]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/mtdpart.c
KVM: arm64: vgic-v3: Log which GICv3 system registers are trapped
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46 };
47
48 /*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure.
51 */
52 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
53 {
54 return container_of(mtd, struct mtd_part, mtd);
55 }
56
57
58 /*
59 * MTD methods which simply translate the effective address and pass through
60 * to the _real_ device.
61 */
62
63 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
64 size_t *retlen, u_char *buf)
65 {
66 struct mtd_part *part = mtd_to_part(mtd);
67 struct mtd_ecc_stats stats;
68 int res;
69
70 stats = part->master->ecc_stats;
71 res = part->master->_read(part->master, from + part->offset, len,
72 retlen, buf);
73 if (unlikely(mtd_is_eccerr(res)))
74 mtd->ecc_stats.failed +=
75 part->master->ecc_stats.failed - stats.failed;
76 else
77 mtd->ecc_stats.corrected +=
78 part->master->ecc_stats.corrected - stats.corrected;
79 return res;
80 }
81
82 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
83 size_t *retlen, void **virt, resource_size_t *phys)
84 {
85 struct mtd_part *part = mtd_to_part(mtd);
86
87 return part->master->_point(part->master, from + part->offset, len,
88 retlen, virt, phys);
89 }
90
91 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
92 {
93 struct mtd_part *part = mtd_to_part(mtd);
94
95 return part->master->_unpoint(part->master, from + part->offset, len);
96 }
97
98 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
99 unsigned long len,
100 unsigned long offset,
101 unsigned long flags)
102 {
103 struct mtd_part *part = mtd_to_part(mtd);
104
105 offset += part->offset;
106 return part->master->_get_unmapped_area(part->master, len, offset,
107 flags);
108 }
109
110 static int part_read_oob(struct mtd_info *mtd, loff_t from,
111 struct mtd_oob_ops *ops)
112 {
113 struct mtd_part *part = mtd_to_part(mtd);
114 int res;
115
116 if (from >= mtd->size)
117 return -EINVAL;
118 if (ops->datbuf && from + ops->len > mtd->size)
119 return -EINVAL;
120
121 /*
122 * If OOB is also requested, make sure that we do not read past the end
123 * of this partition.
124 */
125 if (ops->oobbuf) {
126 size_t len, pages;
127
128 len = mtd_oobavail(mtd, ops);
129 pages = mtd_div_by_ws(mtd->size, mtd);
130 pages -= mtd_div_by_ws(from, mtd);
131 if (ops->ooboffs + ops->ooblen > pages * len)
132 return -EINVAL;
133 }
134
135 res = part->master->_read_oob(part->master, from + part->offset, ops);
136 if (unlikely(res)) {
137 if (mtd_is_bitflip(res))
138 mtd->ecc_stats.corrected++;
139 if (mtd_is_eccerr(res))
140 mtd->ecc_stats.failed++;
141 }
142 return res;
143 }
144
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 size_t len, size_t *retlen, u_char *buf)
147 {
148 struct mtd_part *part = mtd_to_part(mtd);
149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
151 }
152
153 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
154 size_t *retlen, struct otp_info *buf)
155 {
156 struct mtd_part *part = mtd_to_part(mtd);
157 return part->master->_get_user_prot_info(part->master, len, retlen,
158 buf);
159 }
160
161 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
162 size_t len, size_t *retlen, u_char *buf)
163 {
164 struct mtd_part *part = mtd_to_part(mtd);
165 return part->master->_read_fact_prot_reg(part->master, from, len,
166 retlen, buf);
167 }
168
169 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
170 size_t *retlen, struct otp_info *buf)
171 {
172 struct mtd_part *part = mtd_to_part(mtd);
173 return part->master->_get_fact_prot_info(part->master, len, retlen,
174 buf);
175 }
176
177 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
178 size_t *retlen, const u_char *buf)
179 {
180 struct mtd_part *part = mtd_to_part(mtd);
181 return part->master->_write(part->master, to + part->offset, len,
182 retlen, buf);
183 }
184
185 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
186 size_t *retlen, const u_char *buf)
187 {
188 struct mtd_part *part = mtd_to_part(mtd);
189 return part->master->_panic_write(part->master, to + part->offset, len,
190 retlen, buf);
191 }
192
193 static int part_write_oob(struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops)
195 {
196 struct mtd_part *part = mtd_to_part(mtd);
197
198 if (to >= mtd->size)
199 return -EINVAL;
200 if (ops->datbuf && to + ops->len > mtd->size)
201 return -EINVAL;
202 return part->master->_write_oob(part->master, to + part->offset, ops);
203 }
204
205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206 size_t len, size_t *retlen, u_char *buf)
207 {
208 struct mtd_part *part = mtd_to_part(mtd);
209 return part->master->_write_user_prot_reg(part->master, from, len,
210 retlen, buf);
211 }
212
213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
214 size_t len)
215 {
216 struct mtd_part *part = mtd_to_part(mtd);
217 return part->master->_lock_user_prot_reg(part->master, from, len);
218 }
219
220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
221 unsigned long count, loff_t to, size_t *retlen)
222 {
223 struct mtd_part *part = mtd_to_part(mtd);
224 return part->master->_writev(part->master, vecs, count,
225 to + part->offset, retlen);
226 }
227
228 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
229 {
230 struct mtd_part *part = mtd_to_part(mtd);
231 int ret;
232
233 instr->addr += part->offset;
234 ret = part->master->_erase(part->master, instr);
235 if (ret) {
236 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
237 instr->fail_addr -= part->offset;
238 instr->addr -= part->offset;
239 }
240 return ret;
241 }
242
243 void mtd_erase_callback(struct erase_info *instr)
244 {
245 if (instr->mtd->_erase == part_erase) {
246 struct mtd_part *part = mtd_to_part(instr->mtd);
247
248 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
249 instr->fail_addr -= part->offset;
250 instr->addr -= part->offset;
251 }
252 if (instr->callback)
253 instr->callback(instr);
254 }
255 EXPORT_SYMBOL_GPL(mtd_erase_callback);
256
257 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
258 {
259 struct mtd_part *part = mtd_to_part(mtd);
260 return part->master->_lock(part->master, ofs + part->offset, len);
261 }
262
263 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264 {
265 struct mtd_part *part = mtd_to_part(mtd);
266 return part->master->_unlock(part->master, ofs + part->offset, len);
267 }
268
269 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
270 {
271 struct mtd_part *part = mtd_to_part(mtd);
272 return part->master->_is_locked(part->master, ofs + part->offset, len);
273 }
274
275 static void part_sync(struct mtd_info *mtd)
276 {
277 struct mtd_part *part = mtd_to_part(mtd);
278 part->master->_sync(part->master);
279 }
280
281 static int part_suspend(struct mtd_info *mtd)
282 {
283 struct mtd_part *part = mtd_to_part(mtd);
284 return part->master->_suspend(part->master);
285 }
286
287 static void part_resume(struct mtd_info *mtd)
288 {
289 struct mtd_part *part = mtd_to_part(mtd);
290 part->master->_resume(part->master);
291 }
292
293 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
294 {
295 struct mtd_part *part = mtd_to_part(mtd);
296 ofs += part->offset;
297 return part->master->_block_isreserved(part->master, ofs);
298 }
299
300 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
301 {
302 struct mtd_part *part = mtd_to_part(mtd);
303 ofs += part->offset;
304 return part->master->_block_isbad(part->master, ofs);
305 }
306
307 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
308 {
309 struct mtd_part *part = mtd_to_part(mtd);
310 int res;
311
312 ofs += part->offset;
313 res = part->master->_block_markbad(part->master, ofs);
314 if (!res)
315 mtd->ecc_stats.badblocks++;
316 return res;
317 }
318
319 static int part_get_device(struct mtd_info *mtd)
320 {
321 struct mtd_part *part = mtd_to_part(mtd);
322 return part->master->_get_device(part->master);
323 }
324
325 static void part_put_device(struct mtd_info *mtd)
326 {
327 struct mtd_part *part = mtd_to_part(mtd);
328 part->master->_put_device(part->master);
329 }
330
331 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
332 struct mtd_oob_region *oobregion)
333 {
334 struct mtd_part *part = mtd_to_part(mtd);
335
336 return mtd_ooblayout_ecc(part->master, section, oobregion);
337 }
338
339 static int part_ooblayout_free(struct mtd_info *mtd, int section,
340 struct mtd_oob_region *oobregion)
341 {
342 struct mtd_part *part = mtd_to_part(mtd);
343
344 return mtd_ooblayout_free(part->master, section, oobregion);
345 }
346
347 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
348 .ecc = part_ooblayout_ecc,
349 .free = part_ooblayout_free,
350 };
351
352 static inline void free_partition(struct mtd_part *p)
353 {
354 kfree(p->mtd.name);
355 kfree(p);
356 }
357
358 /*
359 * This function unregisters and destroy all slave MTD objects which are
360 * attached to the given master MTD object.
361 */
362
363 int del_mtd_partitions(struct mtd_info *master)
364 {
365 struct mtd_part *slave, *next;
366 int ret, err = 0;
367
368 mutex_lock(&mtd_partitions_mutex);
369 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
370 if (slave->master == master) {
371 ret = del_mtd_device(&slave->mtd);
372 if (ret < 0) {
373 err = ret;
374 continue;
375 }
376 list_del(&slave->list);
377 free_partition(slave);
378 }
379 mutex_unlock(&mtd_partitions_mutex);
380
381 return err;
382 }
383
384 static struct mtd_part *allocate_partition(struct mtd_info *master,
385 const struct mtd_partition *part, int partno,
386 uint64_t cur_offset)
387 {
388 struct mtd_part *slave;
389 char *name;
390
391 /* allocate the partition structure */
392 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
393 name = kstrdup(part->name, GFP_KERNEL);
394 if (!name || !slave) {
395 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
396 master->name);
397 kfree(name);
398 kfree(slave);
399 return ERR_PTR(-ENOMEM);
400 }
401
402 /* set up the MTD object for this partition */
403 slave->mtd.type = master->type;
404 slave->mtd.flags = master->flags & ~part->mask_flags;
405 slave->mtd.size = part->size;
406 slave->mtd.writesize = master->writesize;
407 slave->mtd.writebufsize = master->writebufsize;
408 slave->mtd.oobsize = master->oobsize;
409 slave->mtd.oobavail = master->oobavail;
410 slave->mtd.subpage_sft = master->subpage_sft;
411 slave->mtd.pairing = master->pairing;
412
413 slave->mtd.name = name;
414 slave->mtd.owner = master->owner;
415
416 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
417 * concern for showing the same data in multiple partitions.
418 * However, it is very useful to have the master node present,
419 * so the MTD_PARTITIONED_MASTER option allows that. The master
420 * will have device nodes etc only if this is set, so make the
421 * parent conditional on that option. Note, this is a way to
422 * distinguish between the master and the partition in sysfs.
423 */
424 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
425 &master->dev :
426 master->dev.parent;
427
428 slave->mtd._read = part_read;
429 slave->mtd._write = part_write;
430
431 if (master->_panic_write)
432 slave->mtd._panic_write = part_panic_write;
433
434 if (master->_point && master->_unpoint) {
435 slave->mtd._point = part_point;
436 slave->mtd._unpoint = part_unpoint;
437 }
438
439 if (master->_get_unmapped_area)
440 slave->mtd._get_unmapped_area = part_get_unmapped_area;
441 if (master->_read_oob)
442 slave->mtd._read_oob = part_read_oob;
443 if (master->_write_oob)
444 slave->mtd._write_oob = part_write_oob;
445 if (master->_read_user_prot_reg)
446 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
447 if (master->_read_fact_prot_reg)
448 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
449 if (master->_write_user_prot_reg)
450 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
451 if (master->_lock_user_prot_reg)
452 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
453 if (master->_get_user_prot_info)
454 slave->mtd._get_user_prot_info = part_get_user_prot_info;
455 if (master->_get_fact_prot_info)
456 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
457 if (master->_sync)
458 slave->mtd._sync = part_sync;
459 if (!partno && !master->dev.class && master->_suspend &&
460 master->_resume) {
461 slave->mtd._suspend = part_suspend;
462 slave->mtd._resume = part_resume;
463 }
464 if (master->_writev)
465 slave->mtd._writev = part_writev;
466 if (master->_lock)
467 slave->mtd._lock = part_lock;
468 if (master->_unlock)
469 slave->mtd._unlock = part_unlock;
470 if (master->_is_locked)
471 slave->mtd._is_locked = part_is_locked;
472 if (master->_block_isreserved)
473 slave->mtd._block_isreserved = part_block_isreserved;
474 if (master->_block_isbad)
475 slave->mtd._block_isbad = part_block_isbad;
476 if (master->_block_markbad)
477 slave->mtd._block_markbad = part_block_markbad;
478
479 if (master->_get_device)
480 slave->mtd._get_device = part_get_device;
481 if (master->_put_device)
482 slave->mtd._put_device = part_put_device;
483
484 slave->mtd._erase = part_erase;
485 slave->master = master;
486 slave->offset = part->offset;
487
488 if (slave->offset == MTDPART_OFS_APPEND)
489 slave->offset = cur_offset;
490 if (slave->offset == MTDPART_OFS_NXTBLK) {
491 slave->offset = cur_offset;
492 if (mtd_mod_by_eb(cur_offset, master) != 0) {
493 /* Round up to next erasesize */
494 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
495 printk(KERN_NOTICE "Moving partition %d: "
496 "0x%012llx -> 0x%012llx\n", partno,
497 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
498 }
499 }
500 if (slave->offset == MTDPART_OFS_RETAIN) {
501 slave->offset = cur_offset;
502 if (master->size - slave->offset >= slave->mtd.size) {
503 slave->mtd.size = master->size - slave->offset
504 - slave->mtd.size;
505 } else {
506 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
507 part->name, master->size - slave->offset,
508 slave->mtd.size);
509 /* register to preserve ordering */
510 goto out_register;
511 }
512 }
513 if (slave->mtd.size == MTDPART_SIZ_FULL)
514 slave->mtd.size = master->size - slave->offset;
515
516 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
517 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
518
519 /* let's do some sanity checks */
520 if (slave->offset >= master->size) {
521 /* let's register it anyway to preserve ordering */
522 slave->offset = 0;
523 slave->mtd.size = 0;
524 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
525 part->name);
526 goto out_register;
527 }
528 if (slave->offset + slave->mtd.size > master->size) {
529 slave->mtd.size = master->size - slave->offset;
530 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
531 part->name, master->name, (unsigned long long)slave->mtd.size);
532 }
533 if (master->numeraseregions > 1) {
534 /* Deal with variable erase size stuff */
535 int i, max = master->numeraseregions;
536 u64 end = slave->offset + slave->mtd.size;
537 struct mtd_erase_region_info *regions = master->eraseregions;
538
539 /* Find the first erase regions which is part of this
540 * partition. */
541 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
542 ;
543 /* The loop searched for the region _behind_ the first one */
544 if (i > 0)
545 i--;
546
547 /* Pick biggest erasesize */
548 for (; i < max && regions[i].offset < end; i++) {
549 if (slave->mtd.erasesize < regions[i].erasesize) {
550 slave->mtd.erasesize = regions[i].erasesize;
551 }
552 }
553 BUG_ON(slave->mtd.erasesize == 0);
554 } else {
555 /* Single erase size */
556 slave->mtd.erasesize = master->erasesize;
557 }
558
559 if ((slave->mtd.flags & MTD_WRITEABLE) &&
560 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
561 /* Doesn't start on a boundary of major erase size */
562 /* FIXME: Let it be writable if it is on a boundary of
563 * _minor_ erase size though */
564 slave->mtd.flags &= ~MTD_WRITEABLE;
565 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
566 part->name);
567 }
568 if ((slave->mtd.flags & MTD_WRITEABLE) &&
569 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
570 slave->mtd.flags &= ~MTD_WRITEABLE;
571 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
572 part->name);
573 }
574
575 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
576 slave->mtd.ecc_step_size = master->ecc_step_size;
577 slave->mtd.ecc_strength = master->ecc_strength;
578 slave->mtd.bitflip_threshold = master->bitflip_threshold;
579
580 if (master->_block_isbad) {
581 uint64_t offs = 0;
582
583 while (offs < slave->mtd.size) {
584 if (mtd_block_isreserved(master, offs + slave->offset))
585 slave->mtd.ecc_stats.bbtblocks++;
586 else if (mtd_block_isbad(master, offs + slave->offset))
587 slave->mtd.ecc_stats.badblocks++;
588 offs += slave->mtd.erasesize;
589 }
590 }
591
592 out_register:
593 return slave;
594 }
595
596 static ssize_t mtd_partition_offset_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct mtd_info *mtd = dev_get_drvdata(dev);
600 struct mtd_part *part = mtd_to_part(mtd);
601 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
602 }
603
604 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
605
606 static const struct attribute *mtd_partition_attrs[] = {
607 &dev_attr_offset.attr,
608 NULL
609 };
610
611 static int mtd_add_partition_attrs(struct mtd_part *new)
612 {
613 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
614 if (ret)
615 printk(KERN_WARNING
616 "mtd: failed to create partition attrs, err=%d\n", ret);
617 return ret;
618 }
619
620 int mtd_add_partition(struct mtd_info *master, const char *name,
621 long long offset, long long length)
622 {
623 struct mtd_partition part;
624 struct mtd_part *new;
625 int ret = 0;
626
627 /* the direct offset is expected */
628 if (offset == MTDPART_OFS_APPEND ||
629 offset == MTDPART_OFS_NXTBLK)
630 return -EINVAL;
631
632 if (length == MTDPART_SIZ_FULL)
633 length = master->size - offset;
634
635 if (length <= 0)
636 return -EINVAL;
637
638 memset(&part, 0, sizeof(part));
639 part.name = name;
640 part.size = length;
641 part.offset = offset;
642
643 new = allocate_partition(master, &part, -1, offset);
644 if (IS_ERR(new))
645 return PTR_ERR(new);
646
647 mutex_lock(&mtd_partitions_mutex);
648 list_add(&new->list, &mtd_partitions);
649 mutex_unlock(&mtd_partitions_mutex);
650
651 add_mtd_device(&new->mtd);
652
653 mtd_add_partition_attrs(new);
654
655 return ret;
656 }
657 EXPORT_SYMBOL_GPL(mtd_add_partition);
658
659 int mtd_del_partition(struct mtd_info *master, int partno)
660 {
661 struct mtd_part *slave, *next;
662 int ret = -EINVAL;
663
664 mutex_lock(&mtd_partitions_mutex);
665 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
666 if ((slave->master == master) &&
667 (slave->mtd.index == partno)) {
668 sysfs_remove_files(&slave->mtd.dev.kobj,
669 mtd_partition_attrs);
670 ret = del_mtd_device(&slave->mtd);
671 if (ret < 0)
672 break;
673
674 list_del(&slave->list);
675 free_partition(slave);
676 break;
677 }
678 mutex_unlock(&mtd_partitions_mutex);
679
680 return ret;
681 }
682 EXPORT_SYMBOL_GPL(mtd_del_partition);
683
684 /*
685 * This function, given a master MTD object and a partition table, creates
686 * and registers slave MTD objects which are bound to the master according to
687 * the partition definitions.
688 *
689 * For historical reasons, this function's caller only registers the master
690 * if the MTD_PARTITIONED_MASTER config option is set.
691 */
692
693 int add_mtd_partitions(struct mtd_info *master,
694 const struct mtd_partition *parts,
695 int nbparts)
696 {
697 struct mtd_part *slave;
698 uint64_t cur_offset = 0;
699 int i;
700
701 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
702
703 for (i = 0; i < nbparts; i++) {
704 slave = allocate_partition(master, parts + i, i, cur_offset);
705 if (IS_ERR(slave)) {
706 del_mtd_partitions(master);
707 return PTR_ERR(slave);
708 }
709
710 mutex_lock(&mtd_partitions_mutex);
711 list_add(&slave->list, &mtd_partitions);
712 mutex_unlock(&mtd_partitions_mutex);
713
714 add_mtd_device(&slave->mtd);
715 mtd_add_partition_attrs(slave);
716
717 cur_offset = slave->offset + slave->mtd.size;
718 }
719
720 return 0;
721 }
722
723 static DEFINE_SPINLOCK(part_parser_lock);
724 static LIST_HEAD(part_parsers);
725
726 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
727 {
728 struct mtd_part_parser *p, *ret = NULL;
729
730 spin_lock(&part_parser_lock);
731
732 list_for_each_entry(p, &part_parsers, list)
733 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
734 ret = p;
735 break;
736 }
737
738 spin_unlock(&part_parser_lock);
739
740 return ret;
741 }
742
743 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
744 {
745 module_put(p->owner);
746 }
747
748 /*
749 * Many partition parsers just expected the core to kfree() all their data in
750 * one chunk. Do that by default.
751 */
752 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
753 int nr_parts)
754 {
755 kfree(pparts);
756 }
757
758 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
759 {
760 p->owner = owner;
761
762 if (!p->cleanup)
763 p->cleanup = &mtd_part_parser_cleanup_default;
764
765 spin_lock(&part_parser_lock);
766 list_add(&p->list, &part_parsers);
767 spin_unlock(&part_parser_lock);
768
769 return 0;
770 }
771 EXPORT_SYMBOL_GPL(__register_mtd_parser);
772
773 void deregister_mtd_parser(struct mtd_part_parser *p)
774 {
775 spin_lock(&part_parser_lock);
776 list_del(&p->list);
777 spin_unlock(&part_parser_lock);
778 }
779 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
780
781 /*
782 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
783 * are changing this array!
784 */
785 static const char * const default_mtd_part_types[] = {
786 "cmdlinepart",
787 "ofpart",
788 NULL
789 };
790
791 /**
792 * parse_mtd_partitions - parse MTD partitions
793 * @master: the master partition (describes whole MTD device)
794 * @types: names of partition parsers to try or %NULL
795 * @pparts: info about partitions found is returned here
796 * @data: MTD partition parser-specific data
797 *
798 * This function tries to find partition on MTD device @master. It uses MTD
799 * partition parsers, specified in @types. However, if @types is %NULL, then
800 * the default list of parsers is used. The default list contains only the
801 * "cmdlinepart" and "ofpart" parsers ATM.
802 * Note: If there are more then one parser in @types, the kernel only takes the
803 * partitions parsed out by the first parser.
804 *
805 * This function may return:
806 * o a negative error code in case of failure
807 * o zero otherwise, and @pparts will describe the partitions, number of
808 * partitions, and the parser which parsed them. Caller must release
809 * resources with mtd_part_parser_cleanup() when finished with the returned
810 * data.
811 */
812 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
813 struct mtd_partitions *pparts,
814 struct mtd_part_parser_data *data)
815 {
816 struct mtd_part_parser *parser;
817 int ret, err = 0;
818
819 if (!types)
820 types = default_mtd_part_types;
821
822 for ( ; *types; types++) {
823 pr_debug("%s: parsing partitions %s\n", master->name, *types);
824 parser = mtd_part_parser_get(*types);
825 if (!parser && !request_module("%s", *types))
826 parser = mtd_part_parser_get(*types);
827 pr_debug("%s: got parser %s\n", master->name,
828 parser ? parser->name : NULL);
829 if (!parser)
830 continue;
831 ret = (*parser->parse_fn)(master, &pparts->parts, data);
832 pr_debug("%s: parser %s: %i\n",
833 master->name, parser->name, ret);
834 if (ret > 0) {
835 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
836 ret, parser->name, master->name);
837 pparts->nr_parts = ret;
838 pparts->parser = parser;
839 return 0;
840 }
841 mtd_part_parser_put(parser);
842 /*
843 * Stash the first error we see; only report it if no parser
844 * succeeds
845 */
846 if (ret < 0 && !err)
847 err = ret;
848 }
849 return err;
850 }
851
852 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
853 {
854 const struct mtd_part_parser *parser;
855
856 if (!parts)
857 return;
858
859 parser = parts->parser;
860 if (parser) {
861 if (parser->cleanup)
862 parser->cleanup(parts->parts, parts->nr_parts);
863
864 mtd_part_parser_put(parser);
865 }
866 }
867
868 int mtd_is_partition(const struct mtd_info *mtd)
869 {
870 struct mtd_part *part;
871 int ispart = 0;
872
873 mutex_lock(&mtd_partitions_mutex);
874 list_for_each_entry(part, &mtd_partitions, list)
875 if (&part->mtd == mtd) {
876 ispart = 1;
877 break;
878 }
879 mutex_unlock(&mtd_partitions_mutex);
880
881 return ispart;
882 }
883 EXPORT_SYMBOL_GPL(mtd_is_partition);
884
885 /* Returns the size of the entire flash chip */
886 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
887 {
888 if (!mtd_is_partition(mtd))
889 return mtd->size;
890
891 return mtd_to_part(mtd)->master->size;
892 }
893 EXPORT_SYMBOL_GPL(mtd_get_device_size);