]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/mtdpart.c
mtd: do not duplicate length and offset checks in drivers
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46 };
47
48 /*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52 #define PART(x) ((struct mtd_part *)(x))
53
54
55 /*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
62 {
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
66
67 stats = part->master->ecc_stats;
68 res = mtd_read(part->master, from + part->offset, len, retlen, buf);
69 if (unlikely(res)) {
70 if (mtd_is_bitflip(res))
71 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
72 if (mtd_is_eccerr(res))
73 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
74 }
75 return res;
76 }
77
78 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
79 size_t *retlen, void **virt, resource_size_t *phys)
80 {
81 struct mtd_part *part = PART(mtd);
82
83 return mtd_point(part->master, from + part->offset, len, retlen,
84 virt, phys);
85 }
86
87 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
88 {
89 struct mtd_part *part = PART(mtd);
90
91 return mtd_unpoint(part->master, from + part->offset, len);
92 }
93
94 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
95 unsigned long len,
96 unsigned long offset,
97 unsigned long flags)
98 {
99 struct mtd_part *part = PART(mtd);
100
101 offset += part->offset;
102 return mtd_get_unmapped_area(part->master, len, offset, flags);
103 }
104
105 static int part_read_oob(struct mtd_info *mtd, loff_t from,
106 struct mtd_oob_ops *ops)
107 {
108 struct mtd_part *part = PART(mtd);
109 int res;
110
111 if (from >= mtd->size)
112 return -EINVAL;
113 if (ops->datbuf && from + ops->len > mtd->size)
114 return -EINVAL;
115
116 /*
117 * If OOB is also requested, make sure that we do not read past the end
118 * of this partition.
119 */
120 if (ops->oobbuf) {
121 size_t len, pages;
122
123 if (ops->mode == MTD_OPS_AUTO_OOB)
124 len = mtd->oobavail;
125 else
126 len = mtd->oobsize;
127 pages = mtd_div_by_ws(mtd->size, mtd);
128 pages -= mtd_div_by_ws(from, mtd);
129 if (ops->ooboffs + ops->ooblen > pages * len)
130 return -EINVAL;
131 }
132
133 res = mtd_read_oob(part->master, from + part->offset, ops);
134 if (unlikely(res)) {
135 if (mtd_is_bitflip(res))
136 mtd->ecc_stats.corrected++;
137 if (mtd_is_eccerr(res))
138 mtd->ecc_stats.failed++;
139 }
140 return res;
141 }
142
143 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
144 size_t len, size_t *retlen, u_char *buf)
145 {
146 struct mtd_part *part = PART(mtd);
147 return mtd_read_user_prot_reg(part->master, from, len, retlen, buf);
148 }
149
150 static int part_get_user_prot_info(struct mtd_info *mtd,
151 struct otp_info *buf, size_t len)
152 {
153 struct mtd_part *part = PART(mtd);
154 return mtd_get_user_prot_info(part->master, buf, len);
155 }
156
157 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
158 size_t len, size_t *retlen, u_char *buf)
159 {
160 struct mtd_part *part = PART(mtd);
161 return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf);
162 }
163
164 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
165 size_t len)
166 {
167 struct mtd_part *part = PART(mtd);
168 return mtd_get_fact_prot_info(part->master, buf, len);
169 }
170
171 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
172 size_t *retlen, const u_char *buf)
173 {
174 struct mtd_part *part = PART(mtd);
175 if (!(mtd->flags & MTD_WRITEABLE))
176 return -EROFS;
177 return mtd_write(part->master, to + part->offset, len, retlen, buf);
178 }
179
180 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
181 size_t *retlen, const u_char *buf)
182 {
183 struct mtd_part *part = PART(mtd);
184 if (!(mtd->flags & MTD_WRITEABLE))
185 return -EROFS;
186 return mtd_panic_write(part->master, to + part->offset, len, retlen,
187 buf);
188 }
189
190 static int part_write_oob(struct mtd_info *mtd, loff_t to,
191 struct mtd_oob_ops *ops)
192 {
193 struct mtd_part *part = PART(mtd);
194
195 if (!(mtd->flags & MTD_WRITEABLE))
196 return -EROFS;
197
198 if (to >= mtd->size)
199 return -EINVAL;
200 if (ops->datbuf && to + ops->len > mtd->size)
201 return -EINVAL;
202 return mtd_write_oob(part->master, to + part->offset, ops);
203 }
204
205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206 size_t len, size_t *retlen, u_char *buf)
207 {
208 struct mtd_part *part = PART(mtd);
209 return mtd_write_user_prot_reg(part->master, from, len, retlen, buf);
210 }
211
212 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
213 size_t len)
214 {
215 struct mtd_part *part = PART(mtd);
216 return mtd_lock_user_prot_reg(part->master, from, len);
217 }
218
219 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
220 unsigned long count, loff_t to, size_t *retlen)
221 {
222 struct mtd_part *part = PART(mtd);
223 if (!(mtd->flags & MTD_WRITEABLE))
224 return -EROFS;
225 return mtd_writev(part->master, vecs, count, to + part->offset,
226 retlen);
227 }
228
229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
230 {
231 struct mtd_part *part = PART(mtd);
232 int ret;
233 if (!(mtd->flags & MTD_WRITEABLE))
234 return -EROFS;
235 instr->addr += part->offset;
236 ret = mtd_erase(part->master, instr);
237 if (ret) {
238 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
239 instr->fail_addr -= part->offset;
240 instr->addr -= part->offset;
241 }
242 return ret;
243 }
244
245 void mtd_erase_callback(struct erase_info *instr)
246 {
247 if (instr->mtd->_erase == part_erase) {
248 struct mtd_part *part = PART(instr->mtd);
249
250 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
251 instr->fail_addr -= part->offset;
252 instr->addr -= part->offset;
253 }
254 if (instr->callback)
255 instr->callback(instr);
256 }
257 EXPORT_SYMBOL_GPL(mtd_erase_callback);
258
259 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
260 {
261 struct mtd_part *part = PART(mtd);
262 return mtd_lock(part->master, ofs + part->offset, len);
263 }
264
265 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
266 {
267 struct mtd_part *part = PART(mtd);
268 return mtd_unlock(part->master, ofs + part->offset, len);
269 }
270
271 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
272 {
273 struct mtd_part *part = PART(mtd);
274 return mtd_is_locked(part->master, ofs + part->offset, len);
275 }
276
277 static void part_sync(struct mtd_info *mtd)
278 {
279 struct mtd_part *part = PART(mtd);
280 mtd_sync(part->master);
281 }
282
283 static int part_suspend(struct mtd_info *mtd)
284 {
285 struct mtd_part *part = PART(mtd);
286 return mtd_suspend(part->master);
287 }
288
289 static void part_resume(struct mtd_info *mtd)
290 {
291 struct mtd_part *part = PART(mtd);
292 mtd_resume(part->master);
293 }
294
295 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
296 {
297 struct mtd_part *part = PART(mtd);
298 ofs += part->offset;
299 return mtd_block_isbad(part->master, ofs);
300 }
301
302 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
303 {
304 struct mtd_part *part = PART(mtd);
305 int res;
306
307 if (!(mtd->flags & MTD_WRITEABLE))
308 return -EROFS;
309 ofs += part->offset;
310 res = mtd_block_markbad(part->master, ofs);
311 if (!res)
312 mtd->ecc_stats.badblocks++;
313 return res;
314 }
315
316 static inline void free_partition(struct mtd_part *p)
317 {
318 kfree(p->mtd.name);
319 kfree(p);
320 }
321
322 /*
323 * This function unregisters and destroy all slave MTD objects which are
324 * attached to the given master MTD object.
325 */
326
327 int del_mtd_partitions(struct mtd_info *master)
328 {
329 struct mtd_part *slave, *next;
330 int ret, err = 0;
331
332 mutex_lock(&mtd_partitions_mutex);
333 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
334 if (slave->master == master) {
335 ret = del_mtd_device(&slave->mtd);
336 if (ret < 0) {
337 err = ret;
338 continue;
339 }
340 list_del(&slave->list);
341 free_partition(slave);
342 }
343 mutex_unlock(&mtd_partitions_mutex);
344
345 return err;
346 }
347
348 static struct mtd_part *allocate_partition(struct mtd_info *master,
349 const struct mtd_partition *part, int partno,
350 uint64_t cur_offset)
351 {
352 struct mtd_part *slave;
353 char *name;
354
355 /* allocate the partition structure */
356 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
357 name = kstrdup(part->name, GFP_KERNEL);
358 if (!name || !slave) {
359 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
360 master->name);
361 kfree(name);
362 kfree(slave);
363 return ERR_PTR(-ENOMEM);
364 }
365
366 /* set up the MTD object for this partition */
367 slave->mtd.type = master->type;
368 slave->mtd.flags = master->flags & ~part->mask_flags;
369 slave->mtd.size = part->size;
370 slave->mtd.writesize = master->writesize;
371 slave->mtd.writebufsize = master->writebufsize;
372 slave->mtd.oobsize = master->oobsize;
373 slave->mtd.oobavail = master->oobavail;
374 slave->mtd.subpage_sft = master->subpage_sft;
375
376 slave->mtd.name = name;
377 slave->mtd.owner = master->owner;
378 slave->mtd.backing_dev_info = master->backing_dev_info;
379
380 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
381 * to have the same data be in two different partitions.
382 */
383 slave->mtd.dev.parent = master->dev.parent;
384
385 slave->mtd._read = part_read;
386 slave->mtd._write = part_write;
387
388 if (master->_panic_write)
389 slave->mtd._panic_write = part_panic_write;
390
391 if (master->_point && master->_unpoint) {
392 slave->mtd._point = part_point;
393 slave->mtd._unpoint = part_unpoint;
394 }
395
396 if (master->_get_unmapped_area)
397 slave->mtd._get_unmapped_area = part_get_unmapped_area;
398 if (master->_read_oob)
399 slave->mtd._read_oob = part_read_oob;
400 if (master->_write_oob)
401 slave->mtd._write_oob = part_write_oob;
402 if (master->_read_user_prot_reg)
403 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
404 if (master->_read_fact_prot_reg)
405 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
406 if (master->_write_user_prot_reg)
407 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
408 if (master->_lock_user_prot_reg)
409 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
410 if (master->_get_user_prot_info)
411 slave->mtd._get_user_prot_info = part_get_user_prot_info;
412 if (master->_get_fact_prot_info)
413 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
414 if (master->_sync)
415 slave->mtd._sync = part_sync;
416 if (!partno && !master->dev.class && master->_suspend &&
417 master->_resume) {
418 slave->mtd._suspend = part_suspend;
419 slave->mtd._resume = part_resume;
420 }
421 if (master->_writev)
422 slave->mtd._writev = part_writev;
423 if (master->_lock)
424 slave->mtd._lock = part_lock;
425 if (master->_unlock)
426 slave->mtd._unlock = part_unlock;
427 if (master->_is_locked)
428 slave->mtd._is_locked = part_is_locked;
429 if (master->_block_isbad)
430 slave->mtd._block_isbad = part_block_isbad;
431 if (master->_block_markbad)
432 slave->mtd._block_markbad = part_block_markbad;
433 slave->mtd._erase = part_erase;
434 slave->master = master;
435 slave->offset = part->offset;
436
437 if (slave->offset == MTDPART_OFS_APPEND)
438 slave->offset = cur_offset;
439 if (slave->offset == MTDPART_OFS_NXTBLK) {
440 slave->offset = cur_offset;
441 if (mtd_mod_by_eb(cur_offset, master) != 0) {
442 /* Round up to next erasesize */
443 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
444 printk(KERN_NOTICE "Moving partition %d: "
445 "0x%012llx -> 0x%012llx\n", partno,
446 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
447 }
448 }
449 if (slave->offset == MTDPART_OFS_RETAIN) {
450 slave->offset = cur_offset;
451 if (master->size - slave->offset >= slave->mtd.size) {
452 slave->mtd.size = master->size - slave->offset
453 - slave->mtd.size;
454 } else {
455 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
456 part->name, master->size - slave->offset,
457 slave->mtd.size);
458 /* register to preserve ordering */
459 goto out_register;
460 }
461 }
462 if (slave->mtd.size == MTDPART_SIZ_FULL)
463 slave->mtd.size = master->size - slave->offset;
464
465 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
466 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
467
468 /* let's do some sanity checks */
469 if (slave->offset >= master->size) {
470 /* let's register it anyway to preserve ordering */
471 slave->offset = 0;
472 slave->mtd.size = 0;
473 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
474 part->name);
475 goto out_register;
476 }
477 if (slave->offset + slave->mtd.size > master->size) {
478 slave->mtd.size = master->size - slave->offset;
479 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
480 part->name, master->name, (unsigned long long)slave->mtd.size);
481 }
482 if (master->numeraseregions > 1) {
483 /* Deal with variable erase size stuff */
484 int i, max = master->numeraseregions;
485 u64 end = slave->offset + slave->mtd.size;
486 struct mtd_erase_region_info *regions = master->eraseregions;
487
488 /* Find the first erase regions which is part of this
489 * partition. */
490 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
491 ;
492 /* The loop searched for the region _behind_ the first one */
493 if (i > 0)
494 i--;
495
496 /* Pick biggest erasesize */
497 for (; i < max && regions[i].offset < end; i++) {
498 if (slave->mtd.erasesize < regions[i].erasesize) {
499 slave->mtd.erasesize = regions[i].erasesize;
500 }
501 }
502 BUG_ON(slave->mtd.erasesize == 0);
503 } else {
504 /* Single erase size */
505 slave->mtd.erasesize = master->erasesize;
506 }
507
508 if ((slave->mtd.flags & MTD_WRITEABLE) &&
509 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
510 /* Doesn't start on a boundary of major erase size */
511 /* FIXME: Let it be writable if it is on a boundary of
512 * _minor_ erase size though */
513 slave->mtd.flags &= ~MTD_WRITEABLE;
514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
515 part->name);
516 }
517 if ((slave->mtd.flags & MTD_WRITEABLE) &&
518 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
519 slave->mtd.flags &= ~MTD_WRITEABLE;
520 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
521 part->name);
522 }
523
524 slave->mtd.ecclayout = master->ecclayout;
525 if (master->_block_isbad) {
526 uint64_t offs = 0;
527
528 while (offs < slave->mtd.size) {
529 if (mtd_block_isbad(master, offs + slave->offset))
530 slave->mtd.ecc_stats.badblocks++;
531 offs += slave->mtd.erasesize;
532 }
533 }
534
535 out_register:
536 return slave;
537 }
538
539 int mtd_add_partition(struct mtd_info *master, char *name,
540 long long offset, long long length)
541 {
542 struct mtd_partition part;
543 struct mtd_part *p, *new;
544 uint64_t start, end;
545 int ret = 0;
546
547 /* the direct offset is expected */
548 if (offset == MTDPART_OFS_APPEND ||
549 offset == MTDPART_OFS_NXTBLK)
550 return -EINVAL;
551
552 if (length == MTDPART_SIZ_FULL)
553 length = master->size - offset;
554
555 if (length <= 0)
556 return -EINVAL;
557
558 part.name = name;
559 part.size = length;
560 part.offset = offset;
561 part.mask_flags = 0;
562 part.ecclayout = NULL;
563
564 new = allocate_partition(master, &part, -1, offset);
565 if (IS_ERR(new))
566 return PTR_ERR(new);
567
568 start = offset;
569 end = offset + length;
570
571 mutex_lock(&mtd_partitions_mutex);
572 list_for_each_entry(p, &mtd_partitions, list)
573 if (p->master == master) {
574 if ((start >= p->offset) &&
575 (start < (p->offset + p->mtd.size)))
576 goto err_inv;
577
578 if ((end >= p->offset) &&
579 (end < (p->offset + p->mtd.size)))
580 goto err_inv;
581 }
582
583 list_add(&new->list, &mtd_partitions);
584 mutex_unlock(&mtd_partitions_mutex);
585
586 add_mtd_device(&new->mtd);
587
588 return ret;
589 err_inv:
590 mutex_unlock(&mtd_partitions_mutex);
591 free_partition(new);
592 return -EINVAL;
593 }
594 EXPORT_SYMBOL_GPL(mtd_add_partition);
595
596 int mtd_del_partition(struct mtd_info *master, int partno)
597 {
598 struct mtd_part *slave, *next;
599 int ret = -EINVAL;
600
601 mutex_lock(&mtd_partitions_mutex);
602 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
603 if ((slave->master == master) &&
604 (slave->mtd.index == partno)) {
605 ret = del_mtd_device(&slave->mtd);
606 if (ret < 0)
607 break;
608
609 list_del(&slave->list);
610 free_partition(slave);
611 break;
612 }
613 mutex_unlock(&mtd_partitions_mutex);
614
615 return ret;
616 }
617 EXPORT_SYMBOL_GPL(mtd_del_partition);
618
619 /*
620 * This function, given a master MTD object and a partition table, creates
621 * and registers slave MTD objects which are bound to the master according to
622 * the partition definitions.
623 *
624 * We don't register the master, or expect the caller to have done so,
625 * for reasons of data integrity.
626 */
627
628 int add_mtd_partitions(struct mtd_info *master,
629 const struct mtd_partition *parts,
630 int nbparts)
631 {
632 struct mtd_part *slave;
633 uint64_t cur_offset = 0;
634 int i;
635
636 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
637
638 for (i = 0; i < nbparts; i++) {
639 slave = allocate_partition(master, parts + i, i, cur_offset);
640 if (IS_ERR(slave))
641 return PTR_ERR(slave);
642
643 mutex_lock(&mtd_partitions_mutex);
644 list_add(&slave->list, &mtd_partitions);
645 mutex_unlock(&mtd_partitions_mutex);
646
647 add_mtd_device(&slave->mtd);
648
649 cur_offset = slave->offset + slave->mtd.size;
650 }
651
652 return 0;
653 }
654
655 static DEFINE_SPINLOCK(part_parser_lock);
656 static LIST_HEAD(part_parsers);
657
658 static struct mtd_part_parser *get_partition_parser(const char *name)
659 {
660 struct mtd_part_parser *p, *ret = NULL;
661
662 spin_lock(&part_parser_lock);
663
664 list_for_each_entry(p, &part_parsers, list)
665 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
666 ret = p;
667 break;
668 }
669
670 spin_unlock(&part_parser_lock);
671
672 return ret;
673 }
674
675 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
676
677 int register_mtd_parser(struct mtd_part_parser *p)
678 {
679 spin_lock(&part_parser_lock);
680 list_add(&p->list, &part_parsers);
681 spin_unlock(&part_parser_lock);
682
683 return 0;
684 }
685 EXPORT_SYMBOL_GPL(register_mtd_parser);
686
687 int deregister_mtd_parser(struct mtd_part_parser *p)
688 {
689 spin_lock(&part_parser_lock);
690 list_del(&p->list);
691 spin_unlock(&part_parser_lock);
692 return 0;
693 }
694 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
695
696 /*
697 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
698 * are changing this array!
699 */
700 static const char *default_mtd_part_types[] = {
701 "cmdlinepart",
702 "ofpart",
703 NULL
704 };
705
706 /**
707 * parse_mtd_partitions - parse MTD partitions
708 * @master: the master partition (describes whole MTD device)
709 * @types: names of partition parsers to try or %NULL
710 * @pparts: array of partitions found is returned here
711 * @data: MTD partition parser-specific data
712 *
713 * This function tries to find partition on MTD device @master. It uses MTD
714 * partition parsers, specified in @types. However, if @types is %NULL, then
715 * the default list of parsers is used. The default list contains only the
716 * "cmdlinepart" and "ofpart" parsers ATM.
717 *
718 * This function may return:
719 * o a negative error code in case of failure
720 * o zero if no partitions were found
721 * o a positive number of found partitions, in which case on exit @pparts will
722 * point to an array containing this number of &struct mtd_info objects.
723 */
724 int parse_mtd_partitions(struct mtd_info *master, const char **types,
725 struct mtd_partition **pparts,
726 struct mtd_part_parser_data *data)
727 {
728 struct mtd_part_parser *parser;
729 int ret = 0;
730
731 if (!types)
732 types = default_mtd_part_types;
733
734 for ( ; ret <= 0 && *types; types++) {
735 parser = get_partition_parser(*types);
736 if (!parser && !request_module("%s", *types))
737 parser = get_partition_parser(*types);
738 if (!parser)
739 continue;
740 ret = (*parser->parse_fn)(master, pparts, data);
741 if (ret > 0) {
742 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
743 ret, parser->name, master->name);
744 }
745 put_partition_parser(parser);
746 }
747 return ret;
748 }
749
750 int mtd_is_partition(struct mtd_info *mtd)
751 {
752 struct mtd_part *part;
753 int ispart = 0;
754
755 mutex_lock(&mtd_partitions_mutex);
756 list_for_each_entry(part, &mtd_partitions, list)
757 if (&part->mtd == mtd) {
758 ispart = 1;
759 break;
760 }
761 mutex_unlock(&mtd_partitions_mutex);
762
763 return ispart;
764 }
765 EXPORT_SYMBOL_GPL(mtd_is_partition);