = 0;
884
885 np = mtd_get_of_node(master);
886 if (mtd_is_partition(master))
887 of_node_get(np);
888 else
889 np = of_get_child_by_name(np, "partitions");
890
891 of_property_for_each_string(np, "compatible", prop, compat) {
892 parser = mtd_part_get_compatible_parser(compat);
893 if (!parser)
894 continue;
895 ret = mtd_part_do_parse(parser, master, pparts, NULL);
896 if (ret > 0) {
897 of_node_put(np);
898 return ret;
899 }
900 mtd_part_parser_put(parser);
901 if (ret < 0 && !err)
902 err = ret;
903 }
904 of_node_put(np);
905
906 /*
907 * For backward compatibility we have to try the "fixed-partitions"
908 * parser. It supports old DT format with partitions specified as a
909 * direct subnodes of a flash device DT node without any compatibility
910 * specified we could match.
911 */
912 parser = mtd_part_parser_get(fixed);
913 if (!parser && !request_module("%s", fixed))
914 parser = mtd_part_parser_get(fixed);
915 if (parser) {
916 ret = mtd_part_do_parse(parser, master, pparts, NULL);
917 if (ret > 0)
918 return ret;
919 mtd_part_parser_put(parser);
920 if (ret < 0 && !err)
921 err = ret;
922 }
923
924 return err;
925 }
926
927 /**
928 * parse_mtd_partitions - parse and register MTD partitions
929 *
930 * @master: the master partition (describes whole MTD device)
931 * @types: names of partition parsers to try or %NULL
932 * @data: MTD partition parser-specific data
933 *
934 * This function tries to find & register partitions on MTD device @master. It
935 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
936 * then the default list of parsers is used. The default list contains only the
937 * "cmdlinepart" and "ofpart" parsers ATM.
938 * Note: If there are more then one parser in @types, the kernel only takes the
939 * partitions parsed out by the first parser.
940 *
941 * This function may return:
942 * o a negative error code in case of failure
943 * o number of found partitions otherwise
944 */
945 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
946 struct mtd_part_parser_data *data)
947 {
948 struct mtd_partitions pparts = { };
949 struct mtd_part_parser *parser;
950 int ret, err = 0;
951
952 if (!types)
953 types = mtd_is_partition(master) ? default_subpartition_types :
954 default_mtd_part_types;
955
956 for ( ; *types; types++) {
957 /*
958 * ofpart is a special type that means OF partitioning info
959 * should be used. It requires a bit different logic so it is
960 * handled in a separated function.
961 */
962 if (!strcmp(*types, "ofpart")) {
963 ret = mtd_part_of_parse(master, &pparts);
964 } else {
965 pr_debug("%s: parsing partitions %s\n", master->name,
966 *types);
967 parser = mtd_part_parser_get(*types);
968 if (!parser && !request_module("%s", *types))
969 parser = mtd_part_parser_get(*types);
970 pr_debug("%s: got parser %s\n", master->name,
971 parser ? parser->name : NULL);
972 if (!parser)
973 continue;
974 ret = mtd_part_do_parse(parser, master, &pparts, data);
975 if (ret <= 0)
976 mtd_part_parser_put(parser);
977 }
978 /* Found partitions! */
979 if (ret > 0) {
980 err = add_mtd_partitions(master, pparts.parts,
981 pparts.nr_parts);
982 mtd_part_parser_cleanup(&pparts);
983 return err ? err : pparts.nr_parts;
984 }
985 /*
986 * Stash the first error we see; only report it if no parser
987 * succeeds
988 */
989 if (ret < 0 && !err)
990 err = ret;
991 }
992 return err;
993 }
994
995 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
996 {
997 const struct mtd_part_parser *parser;
998
999 if (!parts)
1000 return;
1001
1002 parser = parts->parser;
1003 if (parser) {
1004 if (parser->cleanup)
1005 parser->cleanup(parts->parts, parts->nr_parts);
1006
1007 mtd_part_parser_put(parser);
1008 }
1009 }
1010
1011 int mtd_is_partition(const struct mtd_info *mtd)
1012 {
1013 struct mtd_part *part;
1014 int ispart = 0;
1015
1016 mutex_lock(&mtd_partitions_mutex);
1017 list_for_each_entry(part, &mtd_partitions, list)
1018 if (&part->mtd == mtd) {
1019 ispart = 1;
1020 break;
1021 }
1022 mutex_unlock(&mtd_partitions_mutex);
1023
1024 return ispart;
1025 }
1026 EXPORT_SYMBOL_GPL(mtd_is_partition);
1027
1028 /* Returns the size of the entire flash chip */
1029 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1030 {
1031 if (!mtd_is_partition(mtd))
1032 return mtd->size;
1033
1034 return mtd_get_device_size(mtd_to_part(mtd)->parent);
1035 }
1036 EXPORT_SYMBOL_GPL(mtd_get_device_size);