]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/atmel/nand-controller.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / atmel / nand-controller.c
1 /*
2 * Copyright 2017 ATMEL
3 * Copyright 2017 Free Electrons
4 *
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6 *
7 * Derived from the atmel_nand.c driver which contained the following
8 * copyrights:
9 *
10 * Copyright 2003 Rick Bronson
11 *
12 * Derived from drivers/mtd/nand/autcpu12.c
13 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
14 *
15 * Derived from drivers/mtd/spia.c
16 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
17 *
18 *
19 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21 *
22 * Derived from Das U-Boot source code
23 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25 *
26 * Add Programmable Multibit ECC support for various AT91 SoC
27 * Copyright 2012 ATMEL, Hong Xu
28 *
29 * Add Nand Flash Controller support for SAMA5 SoC
30 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31 *
32 * This program is free software; you can redistribute it and/or modify
33 * it under the terms of the GNU General Public License version 2 as
34 * published by the Free Software Foundation.
35 *
36 * A few words about the naming convention in this file. This convention
37 * applies to structure and function names.
38 *
39 * Prefixes:
40 *
41 * - atmel_nand_: all generic structures/functions
42 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43 * (at91sam9 and avr32 SoCs)
44 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45 * (sama5 SoCs and later)
46 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47 * that is available in the HSMC block
48 * - <soc>_nand_: all SoC specific structures/functions
49 */
50
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio.h>
56 #include <linux/gpio/consumer.h>
57 #include <linux/interrupt.h>
58 #include <linux/mfd/syscon.h>
59 #include <linux/mfd/syscon/atmel-matrix.h>
60 #include <linux/mfd/syscon/atmel-smc.h>
61 #include <linux/module.h>
62 #include <linux/mtd/nand.h>
63 #include <linux/of_address.h>
64 #include <linux/of_irq.h>
65 #include <linux/of_platform.h>
66 #include <linux/iopoll.h>
67 #include <linux/platform_device.h>
68 #include <linux/regmap.h>
69
70 #include "pmecc.h"
71
72 #define ATMEL_HSMC_NFC_CFG 0x0
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
74 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
75 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
76 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
77 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
78 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
79 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
80 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
82 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
83
84 #define ATMEL_HSMC_NFC_CTRL 0x4
85 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
86 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
87
88 #define ATMEL_HSMC_NFC_SR 0x8
89 #define ATMEL_HSMC_NFC_IER 0xc
90 #define ATMEL_HSMC_NFC_IDR 0x10
91 #define ATMEL_HSMC_NFC_IMR 0x14
92 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
93 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
94 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
95 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
96 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
97 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
98 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
99 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
100 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
101 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
102 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
103 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
104 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
105 ATMEL_HSMC_NFC_SR_UNDEF | \
106 ATMEL_HSMC_NFC_SR_AWB | \
107 ATMEL_HSMC_NFC_SR_NFCASE)
108 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
109
110 #define ATMEL_HSMC_NFC_ADDR 0x18
111 #define ATMEL_HSMC_NFC_BANK 0x1c
112
113 #define ATMEL_NFC_MAX_RB_ID 7
114
115 #define ATMEL_NFC_SRAM_SIZE 0x2400
116
117 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
118 #define ATMEL_NFC_VCMD2 BIT(18)
119 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
120 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
121 #define ATMEL_NFC_DATAEN BIT(25)
122 #define ATMEL_NFC_NFCWR BIT(26)
123
124 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
125
126 #define ATMEL_NAND_ALE_OFFSET BIT(21)
127 #define ATMEL_NAND_CLE_OFFSET BIT(22)
128
129 #define DEFAULT_TIMEOUT_MS 1000
130 #define MIN_DMA_LEN 128
131
132 enum atmel_nand_rb_type {
133 ATMEL_NAND_NO_RB,
134 ATMEL_NAND_NATIVE_RB,
135 ATMEL_NAND_GPIO_RB,
136 };
137
138 struct atmel_nand_rb {
139 enum atmel_nand_rb_type type;
140 union {
141 struct gpio_desc *gpio;
142 int id;
143 };
144 };
145
146 struct atmel_nand_cs {
147 int id;
148 struct atmel_nand_rb rb;
149 struct gpio_desc *csgpio;
150 struct {
151 void __iomem *virt;
152 dma_addr_t dma;
153 } io;
154
155 struct atmel_smc_cs_conf smcconf;
156 };
157
158 struct atmel_nand {
159 struct list_head node;
160 struct device *dev;
161 struct nand_chip base;
162 struct atmel_nand_cs *activecs;
163 struct atmel_pmecc_user *pmecc;
164 struct gpio_desc *cdgpio;
165 int numcs;
166 struct atmel_nand_cs cs[];
167 };
168
169 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
170 {
171 return container_of(chip, struct atmel_nand, base);
172 }
173
174 enum atmel_nfc_data_xfer {
175 ATMEL_NFC_NO_DATA,
176 ATMEL_NFC_READ_DATA,
177 ATMEL_NFC_WRITE_DATA,
178 };
179
180 struct atmel_nfc_op {
181 u8 cs;
182 u8 ncmds;
183 u8 cmds[2];
184 u8 naddrs;
185 u8 addrs[5];
186 enum atmel_nfc_data_xfer data;
187 u32 wait;
188 u32 errors;
189 };
190
191 struct atmel_nand_controller;
192 struct atmel_nand_controller_caps;
193
194 struct atmel_nand_controller_ops {
195 int (*probe)(struct platform_device *pdev,
196 const struct atmel_nand_controller_caps *caps);
197 int (*remove)(struct atmel_nand_controller *nc);
198 void (*nand_init)(struct atmel_nand_controller *nc,
199 struct atmel_nand *nand);
200 int (*ecc_init)(struct atmel_nand *nand);
201 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
202 const struct nand_data_interface *conf);
203 };
204
205 struct atmel_nand_controller_caps {
206 bool has_dma;
207 bool legacy_of_bindings;
208 u32 ale_offs;
209 u32 cle_offs;
210 const struct atmel_nand_controller_ops *ops;
211 };
212
213 struct atmel_nand_controller {
214 struct nand_hw_control base;
215 const struct atmel_nand_controller_caps *caps;
216 struct device *dev;
217 struct regmap *smc;
218 struct dma_chan *dmac;
219 struct atmel_pmecc *pmecc;
220 struct list_head chips;
221 struct clk *mck;
222 };
223
224 static inline struct atmel_nand_controller *
225 to_nand_controller(struct nand_hw_control *ctl)
226 {
227 return container_of(ctl, struct atmel_nand_controller, base);
228 }
229
230 struct atmel_smc_nand_controller {
231 struct atmel_nand_controller base;
232 struct regmap *matrix;
233 unsigned int ebi_csa_offs;
234 };
235
236 static inline struct atmel_smc_nand_controller *
237 to_smc_nand_controller(struct nand_hw_control *ctl)
238 {
239 return container_of(to_nand_controller(ctl),
240 struct atmel_smc_nand_controller, base);
241 }
242
243 struct atmel_hsmc_nand_controller {
244 struct atmel_nand_controller base;
245 struct {
246 struct gen_pool *pool;
247 void __iomem *virt;
248 dma_addr_t dma;
249 } sram;
250 struct regmap *io;
251 struct atmel_nfc_op op;
252 struct completion complete;
253 int irq;
254
255 /* Only used when instantiating from legacy DT bindings. */
256 struct clk *clk;
257 };
258
259 static inline struct atmel_hsmc_nand_controller *
260 to_hsmc_nand_controller(struct nand_hw_control *ctl)
261 {
262 return container_of(to_nand_controller(ctl),
263 struct atmel_hsmc_nand_controller, base);
264 }
265
266 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
267 {
268 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
269 op->wait ^= status & op->wait;
270
271 return !op->wait || op->errors;
272 }
273
274 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
275 {
276 struct atmel_hsmc_nand_controller *nc = data;
277 u32 sr, rcvd;
278 bool done;
279
280 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
281
282 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
283 done = atmel_nfc_op_done(&nc->op, sr);
284
285 if (rcvd)
286 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
287
288 if (done)
289 complete(&nc->complete);
290
291 return rcvd ? IRQ_HANDLED : IRQ_NONE;
292 }
293
294 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
295 unsigned int timeout_ms)
296 {
297 int ret;
298
299 if (!timeout_ms)
300 timeout_ms = DEFAULT_TIMEOUT_MS;
301
302 if (poll) {
303 u32 status;
304
305 ret = regmap_read_poll_timeout(nc->base.smc,
306 ATMEL_HSMC_NFC_SR, status,
307 atmel_nfc_op_done(&nc->op,
308 status),
309 0, timeout_ms * 1000);
310 } else {
311 init_completion(&nc->complete);
312 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
313 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
314 ret = wait_for_completion_timeout(&nc->complete,
315 msecs_to_jiffies(timeout_ms));
316 if (!ret)
317 ret = -ETIMEDOUT;
318 else
319 ret = 0;
320
321 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
322 }
323
324 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
325 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
326 ret = -ETIMEDOUT;
327 }
328
329 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
330 dev_err(nc->base.dev, "Access to an undefined area\n");
331 ret = -EIO;
332 }
333
334 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
335 dev_err(nc->base.dev, "Access while busy\n");
336 ret = -EIO;
337 }
338
339 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
340 dev_err(nc->base.dev, "Wrong access size\n");
341 ret = -EIO;
342 }
343
344 return ret;
345 }
346
347 static void atmel_nand_dma_transfer_finished(void *data)
348 {
349 struct completion *finished = data;
350
351 complete(finished);
352 }
353
354 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
355 void *buf, dma_addr_t dev_dma, size_t len,
356 enum dma_data_direction dir)
357 {
358 DECLARE_COMPLETION_ONSTACK(finished);
359 dma_addr_t src_dma, dst_dma, buf_dma;
360 struct dma_async_tx_descriptor *tx;
361 dma_cookie_t cookie;
362
363 buf_dma = dma_map_single(nc->dev, buf, len, dir);
364 if (dma_mapping_error(nc->dev, dev_dma)) {
365 dev_err(nc->dev,
366 "Failed to prepare a buffer for DMA access\n");
367 goto err;
368 }
369
370 if (dir == DMA_FROM_DEVICE) {
371 src_dma = dev_dma;
372 dst_dma = buf_dma;
373 } else {
374 src_dma = buf_dma;
375 dst_dma = dev_dma;
376 }
377
378 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
379 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
380 if (!tx) {
381 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
382 goto err_unmap;
383 }
384
385 tx->callback = atmel_nand_dma_transfer_finished;
386 tx->callback_param = &finished;
387
388 cookie = dmaengine_submit(tx);
389 if (dma_submit_error(cookie)) {
390 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
391 goto err_unmap;
392 }
393
394 dma_async_issue_pending(nc->dmac);
395 wait_for_completion(&finished);
396
397 return 0;
398
399 err_unmap:
400 dma_unmap_single(nc->dev, buf_dma, len, dir);
401
402 err:
403 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
404
405 return -EIO;
406 }
407
408 static u8 atmel_nand_read_byte(struct mtd_info *mtd)
409 {
410 struct nand_chip *chip = mtd_to_nand(mtd);
411 struct atmel_nand *nand = to_atmel_nand(chip);
412
413 return ioread8(nand->activecs->io.virt);
414 }
415
416 static u16 atmel_nand_read_word(struct mtd_info *mtd)
417 {
418 struct nand_chip *chip = mtd_to_nand(mtd);
419 struct atmel_nand *nand = to_atmel_nand(chip);
420
421 return ioread16(nand->activecs->io.virt);
422 }
423
424 static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
425 {
426 struct nand_chip *chip = mtd_to_nand(mtd);
427 struct atmel_nand *nand = to_atmel_nand(chip);
428
429 if (chip->options & NAND_BUSWIDTH_16)
430 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
431 else
432 iowrite8(byte, nand->activecs->io.virt);
433 }
434
435 static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
436 {
437 struct nand_chip *chip = mtd_to_nand(mtd);
438 struct atmel_nand *nand = to_atmel_nand(chip);
439 struct atmel_nand_controller *nc;
440
441 nc = to_nand_controller(chip->controller);
442
443 /*
444 * If the controller supports DMA, the buffer address is DMA-able and
445 * len is long enough to make DMA transfers profitable, let's trigger
446 * a DMA transfer. If it fails, fallback to PIO mode.
447 */
448 if (nc->dmac && virt_addr_valid(buf) &&
449 len >= MIN_DMA_LEN &&
450 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
451 DMA_FROM_DEVICE))
452 return;
453
454 if (chip->options & NAND_BUSWIDTH_16)
455 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
456 else
457 ioread8_rep(nand->activecs->io.virt, buf, len);
458 }
459
460 static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
461 {
462 struct nand_chip *chip = mtd_to_nand(mtd);
463 struct atmel_nand *nand = to_atmel_nand(chip);
464 struct atmel_nand_controller *nc;
465
466 nc = to_nand_controller(chip->controller);
467
468 /*
469 * If the controller supports DMA, the buffer address is DMA-able and
470 * len is long enough to make DMA transfers profitable, let's trigger
471 * a DMA transfer. If it fails, fallback to PIO mode.
472 */
473 if (nc->dmac && virt_addr_valid(buf) &&
474 len >= MIN_DMA_LEN &&
475 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
476 len, DMA_TO_DEVICE))
477 return;
478
479 if (chip->options & NAND_BUSWIDTH_16)
480 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
481 else
482 iowrite8_rep(nand->activecs->io.virt, buf, len);
483 }
484
485 static int atmel_nand_dev_ready(struct mtd_info *mtd)
486 {
487 struct nand_chip *chip = mtd_to_nand(mtd);
488 struct atmel_nand *nand = to_atmel_nand(chip);
489
490 return gpiod_get_value(nand->activecs->rb.gpio);
491 }
492
493 static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
494 {
495 struct nand_chip *chip = mtd_to_nand(mtd);
496 struct atmel_nand *nand = to_atmel_nand(chip);
497
498 if (cs < 0 || cs >= nand->numcs) {
499 nand->activecs = NULL;
500 chip->dev_ready = NULL;
501 return;
502 }
503
504 nand->activecs = &nand->cs[cs];
505
506 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
507 chip->dev_ready = atmel_nand_dev_ready;
508 }
509
510 static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
511 {
512 struct nand_chip *chip = mtd_to_nand(mtd);
513 struct atmel_nand *nand = to_atmel_nand(chip);
514 struct atmel_hsmc_nand_controller *nc;
515 u32 status;
516
517 nc = to_hsmc_nand_controller(chip->controller);
518
519 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
520
521 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
522 }
523
524 static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
525 {
526 struct nand_chip *chip = mtd_to_nand(mtd);
527 struct atmel_nand *nand = to_atmel_nand(chip);
528 struct atmel_hsmc_nand_controller *nc;
529
530 nc = to_hsmc_nand_controller(chip->controller);
531
532 atmel_nand_select_chip(mtd, cs);
533
534 if (!nand->activecs) {
535 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
536 ATMEL_HSMC_NFC_CTRL_DIS);
537 return;
538 }
539
540 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
541 chip->dev_ready = atmel_hsmc_nand_dev_ready;
542
543 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
544 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
545 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
546 ATMEL_HSMC_NFC_CFG_RSPARE |
547 ATMEL_HSMC_NFC_CFG_WSPARE,
548 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
549 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
550 ATMEL_HSMC_NFC_CFG_RSPARE);
551 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
552 ATMEL_HSMC_NFC_CTRL_EN);
553 }
554
555 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
556 {
557 u8 *addrs = nc->op.addrs;
558 unsigned int op = 0;
559 u32 addr, val;
560 int i, ret;
561
562 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
563
564 for (i = 0; i < nc->op.ncmds; i++)
565 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
566
567 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
568 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
569
570 op |= ATMEL_NFC_CSID(nc->op.cs) |
571 ATMEL_NFC_ACYCLE(nc->op.naddrs);
572
573 if (nc->op.ncmds > 1)
574 op |= ATMEL_NFC_VCMD2;
575
576 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
577 (addrs[3] << 24);
578
579 if (nc->op.data != ATMEL_NFC_NO_DATA) {
580 op |= ATMEL_NFC_DATAEN;
581 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
582
583 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
584 op |= ATMEL_NFC_NFCWR;
585 }
586
587 /* Clear all flags. */
588 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
589
590 /* Send the command. */
591 regmap_write(nc->io, op, addr);
592
593 ret = atmel_nfc_wait(nc, poll, 0);
594 if (ret)
595 dev_err(nc->base.dev,
596 "Failed to send NAND command (err = %d)!",
597 ret);
598
599 /* Reset the op state. */
600 memset(&nc->op, 0, sizeof(nc->op));
601
602 return ret;
603 }
604
605 static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
606 unsigned int ctrl)
607 {
608 struct nand_chip *chip = mtd_to_nand(mtd);
609 struct atmel_nand *nand = to_atmel_nand(chip);
610 struct atmel_hsmc_nand_controller *nc;
611
612 nc = to_hsmc_nand_controller(chip->controller);
613
614 if (ctrl & NAND_ALE) {
615 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
616 return;
617
618 nc->op.addrs[nc->op.naddrs++] = dat;
619 } else if (ctrl & NAND_CLE) {
620 if (nc->op.ncmds > 1)
621 return;
622
623 nc->op.cmds[nc->op.ncmds++] = dat;
624 }
625
626 if (dat == NAND_CMD_NONE) {
627 nc->op.cs = nand->activecs->id;
628 atmel_nfc_exec_op(nc, true);
629 }
630 }
631
632 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
633 unsigned int ctrl)
634 {
635 struct nand_chip *chip = mtd_to_nand(mtd);
636 struct atmel_nand *nand = to_atmel_nand(chip);
637 struct atmel_nand_controller *nc;
638
639 nc = to_nand_controller(chip->controller);
640
641 if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
642 if (ctrl & NAND_NCE)
643 gpiod_set_value(nand->activecs->csgpio, 0);
644 else
645 gpiod_set_value(nand->activecs->csgpio, 1);
646 }
647
648 if (ctrl & NAND_ALE)
649 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
650 else if (ctrl & NAND_CLE)
651 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
652 }
653
654 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
655 bool oob_required)
656 {
657 struct mtd_info *mtd = nand_to_mtd(chip);
658 struct atmel_hsmc_nand_controller *nc;
659 int ret = -EIO;
660
661 nc = to_hsmc_nand_controller(chip->controller);
662
663 if (nc->base.dmac)
664 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
665 nc->sram.dma, mtd->writesize,
666 DMA_TO_DEVICE);
667
668 /* Falling back to CPU copy. */
669 if (ret)
670 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
671
672 if (oob_required)
673 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
674 mtd->oobsize);
675 }
676
677 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
678 bool oob_required)
679 {
680 struct mtd_info *mtd = nand_to_mtd(chip);
681 struct atmel_hsmc_nand_controller *nc;
682 int ret = -EIO;
683
684 nc = to_hsmc_nand_controller(chip->controller);
685
686 if (nc->base.dmac)
687 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
688 mtd->writesize, DMA_FROM_DEVICE);
689
690 /* Falling back to CPU copy. */
691 if (ret)
692 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
693
694 if (oob_required)
695 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
696 mtd->oobsize);
697 }
698
699 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
700 {
701 struct mtd_info *mtd = nand_to_mtd(chip);
702 struct atmel_hsmc_nand_controller *nc;
703
704 nc = to_hsmc_nand_controller(chip->controller);
705
706 if (column >= 0) {
707 nc->op.addrs[nc->op.naddrs++] = column;
708
709 /*
710 * 2 address cycles for the column offset on large page NANDs.
711 */
712 if (mtd->writesize > 512)
713 nc->op.addrs[nc->op.naddrs++] = column >> 8;
714 }
715
716 if (page >= 0) {
717 nc->op.addrs[nc->op.naddrs++] = page;
718 nc->op.addrs[nc->op.naddrs++] = page >> 8;
719
720 if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
721 (mtd->writesize <= 512 && chip->chipsize > SZ_32M))
722 nc->op.addrs[nc->op.naddrs++] = page >> 16;
723 }
724 }
725
726 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
727 {
728 struct atmel_nand *nand = to_atmel_nand(chip);
729 struct atmel_nand_controller *nc;
730 int ret;
731
732 nc = to_nand_controller(chip->controller);
733
734 if (raw)
735 return 0;
736
737 ret = atmel_pmecc_enable(nand->pmecc, op);
738 if (ret)
739 dev_err(nc->dev,
740 "Failed to enable ECC engine (err = %d)\n", ret);
741
742 return ret;
743 }
744
745 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
746 {
747 struct atmel_nand *nand = to_atmel_nand(chip);
748
749 if (!raw)
750 atmel_pmecc_disable(nand->pmecc);
751 }
752
753 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
754 {
755 struct atmel_nand *nand = to_atmel_nand(chip);
756 struct mtd_info *mtd = nand_to_mtd(chip);
757 struct atmel_nand_controller *nc;
758 struct mtd_oob_region oobregion;
759 void *eccbuf;
760 int ret, i;
761
762 nc = to_nand_controller(chip->controller);
763
764 if (raw)
765 return 0;
766
767 ret = atmel_pmecc_wait_rdy(nand->pmecc);
768 if (ret) {
769 dev_err(nc->dev,
770 "Failed to transfer NAND page data (err = %d)\n",
771 ret);
772 return ret;
773 }
774
775 mtd_ooblayout_ecc(mtd, 0, &oobregion);
776 eccbuf = chip->oob_poi + oobregion.offset;
777
778 for (i = 0; i < chip->ecc.steps; i++) {
779 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
780 eccbuf);
781 eccbuf += chip->ecc.bytes;
782 }
783
784 return 0;
785 }
786
787 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
788 bool raw)
789 {
790 struct atmel_nand *nand = to_atmel_nand(chip);
791 struct mtd_info *mtd = nand_to_mtd(chip);
792 struct atmel_nand_controller *nc;
793 struct mtd_oob_region oobregion;
794 int ret, i, max_bitflips = 0;
795 void *databuf, *eccbuf;
796
797 nc = to_nand_controller(chip->controller);
798
799 if (raw)
800 return 0;
801
802 ret = atmel_pmecc_wait_rdy(nand->pmecc);
803 if (ret) {
804 dev_err(nc->dev,
805 "Failed to read NAND page data (err = %d)\n",
806 ret);
807 return ret;
808 }
809
810 mtd_ooblayout_ecc(mtd, 0, &oobregion);
811 eccbuf = chip->oob_poi + oobregion.offset;
812 databuf = buf;
813
814 for (i = 0; i < chip->ecc.steps; i++) {
815 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
816 eccbuf);
817 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
818 ret = nand_check_erased_ecc_chunk(databuf,
819 chip->ecc.size,
820 eccbuf,
821 chip->ecc.bytes,
822 NULL, 0,
823 chip->ecc.strength);
824
825 if (ret >= 0)
826 max_bitflips = max(ret, max_bitflips);
827 else
828 mtd->ecc_stats.failed++;
829
830 databuf += chip->ecc.size;
831 eccbuf += chip->ecc.bytes;
832 }
833
834 return max_bitflips;
835 }
836
837 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
838 bool oob_required, int page, bool raw)
839 {
840 struct mtd_info *mtd = nand_to_mtd(chip);
841 struct atmel_nand *nand = to_atmel_nand(chip);
842 int ret;
843
844 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
845 if (ret)
846 return ret;
847
848 atmel_nand_write_buf(mtd, buf, mtd->writesize);
849
850 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
851 if (ret) {
852 atmel_pmecc_disable(nand->pmecc);
853 return ret;
854 }
855
856 atmel_nand_pmecc_disable(chip, raw);
857
858 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
859
860 return 0;
861 }
862
863 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
864 struct nand_chip *chip, const u8 *buf,
865 int oob_required, int page)
866 {
867 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
868 }
869
870 static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
871 struct nand_chip *chip,
872 const u8 *buf, int oob_required,
873 int page)
874 {
875 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
876 }
877
878 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
879 bool oob_required, int page, bool raw)
880 {
881 struct mtd_info *mtd = nand_to_mtd(chip);
882 int ret;
883
884 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
885 if (ret)
886 return ret;
887
888 atmel_nand_read_buf(mtd, buf, mtd->writesize);
889 atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
890
891 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
892
893 atmel_nand_pmecc_disable(chip, raw);
894
895 return ret;
896 }
897
898 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
899 struct nand_chip *chip, u8 *buf,
900 int oob_required, int page)
901 {
902 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
903 }
904
905 static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
906 struct nand_chip *chip, u8 *buf,
907 int oob_required, int page)
908 {
909 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
910 }
911
912 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
913 const u8 *buf, bool oob_required,
914 int page, bool raw)
915 {
916 struct mtd_info *mtd = nand_to_mtd(chip);
917 struct atmel_nand *nand = to_atmel_nand(chip);
918 struct atmel_hsmc_nand_controller *nc;
919 int ret, status;
920
921 nc = to_hsmc_nand_controller(chip->controller);
922
923 atmel_nfc_copy_to_sram(chip, buf, false);
924
925 nc->op.cmds[0] = NAND_CMD_SEQIN;
926 nc->op.ncmds = 1;
927 atmel_nfc_set_op_addr(chip, page, 0x0);
928 nc->op.cs = nand->activecs->id;
929 nc->op.data = ATMEL_NFC_WRITE_DATA;
930
931 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
932 if (ret)
933 return ret;
934
935 ret = atmel_nfc_exec_op(nc, false);
936 if (ret) {
937 atmel_nand_pmecc_disable(chip, raw);
938 dev_err(nc->base.dev,
939 "Failed to transfer NAND page data (err = %d)\n",
940 ret);
941 return ret;
942 }
943
944 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
945
946 atmel_nand_pmecc_disable(chip, raw);
947
948 if (ret)
949 return ret;
950
951 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
952
953 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
954 nc->op.ncmds = 1;
955 nc->op.cs = nand->activecs->id;
956 ret = atmel_nfc_exec_op(nc, false);
957 if (ret)
958 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
959 ret);
960
961 status = chip->waitfunc(mtd, chip);
962 if (status & NAND_STATUS_FAIL)
963 return -EIO;
964
965 return ret;
966 }
967
968 static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
969 struct nand_chip *chip,
970 const u8 *buf, int oob_required,
971 int page)
972 {
973 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
974 false);
975 }
976
977 static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
978 struct nand_chip *chip,
979 const u8 *buf,
980 int oob_required, int page)
981 {
982 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
983 true);
984 }
985
986 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
987 bool oob_required, int page,
988 bool raw)
989 {
990 struct mtd_info *mtd = nand_to_mtd(chip);
991 struct atmel_nand *nand = to_atmel_nand(chip);
992 struct atmel_hsmc_nand_controller *nc;
993 int ret;
994
995 nc = to_hsmc_nand_controller(chip->controller);
996
997 /*
998 * Optimized read page accessors only work when the NAND R/B pin is
999 * connected to a native SoC R/B pin. If that's not the case, fallback
1000 * to the non-optimized one.
1001 */
1002 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
1003 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1004
1005 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1006 raw);
1007 }
1008
1009 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1010
1011 if (mtd->writesize > 512)
1012 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1013
1014 atmel_nfc_set_op_addr(chip, page, 0x0);
1015 nc->op.cs = nand->activecs->id;
1016 nc->op.data = ATMEL_NFC_READ_DATA;
1017
1018 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1019 if (ret)
1020 return ret;
1021
1022 ret = atmel_nfc_exec_op(nc, false);
1023 if (ret) {
1024 atmel_nand_pmecc_disable(chip, raw);
1025 dev_err(nc->base.dev,
1026 "Failed to load NAND page data (err = %d)\n",
1027 ret);
1028 return ret;
1029 }
1030
1031 atmel_nfc_copy_from_sram(chip, buf, true);
1032
1033 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1034
1035 atmel_nand_pmecc_disable(chip, raw);
1036
1037 return ret;
1038 }
1039
1040 static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
1041 struct nand_chip *chip, u8 *buf,
1042 int oob_required, int page)
1043 {
1044 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1045 false);
1046 }
1047
1048 static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
1049 struct nand_chip *chip,
1050 u8 *buf, int oob_required,
1051 int page)
1052 {
1053 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1054 true);
1055 }
1056
1057 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1058 {
1059 struct mtd_info *mtd = nand_to_mtd(chip);
1060 struct atmel_nand *nand = to_atmel_nand(chip);
1061 struct atmel_nand_controller *nc;
1062 struct atmel_pmecc_user_req req;
1063
1064 nc = to_nand_controller(chip->controller);
1065
1066 if (!nc->pmecc) {
1067 dev_err(nc->dev, "HW ECC not supported\n");
1068 return -ENOTSUPP;
1069 }
1070
1071 if (nc->caps->legacy_of_bindings) {
1072 u32 val;
1073
1074 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1075 &val))
1076 chip->ecc.strength = val;
1077
1078 if (!of_property_read_u32(nc->dev->of_node,
1079 "atmel,pmecc-sector-size",
1080 &val))
1081 chip->ecc.size = val;
1082 }
1083
1084 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1085 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1086 else if (chip->ecc.strength)
1087 req.ecc.strength = chip->ecc.strength;
1088 else if (chip->ecc_strength_ds)
1089 req.ecc.strength = chip->ecc_strength_ds;
1090 else
1091 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1092
1093 if (chip->ecc.size)
1094 req.ecc.sectorsize = chip->ecc.size;
1095 else if (chip->ecc_step_ds)
1096 req.ecc.sectorsize = chip->ecc_step_ds;
1097 else
1098 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1099
1100 req.pagesize = mtd->writesize;
1101 req.oobsize = mtd->oobsize;
1102
1103 if (mtd->writesize <= 512) {
1104 req.ecc.bytes = 4;
1105 req.ecc.ooboffset = 0;
1106 } else {
1107 req.ecc.bytes = mtd->oobsize - 2;
1108 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1109 }
1110
1111 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1112 if (IS_ERR(nand->pmecc))
1113 return PTR_ERR(nand->pmecc);
1114
1115 chip->ecc.algo = NAND_ECC_BCH;
1116 chip->ecc.size = req.ecc.sectorsize;
1117 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1118 chip->ecc.strength = req.ecc.strength;
1119
1120 chip->options |= NAND_NO_SUBPAGE_WRITE;
1121
1122 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1123
1124 return 0;
1125 }
1126
1127 static int atmel_nand_ecc_init(struct atmel_nand *nand)
1128 {
1129 struct nand_chip *chip = &nand->base;
1130 struct atmel_nand_controller *nc;
1131 int ret;
1132
1133 nc = to_nand_controller(chip->controller);
1134
1135 switch (chip->ecc.mode) {
1136 case NAND_ECC_NONE:
1137 case NAND_ECC_SOFT:
1138 /*
1139 * Nothing to do, the core will initialize everything for us.
1140 */
1141 break;
1142
1143 case NAND_ECC_HW:
1144 ret = atmel_nand_pmecc_init(chip);
1145 if (ret)
1146 return ret;
1147
1148 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1149 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1150 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1151 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1152 break;
1153
1154 default:
1155 /* Other modes are not supported. */
1156 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1157 chip->ecc.mode);
1158 return -ENOTSUPP;
1159 }
1160
1161 return 0;
1162 }
1163
1164 static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
1165 {
1166 struct nand_chip *chip = &nand->base;
1167 int ret;
1168
1169 ret = atmel_nand_ecc_init(nand);
1170 if (ret)
1171 return ret;
1172
1173 if (chip->ecc.mode != NAND_ECC_HW)
1174 return 0;
1175
1176 /* Adjust the ECC operations for the HSMC IP. */
1177 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1178 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1179 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1180 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1181 chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1182
1183 return 0;
1184 }
1185
1186 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1187 const struct nand_data_interface *conf,
1188 struct atmel_smc_cs_conf *smcconf)
1189 {
1190 u32 ncycles, totalcycles, timeps, mckperiodps;
1191 struct atmel_nand_controller *nc;
1192 int ret;
1193
1194 nc = to_nand_controller(nand->base.controller);
1195
1196 /* DDR interface not supported. */
1197 if (conf->type != NAND_SDR_IFACE)
1198 return -ENOTSUPP;
1199
1200 /*
1201 * tRC < 30ns implies EDO mode. This controller does not support this
1202 * mode.
1203 */
1204 if (conf->timings.sdr.tRC_min < 30000)
1205 return -ENOTSUPP;
1206
1207 atmel_smc_cs_conf_init(smcconf);
1208
1209 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1210 mckperiodps *= 1000;
1211
1212 /*
1213 * Set write pulse timing. This one is easy to extract:
1214 *
1215 * NWE_PULSE = tWP
1216 */
1217 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1218 totalcycles = ncycles;
1219 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1220 ncycles);
1221 if (ret)
1222 return ret;
1223
1224 /*
1225 * The write setup timing depends on the operation done on the NAND.
1226 * All operations goes through the same data bus, but the operation
1227 * type depends on the address we are writing to (ALE/CLE address
1228 * lines).
1229 * Since we have no way to differentiate the different operations at
1230 * the SMC level, we must consider the worst case (the biggest setup
1231 * time among all operation types):
1232 *
1233 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1234 */
1235 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1236 conf->timings.sdr.tALS_min);
1237 timeps = max(timeps, conf->timings.sdr.tDS_min);
1238 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1239 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1240 totalcycles += ncycles;
1241 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1242 ncycles);
1243 if (ret)
1244 return ret;
1245
1246 /*
1247 * As for the write setup timing, the write hold timing depends on the
1248 * operation done on the NAND:
1249 *
1250 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1251 */
1252 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1253 conf->timings.sdr.tALH_min);
1254 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1255 conf->timings.sdr.tWH_min);
1256 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1257 totalcycles += ncycles;
1258
1259 /*
1260 * The write cycle timing is directly matching tWC, but is also
1261 * dependent on the other timings on the setup and hold timings we
1262 * calculated earlier, which gives:
1263 *
1264 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1265 */
1266 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1267 ncycles = max(totalcycles, ncycles);
1268 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1269 ncycles);
1270 if (ret)
1271 return ret;
1272
1273 /*
1274 * We don't want the CS line to be toggled between each byte/word
1275 * transfer to the NAND. The only way to guarantee that is to have the
1276 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1277 *
1278 * NCS_WR_PULSE = NWE_CYCLE
1279 */
1280 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1281 ncycles);
1282 if (ret)
1283 return ret;
1284
1285 /*
1286 * As for the write setup timing, the read hold timing depends on the
1287 * operation done on the NAND:
1288 *
1289 * NRD_HOLD = max(tREH, tRHOH)
1290 */
1291 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1292 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1293 totalcycles = ncycles;
1294
1295 /*
1296 * TDF = tRHZ - NRD_HOLD
1297 */
1298 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1299 ncycles -= totalcycles;
1300
1301 /*
1302 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1303 * we might end up with a config that does not fit in the TDF field.
1304 * Just take the max value in this case and hope that the NAND is more
1305 * tolerant than advertised.
1306 */
1307 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1308 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1309 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1310 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1311
1312 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1313 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1314
1315 /*
1316 * Read pulse timing directly matches tRP:
1317 *
1318 * NRD_PULSE = tRP
1319 */
1320 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1321 totalcycles += ncycles;
1322 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1323 ncycles);
1324 if (ret)
1325 return ret;
1326
1327 /*
1328 * The write cycle timing is directly matching tWC, but is also
1329 * dependent on the setup and hold timings we calculated earlier,
1330 * which gives:
1331 *
1332 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1333 *
1334 * NRD_SETUP is always 0.
1335 */
1336 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1337 ncycles = max(totalcycles, ncycles);
1338 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1339 ncycles);
1340 if (ret)
1341 return ret;
1342
1343 /*
1344 * We don't want the CS line to be toggled between each byte/word
1345 * transfer from the NAND. The only way to guarantee that is to have
1346 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1347 *
1348 * NCS_RD_PULSE = NRD_CYCLE
1349 */
1350 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1351 ncycles);
1352 if (ret)
1353 return ret;
1354
1355 /* Txxx timings are directly matching tXXX ones. */
1356 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1357 ret = atmel_smc_cs_conf_set_timing(smcconf,
1358 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1359 ncycles);
1360 if (ret)
1361 return ret;
1362
1363 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1364 ret = atmel_smc_cs_conf_set_timing(smcconf,
1365 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1366 ncycles);
1367 /*
1368 * Version 4 of the ONFI spec mandates that tADL be at least 400
1369 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1370 * fit in the tADL field of the SMC reg. We need to relax the check and
1371 * accept the -ERANGE return code.
1372 *
1373 * Note that previous versions of the ONFI spec had a lower tADL_min
1374 * (100 or 200 ns). It's not clear why this timing constraint got
1375 * increased but it seems most NANDs are fine with values lower than
1376 * 400ns, so we should be safe.
1377 */
1378 if (ret && ret != -ERANGE)
1379 return ret;
1380
1381 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1382 ret = atmel_smc_cs_conf_set_timing(smcconf,
1383 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1384 ncycles);
1385 if (ret)
1386 return ret;
1387
1388 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1389 ret = atmel_smc_cs_conf_set_timing(smcconf,
1390 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1391 ncycles);
1392 if (ret)
1393 return ret;
1394
1395 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1396 ret = atmel_smc_cs_conf_set_timing(smcconf,
1397 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1398 ncycles);
1399 if (ret)
1400 return ret;
1401
1402 /* Attach the CS line to the NFC logic. */
1403 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1404
1405 /* Set the appropriate data bus width. */
1406 if (nand->base.options & NAND_BUSWIDTH_16)
1407 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1408
1409 /* Operate in NRD/NWE READ/WRITEMODE. */
1410 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1411 ATMEL_SMC_MODE_WRITEMODE_NWE;
1412
1413 return 0;
1414 }
1415
1416 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1417 int csline,
1418 const struct nand_data_interface *conf)
1419 {
1420 struct atmel_nand_controller *nc;
1421 struct atmel_smc_cs_conf smcconf;
1422 struct atmel_nand_cs *cs;
1423 int ret;
1424
1425 nc = to_nand_controller(nand->base.controller);
1426
1427 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1428 if (ret)
1429 return ret;
1430
1431 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1432 return 0;
1433
1434 cs = &nand->cs[csline];
1435 cs->smcconf = smcconf;
1436 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1437
1438 return 0;
1439 }
1440
1441 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1442 int csline,
1443 const struct nand_data_interface *conf)
1444 {
1445 struct atmel_nand_controller *nc;
1446 struct atmel_smc_cs_conf smcconf;
1447 struct atmel_nand_cs *cs;
1448 int ret;
1449
1450 nc = to_nand_controller(nand->base.controller);
1451
1452 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1453 if (ret)
1454 return ret;
1455
1456 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1457 return 0;
1458
1459 cs = &nand->cs[csline];
1460 cs->smcconf = smcconf;
1461
1462 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1463 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1464
1465 atmel_hsmc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1466
1467 return 0;
1468 }
1469
1470 static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1471 const struct nand_data_interface *conf)
1472 {
1473 struct nand_chip *chip = mtd_to_nand(mtd);
1474 struct atmel_nand *nand = to_atmel_nand(chip);
1475 struct atmel_nand_controller *nc;
1476
1477 nc = to_nand_controller(nand->base.controller);
1478
1479 if (csline >= nand->numcs ||
1480 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1481 return -EINVAL;
1482
1483 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1484 }
1485
1486 static void atmel_nand_init(struct atmel_nand_controller *nc,
1487 struct atmel_nand *nand)
1488 {
1489 struct nand_chip *chip = &nand->base;
1490 struct mtd_info *mtd = nand_to_mtd(chip);
1491
1492 mtd->dev.parent = nc->dev;
1493 nand->base.controller = &nc->base;
1494
1495 chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1496 chip->read_byte = atmel_nand_read_byte;
1497 chip->read_word = atmel_nand_read_word;
1498 chip->write_byte = atmel_nand_write_byte;
1499 chip->read_buf = atmel_nand_read_buf;
1500 chip->write_buf = atmel_nand_write_buf;
1501 chip->select_chip = atmel_nand_select_chip;
1502
1503 if (nc->mck && nc->caps->ops->setup_data_interface)
1504 chip->setup_data_interface = atmel_nand_setup_data_interface;
1505
1506 /* Some NANDs require a longer delay than the default one (20us). */
1507 chip->chip_delay = 40;
1508
1509 /*
1510 * Use a bounce buffer when the buffer passed by the MTD user is not
1511 * suitable for DMA.
1512 */
1513 if (nc->dmac)
1514 chip->options |= NAND_USE_BOUNCE_BUFFER;
1515
1516 /* Default to HW ECC if pmecc is available. */
1517 if (nc->pmecc)
1518 chip->ecc.mode = NAND_ECC_HW;
1519 }
1520
1521 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1522 struct atmel_nand *nand)
1523 {
1524 struct nand_chip *chip = &nand->base;
1525 struct atmel_smc_nand_controller *smc_nc;
1526 int i;
1527
1528 atmel_nand_init(nc, nand);
1529
1530 smc_nc = to_smc_nand_controller(chip->controller);
1531 if (!smc_nc->matrix)
1532 return;
1533
1534 /* Attach the CS to the NAND Flash logic. */
1535 for (i = 0; i < nand->numcs; i++)
1536 regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1537 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1538 }
1539
1540 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1541 struct atmel_nand *nand)
1542 {
1543 struct nand_chip *chip = &nand->base;
1544
1545 atmel_nand_init(nc, nand);
1546
1547 /* Overload some methods for the HSMC controller. */
1548 chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1549 chip->select_chip = atmel_hsmc_nand_select_chip;
1550 }
1551
1552 static int atmel_nand_detect(struct atmel_nand *nand)
1553 {
1554 struct nand_chip *chip = &nand->base;
1555 struct mtd_info *mtd = nand_to_mtd(chip);
1556 struct atmel_nand_controller *nc;
1557 int ret;
1558
1559 nc = to_nand_controller(chip->controller);
1560
1561 ret = nand_scan_ident(mtd, nand->numcs, NULL);
1562 if (ret)
1563 dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
1564
1565 return ret;
1566 }
1567
1568 static int atmel_nand_unregister(struct atmel_nand *nand)
1569 {
1570 struct nand_chip *chip = &nand->base;
1571 struct mtd_info *mtd = nand_to_mtd(chip);
1572 int ret;
1573
1574 ret = mtd_device_unregister(mtd);
1575 if (ret)
1576 return ret;
1577
1578 nand_cleanup(chip);
1579 list_del(&nand->node);
1580
1581 return 0;
1582 }
1583
1584 static int atmel_nand_register(struct atmel_nand *nand)
1585 {
1586 struct nand_chip *chip = &nand->base;
1587 struct mtd_info *mtd = nand_to_mtd(chip);
1588 struct atmel_nand_controller *nc;
1589 int ret;
1590
1591 nc = to_nand_controller(chip->controller);
1592
1593 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1594 /*
1595 * We keep the MTD name unchanged to avoid breaking platforms
1596 * where the MTD cmdline parser is used and the bootloader
1597 * has not been updated to use the new naming scheme.
1598 */
1599 mtd->name = "atmel_nand";
1600 } else if (!mtd->name) {
1601 /*
1602 * If the new bindings are used and the bootloader has not been
1603 * updated to pass a new mtdparts parameter on the cmdline, you
1604 * should define the following property in your nand node:
1605 *
1606 * label = "atmel_nand";
1607 *
1608 * This way, mtd->name will be set by the core when
1609 * nand_set_flash_node() is called.
1610 */
1611 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1612 "%s:nand.%d", dev_name(nc->dev),
1613 nand->cs[0].id);
1614 if (!mtd->name) {
1615 dev_err(nc->dev, "Failed to allocate mtd->name\n");
1616 return -ENOMEM;
1617 }
1618 }
1619
1620 ret = nand_scan_tail(mtd);
1621 if (ret) {
1622 dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
1623 return ret;
1624 }
1625
1626 ret = mtd_device_register(mtd, NULL, 0);
1627 if (ret) {
1628 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1629 nand_cleanup(chip);
1630 return ret;
1631 }
1632
1633 list_add_tail(&nand->node, &nc->chips);
1634
1635 return 0;
1636 }
1637
1638 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1639 struct device_node *np,
1640 int reg_cells)
1641 {
1642 struct atmel_nand *nand;
1643 struct gpio_desc *gpio;
1644 int numcs, ret, i;
1645
1646 numcs = of_property_count_elems_of_size(np, "reg",
1647 reg_cells * sizeof(u32));
1648 if (numcs < 1) {
1649 dev_err(nc->dev, "Missing or invalid reg property\n");
1650 return ERR_PTR(-EINVAL);
1651 }
1652
1653 nand = devm_kzalloc(nc->dev,
1654 sizeof(*nand) + (numcs * sizeof(*nand->cs)),
1655 GFP_KERNEL);
1656 if (!nand) {
1657 dev_err(nc->dev, "Failed to allocate NAND object\n");
1658 return ERR_PTR(-ENOMEM);
1659 }
1660
1661 nand->numcs = numcs;
1662
1663 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1664 &np->fwnode, GPIOD_IN,
1665 "nand-det");
1666 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1667 dev_err(nc->dev,
1668 "Failed to get detect gpio (err = %ld)\n",
1669 PTR_ERR(gpio));
1670 return ERR_CAST(gpio);
1671 }
1672
1673 if (!IS_ERR(gpio))
1674 nand->cdgpio = gpio;
1675
1676 for (i = 0; i < numcs; i++) {
1677 struct resource res;
1678 u32 val;
1679
1680 ret = of_address_to_resource(np, 0, &res);
1681 if (ret) {
1682 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1683 ret);
1684 return ERR_PTR(ret);
1685 }
1686
1687 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1688 &val);
1689 if (ret) {
1690 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1691 ret);
1692 return ERR_PTR(ret);
1693 }
1694
1695 nand->cs[i].id = val;
1696
1697 nand->cs[i].io.dma = res.start;
1698 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1699 if (IS_ERR(nand->cs[i].io.virt))
1700 return ERR_CAST(nand->cs[i].io.virt);
1701
1702 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1703 if (val > ATMEL_NFC_MAX_RB_ID)
1704 return ERR_PTR(-EINVAL);
1705
1706 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1707 nand->cs[i].rb.id = val;
1708 } else {
1709 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1710 "rb", i, &np->fwnode,
1711 GPIOD_IN, "nand-rb");
1712 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1713 dev_err(nc->dev,
1714 "Failed to get R/B gpio (err = %ld)\n",
1715 PTR_ERR(gpio));
1716 return ERR_CAST(gpio);
1717 }
1718
1719 if (!IS_ERR(gpio)) {
1720 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1721 nand->cs[i].rb.gpio = gpio;
1722 }
1723 }
1724
1725 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1726 i, &np->fwnode,
1727 GPIOD_OUT_HIGH,
1728 "nand-cs");
1729 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1730 dev_err(nc->dev,
1731 "Failed to get CS gpio (err = %ld)\n",
1732 PTR_ERR(gpio));
1733 return ERR_CAST(gpio);
1734 }
1735
1736 if (!IS_ERR(gpio))
1737 nand->cs[i].csgpio = gpio;
1738 }
1739
1740 nand_set_flash_node(&nand->base, np);
1741
1742 return nand;
1743 }
1744
1745 static int
1746 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1747 struct atmel_nand *nand)
1748 {
1749 int ret;
1750
1751 /* No card inserted, skip this NAND. */
1752 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1753 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1754 return 0;
1755 }
1756
1757 nc->caps->ops->nand_init(nc, nand);
1758
1759 ret = atmel_nand_detect(nand);
1760 if (ret)
1761 return ret;
1762
1763 ret = nc->caps->ops->ecc_init(nand);
1764 if (ret)
1765 return ret;
1766
1767 return atmel_nand_register(nand);
1768 }
1769
1770 static int
1771 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1772 {
1773 struct atmel_nand *nand, *tmp;
1774 int ret;
1775
1776 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1777 ret = atmel_nand_unregister(nand);
1778 if (ret)
1779 return ret;
1780 }
1781
1782 return 0;
1783 }
1784
1785 static int
1786 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1787 {
1788 struct device *dev = nc->dev;
1789 struct platform_device *pdev = to_platform_device(dev);
1790 struct atmel_nand *nand;
1791 struct gpio_desc *gpio;
1792 struct resource *res;
1793
1794 /*
1795 * Legacy bindings only allow connecting a single NAND with a unique CS
1796 * line to the controller.
1797 */
1798 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1799 GFP_KERNEL);
1800 if (!nand)
1801 return -ENOMEM;
1802
1803 nand->numcs = 1;
1804
1805 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1806 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1807 if (IS_ERR(nand->cs[0].io.virt))
1808 return PTR_ERR(nand->cs[0].io.virt);
1809
1810 nand->cs[0].io.dma = res->start;
1811
1812 /*
1813 * The old driver was hardcoding the CS id to 3 for all sama5
1814 * controllers. Since this id is only meaningful for the sama5
1815 * controller we can safely assign this id to 3 no matter the
1816 * controller.
1817 * If one wants to connect a NAND to a different CS line, he will
1818 * have to use the new bindings.
1819 */
1820 nand->cs[0].id = 3;
1821
1822 /* R/B GPIO. */
1823 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1824 if (IS_ERR(gpio)) {
1825 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1826 PTR_ERR(gpio));
1827 return PTR_ERR(gpio);
1828 }
1829
1830 if (gpio) {
1831 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1832 nand->cs[0].rb.gpio = gpio;
1833 }
1834
1835 /* CS GPIO. */
1836 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1837 if (IS_ERR(gpio)) {
1838 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1839 PTR_ERR(gpio));
1840 return PTR_ERR(gpio);
1841 }
1842
1843 nand->cs[0].csgpio = gpio;
1844
1845 /* Card detect GPIO. */
1846 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1847 if (IS_ERR(gpio)) {
1848 dev_err(dev,
1849 "Failed to get detect gpio (err = %ld)\n",
1850 PTR_ERR(gpio));
1851 return PTR_ERR(gpio);
1852 }
1853
1854 nand->cdgpio = gpio;
1855
1856 nand_set_flash_node(&nand->base, nc->dev->of_node);
1857
1858 return atmel_nand_controller_add_nand(nc, nand);
1859 }
1860
1861 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1862 {
1863 struct device_node *np, *nand_np;
1864 struct device *dev = nc->dev;
1865 int ret, reg_cells;
1866 u32 val;
1867
1868 /* We do not retrieve the SMC syscon when parsing old DTs. */
1869 if (nc->caps->legacy_of_bindings)
1870 return atmel_nand_controller_legacy_add_nands(nc);
1871
1872 np = dev->of_node;
1873
1874 ret = of_property_read_u32(np, "#address-cells", &val);
1875 if (ret) {
1876 dev_err(dev, "missing #address-cells property\n");
1877 return ret;
1878 }
1879
1880 reg_cells = val;
1881
1882 ret = of_property_read_u32(np, "#size-cells", &val);
1883 if (ret) {
1884 dev_err(dev, "missing #address-cells property\n");
1885 return ret;
1886 }
1887
1888 reg_cells += val;
1889
1890 for_each_child_of_node(np, nand_np) {
1891 struct atmel_nand *nand;
1892
1893 nand = atmel_nand_create(nc, nand_np, reg_cells);
1894 if (IS_ERR(nand)) {
1895 ret = PTR_ERR(nand);
1896 goto err;
1897 }
1898
1899 ret = atmel_nand_controller_add_nand(nc, nand);
1900 if (ret)
1901 goto err;
1902 }
1903
1904 return 0;
1905
1906 err:
1907 atmel_nand_controller_remove_nands(nc);
1908
1909 return ret;
1910 }
1911
1912 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1913 {
1914 if (nc->dmac)
1915 dma_release_channel(nc->dmac);
1916
1917 clk_put(nc->mck);
1918 }
1919
1920 static const struct of_device_id atmel_matrix_of_ids[] = {
1921 {
1922 .compatible = "atmel,at91sam9260-matrix",
1923 .data = (void *)AT91SAM9260_MATRIX_EBICSA,
1924 },
1925 {
1926 .compatible = "atmel,at91sam9261-matrix",
1927 .data = (void *)AT91SAM9261_MATRIX_EBICSA,
1928 },
1929 {
1930 .compatible = "atmel,at91sam9263-matrix",
1931 .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1932 },
1933 {
1934 .compatible = "atmel,at91sam9rl-matrix",
1935 .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1936 },
1937 {
1938 .compatible = "atmel,at91sam9g45-matrix",
1939 .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1940 },
1941 {
1942 .compatible = "atmel,at91sam9n12-matrix",
1943 .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1944 },
1945 {
1946 .compatible = "atmel,at91sam9x5-matrix",
1947 .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1948 },
1949 { /* sentinel */ },
1950 };
1951
1952 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1953 struct platform_device *pdev,
1954 const struct atmel_nand_controller_caps *caps)
1955 {
1956 struct device *dev = &pdev->dev;
1957 struct device_node *np = dev->of_node;
1958 int ret;
1959
1960 nand_hw_control_init(&nc->base);
1961 INIT_LIST_HEAD(&nc->chips);
1962 nc->dev = dev;
1963 nc->caps = caps;
1964
1965 platform_set_drvdata(pdev, nc);
1966
1967 nc->pmecc = devm_atmel_pmecc_get(dev);
1968 if (IS_ERR(nc->pmecc)) {
1969 ret = PTR_ERR(nc->pmecc);
1970 if (ret != -EPROBE_DEFER)
1971 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1972 ret);
1973 return ret;
1974 }
1975
1976 if (nc->caps->has_dma) {
1977 dma_cap_mask_t mask;
1978
1979 dma_cap_zero(mask);
1980 dma_cap_set(DMA_MEMCPY, mask);
1981
1982 nc->dmac = dma_request_channel(mask, NULL, NULL);
1983 if (!nc->dmac)
1984 dev_err(nc->dev, "Failed to request DMA channel\n");
1985 }
1986
1987 /* We do not retrieve the SMC syscon when parsing old DTs. */
1988 if (nc->caps->legacy_of_bindings)
1989 return 0;
1990
1991 nc->mck = of_clk_get(dev->parent->of_node, 0);
1992 if (IS_ERR(nc->mck)) {
1993 dev_err(dev, "Failed to retrieve MCK clk\n");
1994 return PTR_ERR(nc->mck);
1995 }
1996
1997 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1998 if (!np) {
1999 dev_err(dev, "Missing or invalid atmel,smc property\n");
2000 return -EINVAL;
2001 }
2002
2003 nc->smc = syscon_node_to_regmap(np);
2004 of_node_put(np);
2005 if (IS_ERR(nc->smc)) {
2006 ret = PTR_ERR(nc->smc);
2007 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2008 return ret;
2009 }
2010
2011 return 0;
2012 }
2013
2014 static int
2015 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2016 {
2017 struct device *dev = nc->base.dev;
2018 const struct of_device_id *match;
2019 struct device_node *np;
2020 int ret;
2021
2022 /* We do not retrieve the matrix syscon when parsing old DTs. */
2023 if (nc->base.caps->legacy_of_bindings)
2024 return 0;
2025
2026 np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
2027 if (!np)
2028 return 0;
2029
2030 match = of_match_node(atmel_matrix_of_ids, np);
2031 if (!match) {
2032 of_node_put(np);
2033 return 0;
2034 }
2035
2036 nc->matrix = syscon_node_to_regmap(np);
2037 of_node_put(np);
2038 if (IS_ERR(nc->matrix)) {
2039 ret = PTR_ERR(nc->matrix);
2040 dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2041 return ret;
2042 }
2043
2044 nc->ebi_csa_offs = (unsigned int)match->data;
2045
2046 /*
2047 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2048 * add 4 to ->ebi_csa_offs.
2049 */
2050 if (of_device_is_compatible(dev->parent->of_node,
2051 "atmel,at91sam9263-ebi1"))
2052 nc->ebi_csa_offs += 4;
2053
2054 return 0;
2055 }
2056
2057 static int
2058 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2059 {
2060 struct regmap_config regmap_conf = {
2061 .reg_bits = 32,
2062 .val_bits = 32,
2063 .reg_stride = 4,
2064 };
2065
2066 struct device *dev = nc->base.dev;
2067 struct device_node *nand_np, *nfc_np;
2068 void __iomem *iomem;
2069 struct resource res;
2070 int ret;
2071
2072 nand_np = dev->of_node;
2073 nfc_np = of_find_compatible_node(dev->of_node, NULL,
2074 "atmel,sama5d3-nfc");
2075
2076 nc->clk = of_clk_get(nfc_np, 0);
2077 if (IS_ERR(nc->clk)) {
2078 ret = PTR_ERR(nc->clk);
2079 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2080 ret);
2081 goto out;
2082 }
2083
2084 ret = clk_prepare_enable(nc->clk);
2085 if (ret) {
2086 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2087 ret);
2088 goto out;
2089 }
2090
2091 nc->irq = of_irq_get(nand_np, 0);
2092 if (nc->irq < 0) {
2093 ret = nc->irq;
2094 if (ret != -EPROBE_DEFER)
2095 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2096 ret);
2097 goto out;
2098 }
2099
2100 ret = of_address_to_resource(nfc_np, 0, &res);
2101 if (ret) {
2102 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2103 ret);
2104 goto out;
2105 }
2106
2107 iomem = devm_ioremap_resource(dev, &res);
2108 if (IS_ERR(iomem)) {
2109 ret = PTR_ERR(iomem);
2110 goto out;
2111 }
2112
2113 regmap_conf.name = "nfc-io";
2114 regmap_conf.max_register = resource_size(&res) - 4;
2115 nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2116 if (IS_ERR(nc->io)) {
2117 ret = PTR_ERR(nc->io);
2118 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2119 ret);
2120 goto out;
2121 }
2122
2123 ret = of_address_to_resource(nfc_np, 1, &res);
2124 if (ret) {
2125 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2126 ret);
2127 goto out;
2128 }
2129
2130 iomem = devm_ioremap_resource(dev, &res);
2131 if (IS_ERR(iomem)) {
2132 ret = PTR_ERR(iomem);
2133 goto out;
2134 }
2135
2136 regmap_conf.name = "smc";
2137 regmap_conf.max_register = resource_size(&res) - 4;
2138 nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2139 if (IS_ERR(nc->base.smc)) {
2140 ret = PTR_ERR(nc->base.smc);
2141 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2142 ret);
2143 goto out;
2144 }
2145
2146 ret = of_address_to_resource(nfc_np, 2, &res);
2147 if (ret) {
2148 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2149 ret);
2150 goto out;
2151 }
2152
2153 nc->sram.virt = devm_ioremap_resource(dev, &res);
2154 if (IS_ERR(nc->sram.virt)) {
2155 ret = PTR_ERR(nc->sram.virt);
2156 goto out;
2157 }
2158
2159 nc->sram.dma = res.start;
2160
2161 out:
2162 of_node_put(nfc_np);
2163
2164 return ret;
2165 }
2166
2167 static int
2168 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2169 {
2170 struct device *dev = nc->base.dev;
2171 struct device_node *np;
2172 int ret;
2173
2174 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2175 if (!np) {
2176 dev_err(dev, "Missing or invalid atmel,smc property\n");
2177 return -EINVAL;
2178 }
2179
2180 nc->irq = of_irq_get(np, 0);
2181 of_node_put(np);
2182 if (nc->irq < 0) {
2183 if (nc->irq != -EPROBE_DEFER)
2184 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2185 nc->irq);
2186 return nc->irq;
2187 }
2188
2189 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2190 if (!np) {
2191 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2192 return -EINVAL;
2193 }
2194
2195 nc->io = syscon_node_to_regmap(np);
2196 of_node_put(np);
2197 if (IS_ERR(nc->io)) {
2198 ret = PTR_ERR(nc->io);
2199 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2200 return ret;
2201 }
2202
2203 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2204 "atmel,nfc-sram", 0);
2205 if (!nc->sram.pool) {
2206 dev_err(nc->base.dev, "Missing SRAM\n");
2207 return -ENOMEM;
2208 }
2209
2210 nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
2211 ATMEL_NFC_SRAM_SIZE,
2212 &nc->sram.dma);
2213 if (!nc->sram.virt) {
2214 dev_err(nc->base.dev,
2215 "Could not allocate memory from the NFC SRAM pool\n");
2216 return -ENOMEM;
2217 }
2218
2219 return 0;
2220 }
2221
2222 static int
2223 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2224 {
2225 struct atmel_hsmc_nand_controller *hsmc_nc;
2226 int ret;
2227
2228 ret = atmel_nand_controller_remove_nands(nc);
2229 if (ret)
2230 return ret;
2231
2232 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2233 if (hsmc_nc->sram.pool)
2234 gen_pool_free(hsmc_nc->sram.pool,
2235 (unsigned long)hsmc_nc->sram.virt,
2236 ATMEL_NFC_SRAM_SIZE);
2237
2238 if (hsmc_nc->clk) {
2239 clk_disable_unprepare(hsmc_nc->clk);
2240 clk_put(hsmc_nc->clk);
2241 }
2242
2243 atmel_nand_controller_cleanup(nc);
2244
2245 return 0;
2246 }
2247
2248 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2249 const struct atmel_nand_controller_caps *caps)
2250 {
2251 struct device *dev = &pdev->dev;
2252 struct atmel_hsmc_nand_controller *nc;
2253 int ret;
2254
2255 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2256 if (!nc)
2257 return -ENOMEM;
2258
2259 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2260 if (ret)
2261 return ret;
2262
2263 if (caps->legacy_of_bindings)
2264 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2265 else
2266 ret = atmel_hsmc_nand_controller_init(nc);
2267
2268 if (ret)
2269 return ret;
2270
2271 /* Make sure all irqs are masked before registering our IRQ handler. */
2272 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2273 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2274 IRQF_SHARED, "nfc", nc);
2275 if (ret) {
2276 dev_err(dev,
2277 "Could not get register NFC interrupt handler (err = %d)\n",
2278 ret);
2279 goto err;
2280 }
2281
2282 /* Initial NFC configuration. */
2283 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2284 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2285
2286 ret = atmel_nand_controller_add_nands(&nc->base);
2287 if (ret)
2288 goto err;
2289
2290 return 0;
2291
2292 err:
2293 atmel_hsmc_nand_controller_remove(&nc->base);
2294
2295 return ret;
2296 }
2297
2298 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2299 .probe = atmel_hsmc_nand_controller_probe,
2300 .remove = atmel_hsmc_nand_controller_remove,
2301 .ecc_init = atmel_hsmc_nand_ecc_init,
2302 .nand_init = atmel_hsmc_nand_init,
2303 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2304 };
2305
2306 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2307 .has_dma = true,
2308 .ale_offs = BIT(21),
2309 .cle_offs = BIT(22),
2310 .ops = &atmel_hsmc_nc_ops,
2311 };
2312
2313 /* Only used to parse old bindings. */
2314 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2315 .has_dma = true,
2316 .ale_offs = BIT(21),
2317 .cle_offs = BIT(22),
2318 .ops = &atmel_hsmc_nc_ops,
2319 .legacy_of_bindings = true,
2320 };
2321
2322 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2323 const struct atmel_nand_controller_caps *caps)
2324 {
2325 struct device *dev = &pdev->dev;
2326 struct atmel_smc_nand_controller *nc;
2327 int ret;
2328
2329 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2330 if (!nc)
2331 return -ENOMEM;
2332
2333 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2334 if (ret)
2335 return ret;
2336
2337 ret = atmel_smc_nand_controller_init(nc);
2338 if (ret)
2339 return ret;
2340
2341 return atmel_nand_controller_add_nands(&nc->base);
2342 }
2343
2344 static int
2345 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2346 {
2347 int ret;
2348
2349 ret = atmel_nand_controller_remove_nands(nc);
2350 if (ret)
2351 return ret;
2352
2353 atmel_nand_controller_cleanup(nc);
2354
2355 return 0;
2356 }
2357
2358 /*
2359 * The SMC reg layout of at91rm9200 is completely different which prevents us
2360 * from re-using atmel_smc_nand_setup_data_interface() for the
2361 * ->setup_data_interface() hook.
2362 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2363 * ->setup_data_interface() unassigned.
2364 */
2365 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2366 .probe = atmel_smc_nand_controller_probe,
2367 .remove = atmel_smc_nand_controller_remove,
2368 .ecc_init = atmel_nand_ecc_init,
2369 .nand_init = atmel_smc_nand_init,
2370 };
2371
2372 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2373 .ale_offs = BIT(21),
2374 .cle_offs = BIT(22),
2375 .ops = &at91rm9200_nc_ops,
2376 };
2377
2378 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2379 .probe = atmel_smc_nand_controller_probe,
2380 .remove = atmel_smc_nand_controller_remove,
2381 .ecc_init = atmel_nand_ecc_init,
2382 .nand_init = atmel_smc_nand_init,
2383 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2384 };
2385
2386 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2387 .ale_offs = BIT(21),
2388 .cle_offs = BIT(22),
2389 .ops = &atmel_smc_nc_ops,
2390 };
2391
2392 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2393 .ale_offs = BIT(22),
2394 .cle_offs = BIT(21),
2395 .ops = &atmel_smc_nc_ops,
2396 };
2397
2398 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2399 .has_dma = true,
2400 .ale_offs = BIT(21),
2401 .cle_offs = BIT(22),
2402 .ops = &atmel_smc_nc_ops,
2403 };
2404
2405 /* Only used to parse old bindings. */
2406 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2407 .ale_offs = BIT(21),
2408 .cle_offs = BIT(22),
2409 .ops = &atmel_smc_nc_ops,
2410 .legacy_of_bindings = true,
2411 };
2412
2413 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2414 .ale_offs = BIT(22),
2415 .cle_offs = BIT(21),
2416 .ops = &atmel_smc_nc_ops,
2417 .legacy_of_bindings = true,
2418 };
2419
2420 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2421 .has_dma = true,
2422 .ale_offs = BIT(21),
2423 .cle_offs = BIT(22),
2424 .ops = &atmel_smc_nc_ops,
2425 .legacy_of_bindings = true,
2426 };
2427
2428 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2429 {
2430 .compatible = "atmel,at91rm9200-nand-controller",
2431 .data = &atmel_rm9200_nc_caps,
2432 },
2433 {
2434 .compatible = "atmel,at91sam9260-nand-controller",
2435 .data = &atmel_sam9260_nc_caps,
2436 },
2437 {
2438 .compatible = "atmel,at91sam9261-nand-controller",
2439 .data = &atmel_sam9261_nc_caps,
2440 },
2441 {
2442 .compatible = "atmel,at91sam9g45-nand-controller",
2443 .data = &atmel_sam9g45_nc_caps,
2444 },
2445 {
2446 .compatible = "atmel,sama5d3-nand-controller",
2447 .data = &atmel_sama5_nc_caps,
2448 },
2449 /* Support for old/deprecated bindings: */
2450 {
2451 .compatible = "atmel,at91rm9200-nand",
2452 .data = &atmel_rm9200_nand_caps,
2453 },
2454 {
2455 .compatible = "atmel,sama5d4-nand",
2456 .data = &atmel_rm9200_nand_caps,
2457 },
2458 {
2459 .compatible = "atmel,sama5d2-nand",
2460 .data = &atmel_rm9200_nand_caps,
2461 },
2462 { /* sentinel */ },
2463 };
2464 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2465
2466 static int atmel_nand_controller_probe(struct platform_device *pdev)
2467 {
2468 const struct atmel_nand_controller_caps *caps;
2469
2470 if (pdev->id_entry)
2471 caps = (void *)pdev->id_entry->driver_data;
2472 else
2473 caps = of_device_get_match_data(&pdev->dev);
2474
2475 if (!caps) {
2476 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2477 return -EINVAL;
2478 }
2479
2480 if (caps->legacy_of_bindings) {
2481 u32 ale_offs = 21;
2482
2483 /*
2484 * If we are parsing legacy DT props and the DT contains a
2485 * valid NFC node, forward the request to the sama5 logic.
2486 */
2487 if (of_find_compatible_node(pdev->dev.of_node, NULL,
2488 "atmel,sama5d3-nfc"))
2489 caps = &atmel_sama5_nand_caps;
2490
2491 /*
2492 * Even if the compatible says we are dealing with an
2493 * at91rm9200 controller, the atmel,nand-has-dma specify that
2494 * this controller supports DMA, which means we are in fact
2495 * dealing with an at91sam9g45+ controller.
2496 */
2497 if (!caps->has_dma &&
2498 of_property_read_bool(pdev->dev.of_node,
2499 "atmel,nand-has-dma"))
2500 caps = &atmel_sam9g45_nand_caps;
2501
2502 /*
2503 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2504 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2505 * actually dealing with an at91sam9261 controller.
2506 */
2507 of_property_read_u32(pdev->dev.of_node,
2508 "atmel,nand-addr-offset", &ale_offs);
2509 if (ale_offs != 21)
2510 caps = &atmel_sam9261_nand_caps;
2511 }
2512
2513 return caps->ops->probe(pdev, caps);
2514 }
2515
2516 static int atmel_nand_controller_remove(struct platform_device *pdev)
2517 {
2518 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2519
2520 return nc->caps->ops->remove(nc);
2521 }
2522
2523 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2524 {
2525 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2526 struct atmel_nand *nand;
2527
2528 list_for_each_entry(nand, &nc->chips, node) {
2529 int i;
2530
2531 for (i = 0; i < nand->numcs; i++)
2532 nand_reset(&nand->base, i);
2533 }
2534
2535 return 0;
2536 }
2537
2538 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2539 atmel_nand_controller_resume);
2540
2541 static struct platform_driver atmel_nand_controller_driver = {
2542 .driver = {
2543 .name = "atmel-nand-controller",
2544 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2545 },
2546 .probe = atmel_nand_controller_probe,
2547 .remove = atmel_nand_controller_remove,
2548 };
2549 module_platform_driver(atmel_nand_controller_driver);
2550
2551 MODULE_LICENSE("GPL");
2552 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2553 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2554 MODULE_ALIAS("platform:atmel-nand-controller");