]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/mtdpart.c
mtd: introduce the mtd_pairing_scheme concept
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/kconfig.h>
34
35 #include "mtdcore.h"
36
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40
41 /* Our partition node structure */
42 struct mtd_part {
43 struct mtd_info mtd;
44 struct mtd_info *master;
45 uint64_t offset;
46 struct list_head list;
47 };
48
49 /*
50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51 * the pointer to that structure.
52 */
53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
54 {
55 return container_of(mtd, struct mtd_part, mtd);
56 }
57
58
59 /*
60 * MTD methods which simply translate the effective address and pass through
61 * to the _real_ device.
62 */
63
64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
65 size_t *retlen, u_char *buf)
66 {
67 struct mtd_part *part = mtd_to_part(mtd);
68 struct mtd_ecc_stats stats;
69 int res;
70
71 stats = part->master->ecc_stats;
72 res = part->master->_read(part->master, from + part->offset, len,
73 retlen, buf);
74 if (unlikely(mtd_is_eccerr(res)))
75 mtd->ecc_stats.failed +=
76 part->master->ecc_stats.failed - stats.failed;
77 else
78 mtd->ecc_stats.corrected +=
79 part->master->ecc_stats.corrected - stats.corrected;
80 return res;
81 }
82
83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 size_t *retlen, void **virt, resource_size_t *phys)
85 {
86 struct mtd_part *part = mtd_to_part(mtd);
87
88 return part->master->_point(part->master, from + part->offset, len,
89 retlen, virt, phys);
90 }
91
92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 {
94 struct mtd_part *part = mtd_to_part(mtd);
95
96 return part->master->_unpoint(part->master, from + part->offset, len);
97 }
98
99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
100 unsigned long len,
101 unsigned long offset,
102 unsigned long flags)
103 {
104 struct mtd_part *part = mtd_to_part(mtd);
105
106 offset += part->offset;
107 return part->master->_get_unmapped_area(part->master, len, offset,
108 flags);
109 }
110
111 static int part_read_oob(struct mtd_info *mtd, loff_t from,
112 struct mtd_oob_ops *ops)
113 {
114 struct mtd_part *part = mtd_to_part(mtd);
115 int res;
116
117 if (from >= mtd->size)
118 return -EINVAL;
119 if (ops->datbuf && from + ops->len > mtd->size)
120 return -EINVAL;
121
122 /*
123 * If OOB is also requested, make sure that we do not read past the end
124 * of this partition.
125 */
126 if (ops->oobbuf) {
127 size_t len, pages;
128
129 len = mtd_oobavail(mtd, ops);
130 pages = mtd_div_by_ws(mtd->size, mtd);
131 pages -= mtd_div_by_ws(from, mtd);
132 if (ops->ooboffs + ops->ooblen > pages * len)
133 return -EINVAL;
134 }
135
136 res = part->master->_read_oob(part->master, from + part->offset, ops);
137 if (unlikely(res)) {
138 if (mtd_is_bitflip(res))
139 mtd->ecc_stats.corrected++;
140 if (mtd_is_eccerr(res))
141 mtd->ecc_stats.failed++;
142 }
143 return res;
144 }
145
146 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
147 size_t len, size_t *retlen, u_char *buf)
148 {
149 struct mtd_part *part = mtd_to_part(mtd);
150 return part->master->_read_user_prot_reg(part->master, from, len,
151 retlen, buf);
152 }
153
154 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
155 size_t *retlen, struct otp_info *buf)
156 {
157 struct mtd_part *part = mtd_to_part(mtd);
158 return part->master->_get_user_prot_info(part->master, len, retlen,
159 buf);
160 }
161
162 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
163 size_t len, size_t *retlen, u_char *buf)
164 {
165 struct mtd_part *part = mtd_to_part(mtd);
166 return part->master->_read_fact_prot_reg(part->master, from, len,
167 retlen, buf);
168 }
169
170 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
171 size_t *retlen, struct otp_info *buf)
172 {
173 struct mtd_part *part = mtd_to_part(mtd);
174 return part->master->_get_fact_prot_info(part->master, len, retlen,
175 buf);
176 }
177
178 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
179 size_t *retlen, const u_char *buf)
180 {
181 struct mtd_part *part = mtd_to_part(mtd);
182 return part->master->_write(part->master, to + part->offset, len,
183 retlen, buf);
184 }
185
186 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
187 size_t *retlen, const u_char *buf)
188 {
189 struct mtd_part *part = mtd_to_part(mtd);
190 return part->master->_panic_write(part->master, to + part->offset, len,
191 retlen, buf);
192 }
193
194 static int part_write_oob(struct mtd_info *mtd, loff_t to,
195 struct mtd_oob_ops *ops)
196 {
197 struct mtd_part *part = mtd_to_part(mtd);
198
199 if (to >= mtd->size)
200 return -EINVAL;
201 if (ops->datbuf && to + ops->len > mtd->size)
202 return -EINVAL;
203 return part->master->_write_oob(part->master, to + part->offset, ops);
204 }
205
206 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
207 size_t len, size_t *retlen, u_char *buf)
208 {
209 struct mtd_part *part = mtd_to_part(mtd);
210 return part->master->_write_user_prot_reg(part->master, from, len,
211 retlen, buf);
212 }
213
214 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
215 size_t len)
216 {
217 struct mtd_part *part = mtd_to_part(mtd);
218 return part->master->_lock_user_prot_reg(part->master, from, len);
219 }
220
221 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
222 unsigned long count, loff_t to, size_t *retlen)
223 {
224 struct mtd_part *part = mtd_to_part(mtd);
225 return part->master->_writev(part->master, vecs, count,
226 to + part->offset, retlen);
227 }
228
229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
230 {
231 struct mtd_part *part = mtd_to_part(mtd);
232 int ret;
233
234 instr->addr += part->offset;
235 ret = part->master->_erase(part->master, instr);
236 if (ret) {
237 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
238 instr->fail_addr -= part->offset;
239 instr->addr -= part->offset;
240 }
241 return ret;
242 }
243
244 void mtd_erase_callback(struct erase_info *instr)
245 {
246 if (instr->mtd->_erase == part_erase) {
247 struct mtd_part *part = mtd_to_part(instr->mtd);
248
249 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
250 instr->fail_addr -= part->offset;
251 instr->addr -= part->offset;
252 }
253 if (instr->callback)
254 instr->callback(instr);
255 }
256 EXPORT_SYMBOL_GPL(mtd_erase_callback);
257
258 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
259 {
260 struct mtd_part *part = mtd_to_part(mtd);
261 return part->master->_lock(part->master, ofs + part->offset, len);
262 }
263
264 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
265 {
266 struct mtd_part *part = mtd_to_part(mtd);
267 return part->master->_unlock(part->master, ofs + part->offset, len);
268 }
269
270 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
271 {
272 struct mtd_part *part = mtd_to_part(mtd);
273 return part->master->_is_locked(part->master, ofs + part->offset, len);
274 }
275
276 static void part_sync(struct mtd_info *mtd)
277 {
278 struct mtd_part *part = mtd_to_part(mtd);
279 part->master->_sync(part->master);
280 }
281
282 static int part_suspend(struct mtd_info *mtd)
283 {
284 struct mtd_part *part = mtd_to_part(mtd);
285 return part->master->_suspend(part->master);
286 }
287
288 static void part_resume(struct mtd_info *mtd)
289 {
290 struct mtd_part *part = mtd_to_part(mtd);
291 part->master->_resume(part->master);
292 }
293
294 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
295 {
296 struct mtd_part *part = mtd_to_part(mtd);
297 ofs += part->offset;
298 return part->master->_block_isreserved(part->master, ofs);
299 }
300
301 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
302 {
303 struct mtd_part *part = mtd_to_part(mtd);
304 ofs += part->offset;
305 return part->master->_block_isbad(part->master, ofs);
306 }
307
308 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
309 {
310 struct mtd_part *part = mtd_to_part(mtd);
311 int res;
312
313 ofs += part->offset;
314 res = part->master->_block_markbad(part->master, ofs);
315 if (!res)
316 mtd->ecc_stats.badblocks++;
317 return res;
318 }
319
320 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
321 struct mtd_oob_region *oobregion)
322 {
323 struct mtd_part *part = mtd_to_part(mtd);
324
325 return mtd_ooblayout_ecc(part->master, section, oobregion);
326 }
327
328 static int part_ooblayout_free(struct mtd_info *mtd, int section,
329 struct mtd_oob_region *oobregion)
330 {
331 struct mtd_part *part = mtd_to_part(mtd);
332
333 return mtd_ooblayout_free(part->master, section, oobregion);
334 }
335
336 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
337 .ecc = part_ooblayout_ecc,
338 .free = part_ooblayout_free,
339 };
340
341 static inline void free_partition(struct mtd_part *p)
342 {
343 kfree(p->mtd.name);
344 kfree(p);
345 }
346
347 /*
348 * This function unregisters and destroy all slave MTD objects which are
349 * attached to the given master MTD object.
350 */
351
352 int del_mtd_partitions(struct mtd_info *master)
353 {
354 struct mtd_part *slave, *next;
355 int ret, err = 0;
356
357 mutex_lock(&mtd_partitions_mutex);
358 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
359 if (slave->master == master) {
360 ret = del_mtd_device(&slave->mtd);
361 if (ret < 0) {
362 err = ret;
363 continue;
364 }
365 list_del(&slave->list);
366 free_partition(slave);
367 }
368 mutex_unlock(&mtd_partitions_mutex);
369
370 return err;
371 }
372
373 static struct mtd_part *allocate_partition(struct mtd_info *master,
374 const struct mtd_partition *part, int partno,
375 uint64_t cur_offset)
376 {
377 struct mtd_part *slave;
378 char *name;
379
380 /* allocate the partition structure */
381 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
382 name = kstrdup(part->name, GFP_KERNEL);
383 if (!name || !slave) {
384 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
385 master->name);
386 kfree(name);
387 kfree(slave);
388 return ERR_PTR(-ENOMEM);
389 }
390
391 /* set up the MTD object for this partition */
392 slave->mtd.type = master->type;
393 slave->mtd.flags = master->flags & ~part->mask_flags;
394 slave->mtd.size = part->size;
395 slave->mtd.writesize = master->writesize;
396 slave->mtd.writebufsize = master->writebufsize;
397 slave->mtd.oobsize = master->oobsize;
398 slave->mtd.oobavail = master->oobavail;
399 slave->mtd.subpage_sft = master->subpage_sft;
400 slave->mtd.pairing = master->pairing;
401
402 slave->mtd.name = name;
403 slave->mtd.owner = master->owner;
404
405 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
406 * concern for showing the same data in multiple partitions.
407 * However, it is very useful to have the master node present,
408 * so the MTD_PARTITIONED_MASTER option allows that. The master
409 * will have device nodes etc only if this is set, so make the
410 * parent conditional on that option. Note, this is a way to
411 * distinguish between the master and the partition in sysfs.
412 */
413 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
414 &master->dev :
415 master->dev.parent;
416
417 slave->mtd._read = part_read;
418 slave->mtd._write = part_write;
419
420 if (master->_panic_write)
421 slave->mtd._panic_write = part_panic_write;
422
423 if (master->_point && master->_unpoint) {
424 slave->mtd._point = part_point;
425 slave->mtd._unpoint = part_unpoint;
426 }
427
428 if (master->_get_unmapped_area)
429 slave->mtd._get_unmapped_area = part_get_unmapped_area;
430 if (master->_read_oob)
431 slave->mtd._read_oob = part_read_oob;
432 if (master->_write_oob)
433 slave->mtd._write_oob = part_write_oob;
434 if (master->_read_user_prot_reg)
435 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
436 if (master->_read_fact_prot_reg)
437 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
438 if (master->_write_user_prot_reg)
439 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
440 if (master->_lock_user_prot_reg)
441 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
442 if (master->_get_user_prot_info)
443 slave->mtd._get_user_prot_info = part_get_user_prot_info;
444 if (master->_get_fact_prot_info)
445 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
446 if (master->_sync)
447 slave->mtd._sync = part_sync;
448 if (!partno && !master->dev.class && master->_suspend &&
449 master->_resume) {
450 slave->mtd._suspend = part_suspend;
451 slave->mtd._resume = part_resume;
452 }
453 if (master->_writev)
454 slave->mtd._writev = part_writev;
455 if (master->_lock)
456 slave->mtd._lock = part_lock;
457 if (master->_unlock)
458 slave->mtd._unlock = part_unlock;
459 if (master->_is_locked)
460 slave->mtd._is_locked = part_is_locked;
461 if (master->_block_isreserved)
462 slave->mtd._block_isreserved = part_block_isreserved;
463 if (master->_block_isbad)
464 slave->mtd._block_isbad = part_block_isbad;
465 if (master->_block_markbad)
466 slave->mtd._block_markbad = part_block_markbad;
467 slave->mtd._erase = part_erase;
468 slave->master = master;
469 slave->offset = part->offset;
470
471 if (slave->offset == MTDPART_OFS_APPEND)
472 slave->offset = cur_offset;
473 if (slave->offset == MTDPART_OFS_NXTBLK) {
474 slave->offset = cur_offset;
475 if (mtd_mod_by_eb(cur_offset, master) != 0) {
476 /* Round up to next erasesize */
477 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
478 printk(KERN_NOTICE "Moving partition %d: "
479 "0x%012llx -> 0x%012llx\n", partno,
480 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
481 }
482 }
483 if (slave->offset == MTDPART_OFS_RETAIN) {
484 slave->offset = cur_offset;
485 if (master->size - slave->offset >= slave->mtd.size) {
486 slave->mtd.size = master->size - slave->offset
487 - slave->mtd.size;
488 } else {
489 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
490 part->name, master->size - slave->offset,
491 slave->mtd.size);
492 /* register to preserve ordering */
493 goto out_register;
494 }
495 }
496 if (slave->mtd.size == MTDPART_SIZ_FULL)
497 slave->mtd.size = master->size - slave->offset;
498
499 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
500 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
501
502 /* let's do some sanity checks */
503 if (slave->offset >= master->size) {
504 /* let's register it anyway to preserve ordering */
505 slave->offset = 0;
506 slave->mtd.size = 0;
507 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
508 part->name);
509 goto out_register;
510 }
511 if (slave->offset + slave->mtd.size > master->size) {
512 slave->mtd.size = master->size - slave->offset;
513 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
514 part->name, master->name, (unsigned long long)slave->mtd.size);
515 }
516 if (master->numeraseregions > 1) {
517 /* Deal with variable erase size stuff */
518 int i, max = master->numeraseregions;
519 u64 end = slave->offset + slave->mtd.size;
520 struct mtd_erase_region_info *regions = master->eraseregions;
521
522 /* Find the first erase regions which is part of this
523 * partition. */
524 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
525 ;
526 /* The loop searched for the region _behind_ the first one */
527 if (i > 0)
528 i--;
529
530 /* Pick biggest erasesize */
531 for (; i < max && regions[i].offset < end; i++) {
532 if (slave->mtd.erasesize < regions[i].erasesize) {
533 slave->mtd.erasesize = regions[i].erasesize;
534 }
535 }
536 BUG_ON(slave->mtd.erasesize == 0);
537 } else {
538 /* Single erase size */
539 slave->mtd.erasesize = master->erasesize;
540 }
541
542 if ((slave->mtd.flags & MTD_WRITEABLE) &&
543 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
544 /* Doesn't start on a boundary of major erase size */
545 /* FIXME: Let it be writable if it is on a boundary of
546 * _minor_ erase size though */
547 slave->mtd.flags &= ~MTD_WRITEABLE;
548 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
549 part->name);
550 }
551 if ((slave->mtd.flags & MTD_WRITEABLE) &&
552 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
553 slave->mtd.flags &= ~MTD_WRITEABLE;
554 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
555 part->name);
556 }
557
558 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
559 slave->mtd.ecc_step_size = master->ecc_step_size;
560 slave->mtd.ecc_strength = master->ecc_strength;
561 slave->mtd.bitflip_threshold = master->bitflip_threshold;
562
563 if (master->_block_isbad) {
564 uint64_t offs = 0;
565
566 while (offs < slave->mtd.size) {
567 if (mtd_block_isreserved(master, offs + slave->offset))
568 slave->mtd.ecc_stats.bbtblocks++;
569 else if (mtd_block_isbad(master, offs + slave->offset))
570 slave->mtd.ecc_stats.badblocks++;
571 offs += slave->mtd.erasesize;
572 }
573 }
574
575 out_register:
576 return slave;
577 }
578
579 static ssize_t mtd_partition_offset_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581 {
582 struct mtd_info *mtd = dev_get_drvdata(dev);
583 struct mtd_part *part = mtd_to_part(mtd);
584 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
585 }
586
587 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
588
589 static const struct attribute *mtd_partition_attrs[] = {
590 &dev_attr_offset.attr,
591 NULL
592 };
593
594 static int mtd_add_partition_attrs(struct mtd_part *new)
595 {
596 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
597 if (ret)
598 printk(KERN_WARNING
599 "mtd: failed to create partition attrs, err=%d\n", ret);
600 return ret;
601 }
602
603 int mtd_add_partition(struct mtd_info *master, const char *name,
604 long long offset, long long length)
605 {
606 struct mtd_partition part;
607 struct mtd_part *new;
608 int ret = 0;
609
610 /* the direct offset is expected */
611 if (offset == MTDPART_OFS_APPEND ||
612 offset == MTDPART_OFS_NXTBLK)
613 return -EINVAL;
614
615 if (length == MTDPART_SIZ_FULL)
616 length = master->size - offset;
617
618 if (length <= 0)
619 return -EINVAL;
620
621 memset(&part, 0, sizeof(part));
622 part.name = name;
623 part.size = length;
624 part.offset = offset;
625
626 new = allocate_partition(master, &part, -1, offset);
627 if (IS_ERR(new))
628 return PTR_ERR(new);
629
630 mutex_lock(&mtd_partitions_mutex);
631 list_add(&new->list, &mtd_partitions);
632 mutex_unlock(&mtd_partitions_mutex);
633
634 add_mtd_device(&new->mtd);
635
636 mtd_add_partition_attrs(new);
637
638 return ret;
639 }
640 EXPORT_SYMBOL_GPL(mtd_add_partition);
641
642 int mtd_del_partition(struct mtd_info *master, int partno)
643 {
644 struct mtd_part *slave, *next;
645 int ret = -EINVAL;
646
647 mutex_lock(&mtd_partitions_mutex);
648 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
649 if ((slave->master == master) &&
650 (slave->mtd.index == partno)) {
651 sysfs_remove_files(&slave->mtd.dev.kobj,
652 mtd_partition_attrs);
653 ret = del_mtd_device(&slave->mtd);
654 if (ret < 0)
655 break;
656
657 list_del(&slave->list);
658 free_partition(slave);
659 break;
660 }
661 mutex_unlock(&mtd_partitions_mutex);
662
663 return ret;
664 }
665 EXPORT_SYMBOL_GPL(mtd_del_partition);
666
667 /*
668 * This function, given a master MTD object and a partition table, creates
669 * and registers slave MTD objects which are bound to the master according to
670 * the partition definitions.
671 *
672 * For historical reasons, this function's caller only registers the master
673 * if the MTD_PARTITIONED_MASTER config option is set.
674 */
675
676 int add_mtd_partitions(struct mtd_info *master,
677 const struct mtd_partition *parts,
678 int nbparts)
679 {
680 struct mtd_part *slave;
681 uint64_t cur_offset = 0;
682 int i;
683
684 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
685
686 for (i = 0; i < nbparts; i++) {
687 slave = allocate_partition(master, parts + i, i, cur_offset);
688 if (IS_ERR(slave)) {
689 del_mtd_partitions(master);
690 return PTR_ERR(slave);
691 }
692
693 mutex_lock(&mtd_partitions_mutex);
694 list_add(&slave->list, &mtd_partitions);
695 mutex_unlock(&mtd_partitions_mutex);
696
697 add_mtd_device(&slave->mtd);
698 mtd_add_partition_attrs(slave);
699
700 cur_offset = slave->offset + slave->mtd.size;
701 }
702
703 return 0;
704 }
705
706 static DEFINE_SPINLOCK(part_parser_lock);
707 static LIST_HEAD(part_parsers);
708
709 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
710 {
711 struct mtd_part_parser *p, *ret = NULL;
712
713 spin_lock(&part_parser_lock);
714
715 list_for_each_entry(p, &part_parsers, list)
716 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
717 ret = p;
718 break;
719 }
720
721 spin_unlock(&part_parser_lock);
722
723 return ret;
724 }
725
726 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
727 {
728 module_put(p->owner);
729 }
730
731 /*
732 * Many partition parsers just expected the core to kfree() all their data in
733 * one chunk. Do that by default.
734 */
735 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
736 int nr_parts)
737 {
738 kfree(pparts);
739 }
740
741 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
742 {
743 p->owner = owner;
744
745 if (!p->cleanup)
746 p->cleanup = &mtd_part_parser_cleanup_default;
747
748 spin_lock(&part_parser_lock);
749 list_add(&p->list, &part_parsers);
750 spin_unlock(&part_parser_lock);
751
752 return 0;
753 }
754 EXPORT_SYMBOL_GPL(__register_mtd_parser);
755
756 void deregister_mtd_parser(struct mtd_part_parser *p)
757 {
758 spin_lock(&part_parser_lock);
759 list_del(&p->list);
760 spin_unlock(&part_parser_lock);
761 }
762 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
763
764 /*
765 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
766 * are changing this array!
767 */
768 static const char * const default_mtd_part_types[] = {
769 "cmdlinepart",
770 "ofpart",
771 NULL
772 };
773
774 /**
775 * parse_mtd_partitions - parse MTD partitions
776 * @master: the master partition (describes whole MTD device)
777 * @types: names of partition parsers to try or %NULL
778 * @pparts: info about partitions found is returned here
779 * @data: MTD partition parser-specific data
780 *
781 * This function tries to find partition on MTD device @master. It uses MTD
782 * partition parsers, specified in @types. However, if @types is %NULL, then
783 * the default list of parsers is used. The default list contains only the
784 * "cmdlinepart" and "ofpart" parsers ATM.
785 * Note: If there are more then one parser in @types, the kernel only takes the
786 * partitions parsed out by the first parser.
787 *
788 * This function may return:
789 * o a negative error code in case of failure
790 * o zero otherwise, and @pparts will describe the partitions, number of
791 * partitions, and the parser which parsed them. Caller must release
792 * resources with mtd_part_parser_cleanup() when finished with the returned
793 * data.
794 */
795 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
796 struct mtd_partitions *pparts,
797 struct mtd_part_parser_data *data)
798 {
799 struct mtd_part_parser *parser;
800 int ret, err = 0;
801
802 if (!types)
803 types = default_mtd_part_types;
804
805 for ( ; *types; types++) {
806 pr_debug("%s: parsing partitions %s\n", master->name, *types);
807 parser = mtd_part_parser_get(*types);
808 if (!parser && !request_module("%s", *types))
809 parser = mtd_part_parser_get(*types);
810 pr_debug("%s: got parser %s\n", master->name,
811 parser ? parser->name : NULL);
812 if (!parser)
813 continue;
814 ret = (*parser->parse_fn)(master, &pparts->parts, data);
815 pr_debug("%s: parser %s: %i\n",
816 master->name, parser->name, ret);
817 if (ret > 0) {
818 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
819 ret, parser->name, master->name);
820 pparts->nr_parts = ret;
821 pparts->parser = parser;
822 return 0;
823 }
824 mtd_part_parser_put(parser);
825 /*
826 * Stash the first error we see; only report it if no parser
827 * succeeds
828 */
829 if (ret < 0 && !err)
830 err = ret;
831 }
832 return err;
833 }
834
835 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
836 {
837 const struct mtd_part_parser *parser;
838
839 if (!parts)
840 return;
841
842 parser = parts->parser;
843 if (parser) {
844 if (parser->cleanup)
845 parser->cleanup(parts->parts, parts->nr_parts);
846
847 mtd_part_parser_put(parser);
848 }
849 }
850
851 int mtd_is_partition(const struct mtd_info *mtd)
852 {
853 struct mtd_part *part;
854 int ispart = 0;
855
856 mutex_lock(&mtd_partitions_mutex);
857 list_for_each_entry(part, &mtd_partitions, list)
858 if (&part->mtd == mtd) {
859 ispart = 1;
860 break;
861 }
862 mutex_unlock(&mtd_partitions_mutex);
863
864 return ispart;
865 }
866 EXPORT_SYMBOL_GPL(mtd_is_partition);
867
868 /* Returns the size of the entire flash chip */
869 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
870 {
871 if (!mtd_is_partition(mtd))
872 return mtd->size;
873
874 return mtd_to_part(mtd)->master->size;
875 }
876 EXPORT_SYMBOL_GPL(mtd_get_device_size);