]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/mtdpart.c
tuntap: disable preemption during XDP processing
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /**
41 * struct mtd_part - our partition node structure
42 *
43 * @mtd: struct holding partition details
44 * @parent: parent mtd - flash device or another partition
45 * @offset: partition offset relative to the *flash device*
46 */
47 struct mtd_part {
48 struct mtd_info mtd;
49 struct mtd_info *parent;
50 uint64_t offset;
51 struct list_head list;
52 };
53
54 /*
55 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56 * the pointer to that structure.
57 */
58 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59 {
60 return container_of(mtd, struct mtd_part, mtd);
61 }
62
63
64 /*
65 * MTD methods which simply translate the effective address and pass through
66 * to the _real_ device.
67 */
68
69 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 size_t *retlen, u_char *buf)
71 {
72 struct mtd_part *part = mtd_to_part(mtd);
73 struct mtd_ecc_stats stats;
74 int res;
75
76 stats = part->parent->ecc_stats;
77 res = part->parent->_read(part->parent, from + part->offset, len,
78 retlen, buf);
79 if (unlikely(mtd_is_eccerr(res)))
80 mtd->ecc_stats.failed +=
81 part->parent->ecc_stats.failed - stats.failed;
82 else
83 mtd->ecc_stats.corrected +=
84 part->parent->ecc_stats.corrected - stats.corrected;
85 return res;
86 }
87
88 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 size_t *retlen, void **virt, resource_size_t *phys)
90 {
91 struct mtd_part *part = mtd_to_part(mtd);
92
93 return part->parent->_point(part->parent, from + part->offset, len,
94 retlen, virt, phys);
95 }
96
97 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98 {
99 struct mtd_part *part = mtd_to_part(mtd);
100
101 return part->parent->_unpoint(part->parent, from + part->offset, len);
102 }
103
104 static int part_read_oob(struct mtd_info *mtd, loff_t from,
105 struct mtd_oob_ops *ops)
106 {
107 struct mtd_part *part = mtd_to_part(mtd);
108 int res;
109
110 if (from >= mtd->size)
111 return -EINVAL;
112 if (ops->datbuf && from + ops->len > mtd->size)
113 return -EINVAL;
114
115 /*
116 * If OOB is also requested, make sure that we do not read past the end
117 * of this partition.
118 */
119 if (ops->oobbuf) {
120 size_t len, pages;
121
122 len = mtd_oobavail(mtd, ops);
123 pages = mtd_div_by_ws(mtd->size, mtd);
124 pages -= mtd_div_by_ws(from, mtd);
125 if (ops->ooboffs + ops->ooblen > pages * len)
126 return -EINVAL;
127 }
128
129 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
130 if (unlikely(res)) {
131 if (mtd_is_bitflip(res))
132 mtd->ecc_stats.corrected++;
133 if (mtd_is_eccerr(res))
134 mtd->ecc_stats.failed++;
135 }
136 return res;
137 }
138
139 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
140 size_t len, size_t *retlen, u_char *buf)
141 {
142 struct mtd_part *part = mtd_to_part(mtd);
143 return part->parent->_read_user_prot_reg(part->parent, from, len,
144 retlen, buf);
145 }
146
147 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
148 size_t *retlen, struct otp_info *buf)
149 {
150 struct mtd_part *part = mtd_to_part(mtd);
151 return part->parent->_get_user_prot_info(part->parent, len, retlen,
152 buf);
153 }
154
155 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
156 size_t len, size_t *retlen, u_char *buf)
157 {
158 struct mtd_part *part = mtd_to_part(mtd);
159 return part->parent->_read_fact_prot_reg(part->parent, from, len,
160 retlen, buf);
161 }
162
163 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
164 size_t *retlen, struct otp_info *buf)
165 {
166 struct mtd_part *part = mtd_to_part(mtd);
167 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
168 buf);
169 }
170
171 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
172 size_t *retlen, const u_char *buf)
173 {
174 struct mtd_part *part = mtd_to_part(mtd);
175 return part->parent->_write(part->parent, to + part->offset, len,
176 retlen, buf);
177 }
178
179 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
180 size_t *retlen, const u_char *buf)
181 {
182 struct mtd_part *part = mtd_to_part(mtd);
183 return part->parent->_panic_write(part->parent, to + part->offset, len,
184 retlen, buf);
185 }
186
187 static int part_write_oob(struct mtd_info *mtd, loff_t to,
188 struct mtd_oob_ops *ops)
189 {
190 struct mtd_part *part = mtd_to_part(mtd);
191
192 if (to >= mtd->size)
193 return -EINVAL;
194 if (ops->datbuf && to + ops->len > mtd->size)
195 return -EINVAL;
196 return part->parent->_write_oob(part->parent, to + part->offset, ops);
197 }
198
199 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
200 size_t len, size_t *retlen, u_char *buf)
201 {
202 struct mtd_part *part = mtd_to_part(mtd);
203 return part->parent->_write_user_prot_reg(part->parent, from, len,
204 retlen, buf);
205 }
206
207 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
208 size_t len)
209 {
210 struct mtd_part *part = mtd_to_part(mtd);
211 return part->parent->_lock_user_prot_reg(part->parent, from, len);
212 }
213
214 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
215 unsigned long count, loff_t to, size_t *retlen)
216 {
217 struct mtd_part *part = mtd_to_part(mtd);
218 return part->parent->_writev(part->parent, vecs, count,
219 to + part->offset, retlen);
220 }
221
222 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
223 {
224 struct mtd_part *part = mtd_to_part(mtd);
225 int ret;
226
227 instr->addr += part->offset;
228 ret = part->parent->_erase(part->parent, instr);
229 if (ret) {
230 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
231 instr->fail_addr -= part->offset;
232 instr->addr -= part->offset;
233 }
234 return ret;
235 }
236
237 void mtd_erase_callback(struct erase_info *instr)
238 {
239 if (instr->mtd->_erase == part_erase) {
240 struct mtd_part *part = mtd_to_part(instr->mtd);
241
242 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
243 instr->fail_addr -= part->offset;
244 instr->addr -= part->offset;
245 }
246 if (instr->callback)
247 instr->callback(instr);
248 }
249 EXPORT_SYMBOL_GPL(mtd_erase_callback);
250
251 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
252 {
253 struct mtd_part *part = mtd_to_part(mtd);
254 return part->parent->_lock(part->parent, ofs + part->offset, len);
255 }
256
257 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
258 {
259 struct mtd_part *part = mtd_to_part(mtd);
260 return part->parent->_unlock(part->parent, ofs + part->offset, len);
261 }
262
263 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264 {
265 struct mtd_part *part = mtd_to_part(mtd);
266 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
267 }
268
269 static void part_sync(struct mtd_info *mtd)
270 {
271 struct mtd_part *part = mtd_to_part(mtd);
272 part->parent->_sync(part->parent);
273 }
274
275 static int part_suspend(struct mtd_info *mtd)
276 {
277 struct mtd_part *part = mtd_to_part(mtd);
278 return part->parent->_suspend(part->parent);
279 }
280
281 static void part_resume(struct mtd_info *mtd)
282 {
283 struct mtd_part *part = mtd_to_part(mtd);
284 part->parent->_resume(part->parent);
285 }
286
287 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
288 {
289 struct mtd_part *part = mtd_to_part(mtd);
290 ofs += part->offset;
291 return part->parent->_block_isreserved(part->parent, ofs);
292 }
293
294 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
295 {
296 struct mtd_part *part = mtd_to_part(mtd);
297 ofs += part->offset;
298 return part->parent->_block_isbad(part->parent, ofs);
299 }
300
301 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
302 {
303 struct mtd_part *part = mtd_to_part(mtd);
304 int res;
305
306 ofs += part->offset;
307 res = part->parent->_block_markbad(part->parent, ofs);
308 if (!res)
309 mtd->ecc_stats.badblocks++;
310 return res;
311 }
312
313 static int part_get_device(struct mtd_info *mtd)
314 {
315 struct mtd_part *part = mtd_to_part(mtd);
316 return part->parent->_get_device(part->parent);
317 }
318
319 static void part_put_device(struct mtd_info *mtd)
320 {
321 struct mtd_part *part = mtd_to_part(mtd);
322 part->parent->_put_device(part->parent);
323 }
324
325 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
326 struct mtd_oob_region *oobregion)
327 {
328 struct mtd_part *part = mtd_to_part(mtd);
329
330 return mtd_ooblayout_ecc(part->parent, section, oobregion);
331 }
332
333 static int part_ooblayout_free(struct mtd_info *mtd, int section,
334 struct mtd_oob_region *oobregion)
335 {
336 struct mtd_part *part = mtd_to_part(mtd);
337
338 return mtd_ooblayout_free(part->parent, section, oobregion);
339 }
340
341 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
342 .ecc = part_ooblayout_ecc,
343 .free = part_ooblayout_free,
344 };
345
346 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
347 {
348 struct mtd_part *part = mtd_to_part(mtd);
349
350 return part->parent->_max_bad_blocks(part->parent,
351 ofs + part->offset, len);
352 }
353
354 static inline void free_partition(struct mtd_part *p)
355 {
356 kfree(p->mtd.name);
357 kfree(p);
358 }
359
360 /**
361 * mtd_parse_part - parse MTD partition looking for subpartitions
362 *
363 * @slave: part that is supposed to be a container and should be parsed
364 * @types: NULL-terminated array with names of partition parsers to try
365 *
366 * Some partitions are kind of containers with extra subpartitions (volumes).
367 * There can be various formats of such containers. This function tries to use
368 * specified parsers to analyze given partition and registers found
369 * subpartitions on success.
370 */
371 static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
372 {
373 struct mtd_partitions parsed;
374 int err;
375
376 err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
377 if (err)
378 return err;
379 else if (!parsed.nr_parts)
380 return -ENOENT;
381
382 err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
383
384 mtd_part_parser_cleanup(&parsed);
385
386 return err;
387 }
388
389 static struct mtd_part *allocate_partition(struct mtd_info *parent,
390 const struct mtd_partition *part, int partno,
391 uint64_t cur_offset)
392 {
393 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
394 parent->erasesize;
395 struct mtd_part *slave;
396 u32 remainder;
397 char *name;
398 u64 tmp;
399
400 /* allocate the partition structure */
401 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
402 name = kstrdup(part->name, GFP_KERNEL);
403 if (!name || !slave) {
404 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
405 parent->name);
406 kfree(name);
407 kfree(slave);
408 return ERR_PTR(-ENOMEM);
409 }
410
411 /* set up the MTD object for this partition */
412 slave->mtd.type = parent->type;
413 slave->mtd.flags = parent->flags & ~part->mask_flags;
414 slave->mtd.size = part->size;
415 slave->mtd.writesize = parent->writesize;
416 slave->mtd.writebufsize = parent->writebufsize;
417 slave->mtd.oobsize = parent->oobsize;
418 slave->mtd.oobavail = parent->oobavail;
419 slave->mtd.subpage_sft = parent->subpage_sft;
420 slave->mtd.pairing = parent->pairing;
421
422 slave->mtd.name = name;
423 slave->mtd.owner = parent->owner;
424
425 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
426 * concern for showing the same data in multiple partitions.
427 * However, it is very useful to have the master node present,
428 * so the MTD_PARTITIONED_MASTER option allows that. The master
429 * will have device nodes etc only if this is set, so make the
430 * parent conditional on that option. Note, this is a way to
431 * distinguish between the master and the partition in sysfs.
432 */
433 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
434 &parent->dev :
435 parent->dev.parent;
436 slave->mtd.dev.of_node = part->of_node;
437
438 slave->mtd._read = part_read;
439 slave->mtd._write = part_write;
440
441 if (parent->_panic_write)
442 slave->mtd._panic_write = part_panic_write;
443
444 if (parent->_point && parent->_unpoint) {
445 slave->mtd._point = part_point;
446 slave->mtd._unpoint = part_unpoint;
447 }
448
449 if (parent->_read_oob)
450 slave->mtd._read_oob = part_read_oob;
451 if (parent->_write_oob)
452 slave->mtd._write_oob = part_write_oob;
453 if (parent->_read_user_prot_reg)
454 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
455 if (parent->_read_fact_prot_reg)
456 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
457 if (parent->_write_user_prot_reg)
458 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
459 if (parent->_lock_user_prot_reg)
460 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
461 if (parent->_get_user_prot_info)
462 slave->mtd._get_user_prot_info = part_get_user_prot_info;
463 if (parent->_get_fact_prot_info)
464 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
465 if (parent->_sync)
466 slave->mtd._sync = part_sync;
467 if (!partno && !parent->dev.class && parent->_suspend &&
468 parent->_resume) {
469 slave->mtd._suspend = part_suspend;
470 slave->mtd._resume = part_resume;
471 }
472 if (parent->_writev)
473 slave->mtd._writev = part_writev;
474 if (parent->_lock)
475 slave->mtd._lock = part_lock;
476 if (parent->_unlock)
477 slave->mtd._unlock = part_unlock;
478 if (parent->_is_locked)
479 slave->mtd._is_locked = part_is_locked;
480 if (parent->_block_isreserved)
481 slave->mtd._block_isreserved = part_block_isreserved;
482 if (parent->_block_isbad)
483 slave->mtd._block_isbad = part_block_isbad;
484 if (parent->_block_markbad)
485 slave->mtd._block_markbad = part_block_markbad;
486 if (parent->_max_bad_blocks)
487 slave->mtd._max_bad_blocks = part_max_bad_blocks;
488
489 if (parent->_get_device)
490 slave->mtd._get_device = part_get_device;
491 if (parent->_put_device)
492 slave->mtd._put_device = part_put_device;
493
494 slave->mtd._erase = part_erase;
495 slave->parent = parent;
496 slave->offset = part->offset;
497
498 if (slave->offset == MTDPART_OFS_APPEND)
499 slave->offset = cur_offset;
500 if (slave->offset == MTDPART_OFS_NXTBLK) {
501 tmp = cur_offset;
502 slave->offset = cur_offset;
503 remainder = do_div(tmp, wr_alignment);
504 if (remainder) {
505 slave->offset += wr_alignment - remainder;
506 printk(KERN_NOTICE "Moving partition %d: "
507 "0x%012llx -> 0x%012llx\n", partno,
508 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
509 }
510 }
511 if (slave->offset == MTDPART_OFS_RETAIN) {
512 slave->offset = cur_offset;
513 if (parent->size - slave->offset >= slave->mtd.size) {
514 slave->mtd.size = parent->size - slave->offset
515 - slave->mtd.size;
516 } else {
517 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
518 part->name, parent->size - slave->offset,
519 slave->mtd.size);
520 /* register to preserve ordering */
521 goto out_register;
522 }
523 }
524 if (slave->mtd.size == MTDPART_SIZ_FULL)
525 slave->mtd.size = parent->size - slave->offset;
526
527 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
528 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
529
530 /* let's do some sanity checks */
531 if (slave->offset >= parent->size) {
532 /* let's register it anyway to preserve ordering */
533 slave->offset = 0;
534 slave->mtd.size = 0;
535 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
536 part->name);
537 goto out_register;
538 }
539 if (slave->offset + slave->mtd.size > parent->size) {
540 slave->mtd.size = parent->size - slave->offset;
541 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
542 part->name, parent->name, (unsigned long long)slave->mtd.size);
543 }
544 if (parent->numeraseregions > 1) {
545 /* Deal with variable erase size stuff */
546 int i, max = parent->numeraseregions;
547 u64 end = slave->offset + slave->mtd.size;
548 struct mtd_erase_region_info *regions = parent->eraseregions;
549
550 /* Find the first erase regions which is part of this
551 * partition. */
552 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
553 ;
554 /* The loop searched for the region _behind_ the first one */
555 if (i > 0)
556 i--;
557
558 /* Pick biggest erasesize */
559 for (; i < max && regions[i].offset < end; i++) {
560 if (slave->mtd.erasesize < regions[i].erasesize) {
561 slave->mtd.erasesize = regions[i].erasesize;
562 }
563 }
564 BUG_ON(slave->mtd.erasesize == 0);
565 } else {
566 /* Single erase size */
567 slave->mtd.erasesize = parent->erasesize;
568 }
569
570 /*
571 * Slave erasesize might differ from the master one if the master
572 * exposes several regions with different erasesize. Adjust
573 * wr_alignment accordingly.
574 */
575 if (!(slave->mtd.flags & MTD_NO_ERASE))
576 wr_alignment = slave->mtd.erasesize;
577
578 tmp = slave->offset;
579 remainder = do_div(tmp, wr_alignment);
580 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
581 /* Doesn't start on a boundary of major erase size */
582 /* FIXME: Let it be writable if it is on a boundary of
583 * _minor_ erase size though */
584 slave->mtd.flags &= ~MTD_WRITEABLE;
585 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
586 part->name);
587 }
588
589 tmp = slave->mtd.size;
590 remainder = do_div(tmp, wr_alignment);
591 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
592 slave->mtd.flags &= ~MTD_WRITEABLE;
593 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
594 part->name);
595 }
596
597 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
598 slave->mtd.ecc_step_size = parent->ecc_step_size;
599 slave->mtd.ecc_strength = parent->ecc_strength;
600 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
601
602 if (parent->_block_isbad) {
603 uint64_t offs = 0;
604
605 while (offs < slave->mtd.size) {
606 if (mtd_block_isreserved(parent, offs + slave->offset))
607 slave->mtd.ecc_stats.bbtblocks++;
608 else if (mtd_block_isbad(parent, offs + slave->offset))
609 slave->mtd.ecc_stats.badblocks++;
610 offs += slave->mtd.erasesize;
611 }
612 }
613
614 out_register:
615 return slave;
616 }
617
618 static ssize_t mtd_partition_offset_show(struct device *dev,
619 struct device_attribute *attr, char *buf)
620 {
621 struct mtd_info *mtd = dev_get_drvdata(dev);
622 struct mtd_part *part = mtd_to_part(mtd);
623 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
624 }
625
626 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
627
628 static const struct attribute *mtd_partition_attrs[] = {
629 &dev_attr_offset.attr,
630 NULL
631 };
632
633 static int mtd_add_partition_attrs(struct mtd_part *new)
634 {
635 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
636 if (ret)
637 printk(KERN_WARNING
638 "mtd: failed to create partition attrs, err=%d\n", ret);
639 return ret;
640 }
641
642 int mtd_add_partition(struct mtd_info *parent, const char *name,
643 long long offset, long long length)
644 {
645 struct mtd_partition part;
646 struct mtd_part *new;
647 int ret = 0;
648
649 /* the direct offset is expected */
650 if (offset == MTDPART_OFS_APPEND ||
651 offset == MTDPART_OFS_NXTBLK)
652 return -EINVAL;
653
654 if (length == MTDPART_SIZ_FULL)
655 length = parent->size - offset;
656
657 if (length <= 0)
658 return -EINVAL;
659
660 memset(&part, 0, sizeof(part));
661 part.name = name;
662 part.size = length;
663 part.offset = offset;
664
665 new = allocate_partition(parent, &part, -1, offset);
666 if (IS_ERR(new))
667 return PTR_ERR(new);
668
669 mutex_lock(&mtd_partitions_mutex);
670 list_add(&new->list, &mtd_partitions);
671 mutex_unlock(&mtd_partitions_mutex);
672
673 add_mtd_device(&new->mtd);
674
675 mtd_add_partition_attrs(new);
676
677 return ret;
678 }
679 EXPORT_SYMBOL_GPL(mtd_add_partition);
680
681 /**
682 * __mtd_del_partition - delete MTD partition
683 *
684 * @priv: internal MTD struct for partition to be deleted
685 *
686 * This function must be called with the partitions mutex locked.
687 */
688 static int __mtd_del_partition(struct mtd_part *priv)
689 {
690 struct mtd_part *child, *next;
691 int err;
692
693 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
694 if (child->parent == &priv->mtd) {
695 err = __mtd_del_partition(child);
696 if (err)
697 return err;
698 }
699 }
700
701 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
702
703 err = del_mtd_device(&priv->mtd);
704 if (err)
705 return err;
706
707 list_del(&priv->list);
708 free_partition(priv);
709
710 return 0;
711 }
712
713 /*
714 * This function unregisters and destroy all slave MTD objects which are
715 * attached to the given MTD object.
716 */
717 int del_mtd_partitions(struct mtd_info *mtd)
718 {
719 struct mtd_part *slave, *next;
720 int ret, err = 0;
721
722 mutex_lock(&mtd_partitions_mutex);
723 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
724 if (slave->parent == mtd) {
725 ret = __mtd_del_partition(slave);
726 if (ret < 0)
727 err = ret;
728 }
729 mutex_unlock(&mtd_partitions_mutex);
730
731 return err;
732 }
733
734 int mtd_del_partition(struct mtd_info *mtd, int partno)
735 {
736 struct mtd_part *slave, *next;
737 int ret = -EINVAL;
738
739 mutex_lock(&mtd_partitions_mutex);
740 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
741 if ((slave->parent == mtd) &&
742 (slave->mtd.index == partno)) {
743 ret = __mtd_del_partition(slave);
744 break;
745 }
746 mutex_unlock(&mtd_partitions_mutex);
747
748 return ret;
749 }
750 EXPORT_SYMBOL_GPL(mtd_del_partition);
751
752 /*
753 * This function, given a master MTD object and a partition table, creates
754 * and registers slave MTD objects which are bound to the master according to
755 * the partition definitions.
756 *
757 * For historical reasons, this function's caller only registers the master
758 * if the MTD_PARTITIONED_MASTER config option is set.
759 */
760
761 int add_mtd_partitions(struct mtd_info *master,
762 const struct mtd_partition *parts,
763 int nbparts)
764 {
765 struct mtd_part *slave;
766 uint64_t cur_offset = 0;
767 int i;
768
769 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
770
771 for (i = 0; i < nbparts; i++) {
772 slave = allocate_partition(master, parts + i, i, cur_offset);
773 if (IS_ERR(slave)) {
774 del_mtd_partitions(master);
775 return PTR_ERR(slave);
776 }
777
778 mutex_lock(&mtd_partitions_mutex);
779 list_add(&slave->list, &mtd_partitions);
780 mutex_unlock(&mtd_partitions_mutex);
781
782 add_mtd_device(&slave->mtd);
783 mtd_add_partition_attrs(slave);
784 if (parts[i].types)
785 mtd_parse_part(slave, parts[i].types);
786
787 cur_offset = slave->offset + slave->mtd.size;
788 }
789
790 return 0;
791 }
792
793 static DEFINE_SPINLOCK(part_parser_lock);
794 static LIST_HEAD(part_parsers);
795
796 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
797 {
798 struct mtd_part_parser *p, *ret = NULL;
799
800 spin_lock(&part_parser_lock);
801
802 list_for_each_entry(p, &part_parsers, list)
803 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
804 ret = p;
805 break;
806 }
807
808 spin_unlock(&part_parser_lock);
809
810 return ret;
811 }
812
813 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
814 {
815 module_put(p->owner);
816 }
817
818 /*
819 * Many partition parsers just expected the core to kfree() all their data in
820 * one chunk. Do that by default.
821 */
822 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
823 int nr_parts)
824 {
825 kfree(pparts);
826 }
827
828 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
829 {
830 p->owner = owner;
831
832 if (!p->cleanup)
833 p->cleanup = &mtd_part_parser_cleanup_default;
834
835 spin_lock(&part_parser_lock);
836 list_add(&p->list, &part_parsers);
837 spin_unlock(&part_parser_lock);
838
839 return 0;
840 }
841 EXPORT_SYMBOL_GPL(__register_mtd_parser);
842
843 void deregister_mtd_parser(struct mtd_part_parser *p)
844 {
845 spin_lock(&part_parser_lock);
846 list_del(&p->list);
847 spin_unlock(&part_parser_lock);
848 }
849 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
850
851 /*
852 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
853 * are changing this array!
854 */
855 static const char * const default_mtd_part_types[] = {
856 "cmdlinepart",
857 "ofpart",
858 NULL
859 };
860
861 static int mtd_part_do_parse(struct mtd_part_parser *parser,
862 struct mtd_info *master,
863 struct mtd_partitions *pparts,
864 struct mtd_part_parser_data *data)
865 {
866 int ret;
867
868 ret = (*parser->parse_fn)(master, &pparts->parts, data);
869 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
870 if (ret <= 0)
871 return ret;
872
873 pr_notice("%d %s partitions found on MTD device %s\n", ret,
874 parser->name, master->name);
875
876 pparts->nr_parts = ret;
877 pparts->parser = parser;
878
879 return ret;
880 }
881
882 /**
883 * parse_mtd_partitions - parse MTD partitions
884 * @master: the master partition (describes whole MTD device)
885 * @types: names of partition parsers to try or %NULL
886 * @pparts: info about partitions found is returned here
887 * @data: MTD partition parser-specific data
888 *
889 * This function tries to find partition on MTD device @master. It uses MTD
890 * partition parsers, specified in @types. However, if @types is %NULL, then
891 * the default list of parsers is used. The default list contains only the
892 * "cmdlinepart" and "ofpart" parsers ATM.
893 * Note: If there are more then one parser in @types, the kernel only takes the
894 * partitions parsed out by the first parser.
895 *
896 * This function may return:
897 * o a negative error code in case of failure
898 * o zero otherwise, and @pparts will describe the partitions, number of
899 * partitions, and the parser which parsed them. Caller must release
900 * resources with mtd_part_parser_cleanup() when finished with the returned
901 * data.
902 */
903 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
904 struct mtd_partitions *pparts,
905 struct mtd_part_parser_data *data)
906 {
907 struct mtd_part_parser *parser;
908 int ret, err = 0;
909
910 if (!types)
911 types = default_mtd_part_types;
912
913 for ( ; *types; types++) {
914 pr_debug("%s: parsing partitions %s\n", master->name, *types);
915 parser = mtd_part_parser_get(*types);
916 if (!parser && !request_module("%s", *types))
917 parser = mtd_part_parser_get(*types);
918 pr_debug("%s: got parser %s\n", master->name,
919 parser ? parser->name : NULL);
920 if (!parser)
921 continue;
922 ret = mtd_part_do_parse(parser, master, pparts, data);
923 /* Found partitions! */
924 if (ret > 0)
925 return 0;
926 mtd_part_parser_put(parser);
927 /*
928 * Stash the first error we see; only report it if no parser
929 * succeeds
930 */
931 if (ret < 0 && !err)
932 err = ret;
933 }
934 return err;
935 }
936
937 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
938 {
939 const struct mtd_part_parser *parser;
940
941 if (!parts)
942 return;
943
944 parser = parts->parser;
945 if (parser) {
946 if (parser->cleanup)
947 parser->cleanup(parts->parts, parts->nr_parts);
948
949 mtd_part_parser_put(parser);
950 }
951 }
952
953 int mtd_is_partition(const struct mtd_info *mtd)
954 {
955 struct mtd_part *part;
956 int ispart = 0;
957
958 mutex_lock(&mtd_partitions_mutex);
959 list_for_each_entry(part, &mtd_partitions, list)
960 if (&part->mtd == mtd) {
961 ispart = 1;
962 break;
963 }
964 mutex_unlock(&mtd_partitions_mutex);
965
966 return ispart;
967 }
968 EXPORT_SYMBOL_GPL(mtd_is_partition);
969
970 /* Returns the size of the entire flash chip */
971 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
972 {
973 if (!mtd_is_partition(mtd))
974 return mtd->size;
975
976 return mtd_get_device_size(mtd_to_part(mtd)->parent);
977 }
978 EXPORT_SYMBOL_GPL(mtd_get_device_size);