]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/nand/atmel_nand.c
KVM: arm64: vgic-v3: Log which GICv3 system registers are trapped
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright © 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
20 *
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
42
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/platform_data/atmel.h>
49
50 static int use_dma = 1;
51 module_param(use_dma, int, 0);
52
53 static int on_flash_bbt = 0;
54 module_param(on_flash_bbt, int, 0);
55
56 /* Register access macros */
57 #define ecc_readl(add, reg) \
58 __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value) \
60 __raw_writel((value), add + ATMEL_ECC_##reg)
61
62 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
64
65 struct atmel_nand_caps {
66 bool pmecc_correct_erase_page;
67 uint8_t pmecc_max_correction;
68 };
69
70 /*
71 * oob layout for large page size
72 * bad block info is on bytes 0 and 1
73 * the bytes have to be consecutives to avoid
74 * several NAND_CMD_RNDOUT during read
75 *
76 * oob layout for small page size
77 * bad block info is on bytes 4 and 5
78 * the bytes have to be consecutives to avoid
79 * several NAND_CMD_RNDOUT during read
80 */
81 static int atmel_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
82 struct mtd_oob_region *oobregion)
83 {
84 if (section)
85 return -ERANGE;
86
87 oobregion->length = 4;
88 oobregion->offset = 0;
89
90 return 0;
91 }
92
93 static int atmel_ooblayout_free_sp(struct mtd_info *mtd, int section,
94 struct mtd_oob_region *oobregion)
95 {
96 if (section)
97 return -ERANGE;
98
99 oobregion->offset = 6;
100 oobregion->length = mtd->oobsize - oobregion->offset;
101
102 return 0;
103 }
104
105 static const struct mtd_ooblayout_ops atmel_ooblayout_sp_ops = {
106 .ecc = atmel_ooblayout_ecc_sp,
107 .free = atmel_ooblayout_free_sp,
108 };
109
110 struct atmel_nfc {
111 void __iomem *base_cmd_regs;
112 void __iomem *hsmc_regs;
113 void *sram_bank0;
114 dma_addr_t sram_bank0_phys;
115 bool use_nfc_sram;
116 bool write_by_sram;
117
118 struct clk *clk;
119
120 bool is_initialized;
121 struct completion comp_ready;
122 struct completion comp_cmd_done;
123 struct completion comp_xfer_done;
124
125 /* Point to the sram bank which include readed data via NFC */
126 void *data_in_sram;
127 bool will_write_sram;
128 };
129 static struct atmel_nfc nand_nfc;
130
131 struct atmel_nand_host {
132 struct nand_chip nand_chip;
133 void __iomem *io_base;
134 dma_addr_t io_phys;
135 struct atmel_nand_data board;
136 struct device *dev;
137 void __iomem *ecc;
138
139 struct completion comp;
140 struct dma_chan *dma_chan;
141
142 struct atmel_nfc *nfc;
143
144 const struct atmel_nand_caps *caps;
145 bool has_pmecc;
146 u8 pmecc_corr_cap;
147 u16 pmecc_sector_size;
148 bool has_no_lookup_table;
149 u32 pmecc_lookup_table_offset;
150 u32 pmecc_lookup_table_offset_512;
151 u32 pmecc_lookup_table_offset_1024;
152
153 int pmecc_degree; /* Degree of remainders */
154 int pmecc_cw_len; /* Length of codeword */
155
156 void __iomem *pmerrloc_base;
157 void __iomem *pmerrloc_el_base;
158 void __iomem *pmecc_rom_base;
159
160 /* lookup table for alpha_to and index_of */
161 void __iomem *pmecc_alpha_to;
162 void __iomem *pmecc_index_of;
163
164 /* data for pmecc computation */
165 int16_t *pmecc_partial_syn;
166 int16_t *pmecc_si;
167 int16_t *pmecc_smu; /* Sigma table */
168 int16_t *pmecc_lmu; /* polynomal order */
169 int *pmecc_mu;
170 int *pmecc_dmu;
171 int *pmecc_delta;
172 };
173
174 /*
175 * Enable NAND.
176 */
177 static void atmel_nand_enable(struct atmel_nand_host *host)
178 {
179 if (gpio_is_valid(host->board.enable_pin))
180 gpio_set_value(host->board.enable_pin, 0);
181 }
182
183 /*
184 * Disable NAND.
185 */
186 static void atmel_nand_disable(struct atmel_nand_host *host)
187 {
188 if (gpio_is_valid(host->board.enable_pin))
189 gpio_set_value(host->board.enable_pin, 1);
190 }
191
192 /*
193 * Hardware specific access to control-lines
194 */
195 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
196 {
197 struct nand_chip *nand_chip = mtd_to_nand(mtd);
198 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
199
200 if (ctrl & NAND_CTRL_CHANGE) {
201 if (ctrl & NAND_NCE)
202 atmel_nand_enable(host);
203 else
204 atmel_nand_disable(host);
205 }
206 if (cmd == NAND_CMD_NONE)
207 return;
208
209 if (ctrl & NAND_CLE)
210 writeb(cmd, host->io_base + (1 << host->board.cle));
211 else
212 writeb(cmd, host->io_base + (1 << host->board.ale));
213 }
214
215 /*
216 * Read the Device Ready pin.
217 */
218 static int atmel_nand_device_ready(struct mtd_info *mtd)
219 {
220 struct nand_chip *nand_chip = mtd_to_nand(mtd);
221 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
222
223 return gpio_get_value(host->board.rdy_pin) ^
224 !!host->board.rdy_pin_active_low;
225 }
226
227 /* Set up for hardware ready pin and enable pin. */
228 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
229 {
230 struct nand_chip *chip = mtd_to_nand(mtd);
231 struct atmel_nand_host *host = nand_get_controller_data(chip);
232 int res = 0;
233
234 if (gpio_is_valid(host->board.rdy_pin)) {
235 res = devm_gpio_request(host->dev,
236 host->board.rdy_pin, "nand_rdy");
237 if (res < 0) {
238 dev_err(host->dev,
239 "can't request rdy gpio %d\n",
240 host->board.rdy_pin);
241 return res;
242 }
243
244 res = gpio_direction_input(host->board.rdy_pin);
245 if (res < 0) {
246 dev_err(host->dev,
247 "can't request input direction rdy gpio %d\n",
248 host->board.rdy_pin);
249 return res;
250 }
251
252 chip->dev_ready = atmel_nand_device_ready;
253 }
254
255 if (gpio_is_valid(host->board.enable_pin)) {
256 res = devm_gpio_request(host->dev,
257 host->board.enable_pin, "nand_enable");
258 if (res < 0) {
259 dev_err(host->dev,
260 "can't request enable gpio %d\n",
261 host->board.enable_pin);
262 return res;
263 }
264
265 res = gpio_direction_output(host->board.enable_pin, 1);
266 if (res < 0) {
267 dev_err(host->dev,
268 "can't request output direction enable gpio %d\n",
269 host->board.enable_pin);
270 return res;
271 }
272 }
273
274 return res;
275 }
276
277 /*
278 * Minimal-overhead PIO for data access.
279 */
280 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
281 {
282 struct nand_chip *nand_chip = mtd_to_nand(mtd);
283 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
284
285 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
286 memcpy(buf, host->nfc->data_in_sram, len);
287 host->nfc->data_in_sram += len;
288 } else {
289 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
290 }
291 }
292
293 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
294 {
295 struct nand_chip *nand_chip = mtd_to_nand(mtd);
296 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
297
298 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
299 memcpy(buf, host->nfc->data_in_sram, len);
300 host->nfc->data_in_sram += len;
301 } else {
302 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
303 }
304 }
305
306 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
307 {
308 struct nand_chip *nand_chip = mtd_to_nand(mtd);
309
310 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
311 }
312
313 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
314 {
315 struct nand_chip *nand_chip = mtd_to_nand(mtd);
316
317 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
318 }
319
320 static void dma_complete_func(void *completion)
321 {
322 complete(completion);
323 }
324
325 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
326 {
327 /* NFC only has two banks. Must be 0 or 1 */
328 if (bank > 1)
329 return -EINVAL;
330
331 if (bank) {
332 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
333
334 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
335 if (mtd->writesize > 2048)
336 return -EINVAL;
337 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
338 } else {
339 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
340 }
341
342 return 0;
343 }
344
345 static uint nfc_get_sram_off(struct atmel_nand_host *host)
346 {
347 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
348 return NFC_SRAM_BANK1_OFFSET;
349 else
350 return 0;
351 }
352
353 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
354 {
355 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
356 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
357 else
358 return host->nfc->sram_bank0_phys;
359 }
360
361 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
362 int is_read)
363 {
364 struct dma_device *dma_dev;
365 enum dma_ctrl_flags flags;
366 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
367 struct dma_async_tx_descriptor *tx = NULL;
368 dma_cookie_t cookie;
369 struct nand_chip *chip = mtd_to_nand(mtd);
370 struct atmel_nand_host *host = nand_get_controller_data(chip);
371 void *p = buf;
372 int err = -EIO;
373 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
374 struct atmel_nfc *nfc = host->nfc;
375
376 if (buf >= high_memory)
377 goto err_buf;
378
379 dma_dev = host->dma_chan->device;
380
381 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
382
383 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
384 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
385 dev_err(host->dev, "Failed to dma_map_single\n");
386 goto err_buf;
387 }
388
389 if (is_read) {
390 if (nfc && nfc->data_in_sram)
391 dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
392 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
393 else
394 dma_src_addr = host->io_phys;
395
396 dma_dst_addr = phys_addr;
397 } else {
398 dma_src_addr = phys_addr;
399
400 if (nfc && nfc->write_by_sram)
401 dma_dst_addr = nfc_sram_phys(host);
402 else
403 dma_dst_addr = host->io_phys;
404 }
405
406 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
407 dma_src_addr, len, flags);
408 if (!tx) {
409 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
410 goto err_dma;
411 }
412
413 init_completion(&host->comp);
414 tx->callback = dma_complete_func;
415 tx->callback_param = &host->comp;
416
417 cookie = tx->tx_submit(tx);
418 if (dma_submit_error(cookie)) {
419 dev_err(host->dev, "Failed to do DMA tx_submit\n");
420 goto err_dma;
421 }
422
423 dma_async_issue_pending(host->dma_chan);
424 wait_for_completion(&host->comp);
425
426 if (is_read && nfc && nfc->data_in_sram)
427 /* After read data from SRAM, need to increase the position */
428 nfc->data_in_sram += len;
429
430 err = 0;
431
432 err_dma:
433 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
434 err_buf:
435 if (err != 0)
436 dev_dbg(host->dev, "Fall back to CPU I/O\n");
437 return err;
438 }
439
440 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
441 {
442 struct nand_chip *chip = mtd_to_nand(mtd);
443
444 if (use_dma && len > mtd->oobsize)
445 /* only use DMA for bigger than oob size: better performances */
446 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
447 return;
448
449 if (chip->options & NAND_BUSWIDTH_16)
450 atmel_read_buf16(mtd, buf, len);
451 else
452 atmel_read_buf8(mtd, buf, len);
453 }
454
455 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
456 {
457 struct nand_chip *chip = mtd_to_nand(mtd);
458
459 if (use_dma && len > mtd->oobsize)
460 /* only use DMA for bigger than oob size: better performances */
461 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
462 return;
463
464 if (chip->options & NAND_BUSWIDTH_16)
465 atmel_write_buf16(mtd, buf, len);
466 else
467 atmel_write_buf8(mtd, buf, len);
468 }
469
470 /*
471 * Return number of ecc bytes per sector according to sector size and
472 * correction capability
473 *
474 * Following table shows what at91 PMECC supported:
475 * Correction Capability Sector_512_bytes Sector_1024_bytes
476 * ===================== ================ =================
477 * 2-bits 4-bytes 4-bytes
478 * 4-bits 7-bytes 7-bytes
479 * 8-bits 13-bytes 14-bytes
480 * 12-bits 20-bytes 21-bytes
481 * 24-bits 39-bytes 42-bytes
482 * 32-bits 52-bytes 56-bytes
483 */
484 static int pmecc_get_ecc_bytes(int cap, int sector_size)
485 {
486 int m = 12 + sector_size / 512;
487 return (m * cap + 7) / 8;
488 }
489
490 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
491 {
492 int table_size;
493
494 table_size = host->pmecc_sector_size == 512 ?
495 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
496
497 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
498 table_size * sizeof(int16_t);
499 }
500
501 static int pmecc_data_alloc(struct atmel_nand_host *host)
502 {
503 const int cap = host->pmecc_corr_cap;
504 int size;
505
506 size = (2 * cap + 1) * sizeof(int16_t);
507 host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
508 host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
509 host->pmecc_lmu = devm_kzalloc(host->dev,
510 (cap + 1) * sizeof(int16_t), GFP_KERNEL);
511 host->pmecc_smu = devm_kzalloc(host->dev,
512 (cap + 2) * size, GFP_KERNEL);
513
514 size = (cap + 1) * sizeof(int);
515 host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
516 host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
517 host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
518
519 if (!host->pmecc_partial_syn ||
520 !host->pmecc_si ||
521 !host->pmecc_lmu ||
522 !host->pmecc_smu ||
523 !host->pmecc_mu ||
524 !host->pmecc_dmu ||
525 !host->pmecc_delta)
526 return -ENOMEM;
527
528 return 0;
529 }
530
531 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
532 {
533 struct nand_chip *nand_chip = mtd_to_nand(mtd);
534 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
535 int i;
536 uint32_t value;
537
538 /* Fill odd syndromes */
539 for (i = 0; i < host->pmecc_corr_cap; i++) {
540 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
541 if (i & 1)
542 value >>= 16;
543 value &= 0xffff;
544 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
545 }
546 }
547
548 static void pmecc_substitute(struct mtd_info *mtd)
549 {
550 struct nand_chip *nand_chip = mtd_to_nand(mtd);
551 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
552 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
553 int16_t __iomem *index_of = host->pmecc_index_of;
554 int16_t *partial_syn = host->pmecc_partial_syn;
555 const int cap = host->pmecc_corr_cap;
556 int16_t *si;
557 int i, j;
558
559 /* si[] is a table that holds the current syndrome value,
560 * an element of that table belongs to the field
561 */
562 si = host->pmecc_si;
563
564 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
565
566 /* Computation 2t syndromes based on S(x) */
567 /* Odd syndromes */
568 for (i = 1; i < 2 * cap; i += 2) {
569 for (j = 0; j < host->pmecc_degree; j++) {
570 if (partial_syn[i] & ((unsigned short)0x1 << j))
571 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
572 }
573 }
574 /* Even syndrome = (Odd syndrome) ** 2 */
575 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
576 if (si[j] == 0) {
577 si[i] = 0;
578 } else {
579 int16_t tmp;
580
581 tmp = readw_relaxed(index_of + si[j]);
582 tmp = (tmp * 2) % host->pmecc_cw_len;
583 si[i] = readw_relaxed(alpha_to + tmp);
584 }
585 }
586
587 return;
588 }
589
590 static void pmecc_get_sigma(struct mtd_info *mtd)
591 {
592 struct nand_chip *nand_chip = mtd_to_nand(mtd);
593 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
594
595 int16_t *lmu = host->pmecc_lmu;
596 int16_t *si = host->pmecc_si;
597 int *mu = host->pmecc_mu;
598 int *dmu = host->pmecc_dmu; /* Discrepancy */
599 int *delta = host->pmecc_delta; /* Delta order */
600 int cw_len = host->pmecc_cw_len;
601 const int16_t cap = host->pmecc_corr_cap;
602 const int num = 2 * cap + 1;
603 int16_t __iomem *index_of = host->pmecc_index_of;
604 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
605 int i, j, k;
606 uint32_t dmu_0_count, tmp;
607 int16_t *smu = host->pmecc_smu;
608
609 /* index of largest delta */
610 int ro;
611 int largest;
612 int diff;
613
614 dmu_0_count = 0;
615
616 /* First Row */
617
618 /* Mu */
619 mu[0] = -1;
620
621 memset(smu, 0, sizeof(int16_t) * num);
622 smu[0] = 1;
623
624 /* discrepancy set to 1 */
625 dmu[0] = 1;
626 /* polynom order set to 0 */
627 lmu[0] = 0;
628 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
629
630 /* Second Row */
631
632 /* Mu */
633 mu[1] = 0;
634 /* Sigma(x) set to 1 */
635 memset(&smu[num], 0, sizeof(int16_t) * num);
636 smu[num] = 1;
637
638 /* discrepancy set to S1 */
639 dmu[1] = si[1];
640
641 /* polynom order set to 0 */
642 lmu[1] = 0;
643
644 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
645
646 /* Init the Sigma(x) last row */
647 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
648
649 for (i = 1; i <= cap; i++) {
650 mu[i + 1] = i << 1;
651 /* Begin Computing Sigma (Mu+1) and L(mu) */
652 /* check if discrepancy is set to 0 */
653 if (dmu[i] == 0) {
654 dmu_0_count++;
655
656 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
657 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
658 tmp += 2;
659 else
660 tmp += 1;
661
662 if (dmu_0_count == tmp) {
663 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
664 smu[(cap + 1) * num + j] =
665 smu[i * num + j];
666
667 lmu[cap + 1] = lmu[i];
668 return;
669 }
670
671 /* copy polynom */
672 for (j = 0; j <= lmu[i] >> 1; j++)
673 smu[(i + 1) * num + j] = smu[i * num + j];
674
675 /* copy previous polynom order to the next */
676 lmu[i + 1] = lmu[i];
677 } else {
678 ro = 0;
679 largest = -1;
680 /* find largest delta with dmu != 0 */
681 for (j = 0; j < i; j++) {
682 if ((dmu[j]) && (delta[j] > largest)) {
683 largest = delta[j];
684 ro = j;
685 }
686 }
687
688 /* compute difference */
689 diff = (mu[i] - mu[ro]);
690
691 /* Compute degree of the new smu polynomial */
692 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
693 lmu[i + 1] = lmu[i];
694 else
695 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
696
697 /* Init smu[i+1] with 0 */
698 for (k = 0; k < num; k++)
699 smu[(i + 1) * num + k] = 0;
700
701 /* Compute smu[i+1] */
702 for (k = 0; k <= lmu[ro] >> 1; k++) {
703 int16_t a, b, c;
704
705 if (!(smu[ro * num + k] && dmu[i]))
706 continue;
707 a = readw_relaxed(index_of + dmu[i]);
708 b = readw_relaxed(index_of + dmu[ro]);
709 c = readw_relaxed(index_of + smu[ro * num + k]);
710 tmp = a + (cw_len - b) + c;
711 a = readw_relaxed(alpha_to + tmp % cw_len);
712 smu[(i + 1) * num + (k + diff)] = a;
713 }
714
715 for (k = 0; k <= lmu[i] >> 1; k++)
716 smu[(i + 1) * num + k] ^= smu[i * num + k];
717 }
718
719 /* End Computing Sigma (Mu+1) and L(mu) */
720 /* In either case compute delta */
721 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
722
723 /* Do not compute discrepancy for the last iteration */
724 if (i >= cap)
725 continue;
726
727 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
728 tmp = 2 * (i - 1);
729 if (k == 0) {
730 dmu[i + 1] = si[tmp + 3];
731 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
732 int16_t a, b, c;
733 a = readw_relaxed(index_of +
734 smu[(i + 1) * num + k]);
735 b = si[2 * (i - 1) + 3 - k];
736 c = readw_relaxed(index_of + b);
737 tmp = a + c;
738 tmp %= cw_len;
739 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
740 dmu[i + 1];
741 }
742 }
743 }
744
745 return;
746 }
747
748 static int pmecc_err_location(struct mtd_info *mtd)
749 {
750 struct nand_chip *nand_chip = mtd_to_nand(mtd);
751 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
752 unsigned long end_time;
753 const int cap = host->pmecc_corr_cap;
754 const int num = 2 * cap + 1;
755 int sector_size = host->pmecc_sector_size;
756 int err_nbr = 0; /* number of error */
757 int roots_nbr; /* number of roots */
758 int i;
759 uint32_t val;
760 int16_t *smu = host->pmecc_smu;
761
762 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
763
764 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
765 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
766 smu[(cap + 1) * num + i]);
767 err_nbr++;
768 }
769
770 val = (err_nbr - 1) << 16;
771 if (sector_size == 1024)
772 val |= 1;
773
774 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
775 pmerrloc_writel(host->pmerrloc_base, ELEN,
776 sector_size * 8 + host->pmecc_degree * cap);
777
778 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
779 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
780 & PMERRLOC_CALC_DONE)) {
781 if (unlikely(time_after(jiffies, end_time))) {
782 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
783 return -1;
784 }
785 cpu_relax();
786 }
787
788 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
789 & PMERRLOC_ERR_NUM_MASK) >> 8;
790 /* Number of roots == degree of smu hence <= cap */
791 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
792 return err_nbr - 1;
793
794 /* Number of roots does not match the degree of smu
795 * unable to correct error */
796 return -1;
797 }
798
799 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
800 int sector_num, int extra_bytes, int err_nbr)
801 {
802 struct nand_chip *nand_chip = mtd_to_nand(mtd);
803 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
804 int i = 0;
805 int byte_pos, bit_pos, sector_size, pos;
806 uint32_t tmp;
807 uint8_t err_byte;
808
809 sector_size = host->pmecc_sector_size;
810
811 while (err_nbr) {
812 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_el_base, i) - 1;
813 byte_pos = tmp / 8;
814 bit_pos = tmp % 8;
815
816 if (byte_pos >= (sector_size + extra_bytes))
817 BUG(); /* should never happen */
818
819 if (byte_pos < sector_size) {
820 err_byte = *(buf + byte_pos);
821 *(buf + byte_pos) ^= (1 << bit_pos);
822
823 pos = sector_num * host->pmecc_sector_size + byte_pos;
824 dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
825 pos, bit_pos, err_byte, *(buf + byte_pos));
826 } else {
827 struct mtd_oob_region oobregion;
828
829 /* Bit flip in OOB area */
830 tmp = sector_num * nand_chip->ecc.bytes
831 + (byte_pos - sector_size);
832 err_byte = ecc[tmp];
833 ecc[tmp] ^= (1 << bit_pos);
834
835 mtd_ooblayout_ecc(mtd, 0, &oobregion);
836 pos = tmp + oobregion.offset;
837 dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
838 pos, bit_pos, err_byte, ecc[tmp]);
839 }
840
841 i++;
842 err_nbr--;
843 }
844
845 return;
846 }
847
848 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
849 u8 *ecc)
850 {
851 struct nand_chip *nand_chip = mtd_to_nand(mtd);
852 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
853 int i, err_nbr;
854 uint8_t *buf_pos;
855 int max_bitflips = 0;
856
857 for (i = 0; i < nand_chip->ecc.steps; i++) {
858 err_nbr = 0;
859 if (pmecc_stat & 0x1) {
860 buf_pos = buf + i * host->pmecc_sector_size;
861
862 pmecc_gen_syndrome(mtd, i);
863 pmecc_substitute(mtd);
864 pmecc_get_sigma(mtd);
865
866 err_nbr = pmecc_err_location(mtd);
867 if (err_nbr >= 0) {
868 pmecc_correct_data(mtd, buf_pos, ecc, i,
869 nand_chip->ecc.bytes,
870 err_nbr);
871 } else if (!host->caps->pmecc_correct_erase_page) {
872 u8 *ecc_pos = ecc + (i * nand_chip->ecc.bytes);
873
874 /* Try to detect erased pages */
875 err_nbr = nand_check_erased_ecc_chunk(buf_pos,
876 host->pmecc_sector_size,
877 ecc_pos,
878 nand_chip->ecc.bytes,
879 NULL, 0,
880 nand_chip->ecc.strength);
881 }
882
883 if (err_nbr < 0) {
884 dev_err(host->dev, "PMECC: Too many errors\n");
885 mtd->ecc_stats.failed++;
886 return -EIO;
887 }
888
889 mtd->ecc_stats.corrected += err_nbr;
890 max_bitflips = max_t(int, max_bitflips, err_nbr);
891 }
892 pmecc_stat >>= 1;
893 }
894
895 return max_bitflips;
896 }
897
898 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
899 {
900 u32 val;
901
902 if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
903 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
904 return;
905 }
906
907 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
908 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
909 val = pmecc_readl_relaxed(host->ecc, CFG);
910
911 if (ecc_op == NAND_ECC_READ)
912 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
913 | PMECC_CFG_AUTO_ENABLE);
914 else
915 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
916 & ~PMECC_CFG_AUTO_ENABLE);
917
918 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
919 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
920 }
921
922 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
923 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
924 {
925 struct atmel_nand_host *host = nand_get_controller_data(chip);
926 int eccsize = chip->ecc.size * chip->ecc.steps;
927 uint8_t *oob = chip->oob_poi;
928 uint32_t stat;
929 unsigned long end_time;
930 int bitflips = 0;
931
932 if (!host->nfc || !host->nfc->use_nfc_sram)
933 pmecc_enable(host, NAND_ECC_READ);
934
935 chip->read_buf(mtd, buf, eccsize);
936 chip->read_buf(mtd, oob, mtd->oobsize);
937
938 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
939 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
940 if (unlikely(time_after(jiffies, end_time))) {
941 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
942 return -EIO;
943 }
944 cpu_relax();
945 }
946
947 stat = pmecc_readl_relaxed(host->ecc, ISR);
948 if (stat != 0) {
949 struct mtd_oob_region oobregion;
950
951 mtd_ooblayout_ecc(mtd, 0, &oobregion);
952 bitflips = pmecc_correction(mtd, stat, buf,
953 &oob[oobregion.offset]);
954 if (bitflips < 0)
955 /* uncorrectable errors */
956 return 0;
957 }
958
959 return bitflips;
960 }
961
962 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
963 struct nand_chip *chip, const uint8_t *buf, int oob_required,
964 int page)
965 {
966 struct atmel_nand_host *host = nand_get_controller_data(chip);
967 struct mtd_oob_region oobregion = { };
968 int i, j, section = 0;
969 unsigned long end_time;
970
971 if (!host->nfc || !host->nfc->write_by_sram) {
972 pmecc_enable(host, NAND_ECC_WRITE);
973 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
974 }
975
976 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
977 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
978 if (unlikely(time_after(jiffies, end_time))) {
979 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
980 return -EIO;
981 }
982 cpu_relax();
983 }
984
985 for (i = 0; i < chip->ecc.steps; i++) {
986 for (j = 0; j < chip->ecc.bytes; j++) {
987 if (!oobregion.length)
988 mtd_ooblayout_ecc(mtd, section, &oobregion);
989
990 chip->oob_poi[oobregion.offset] =
991 pmecc_readb_ecc_relaxed(host->ecc, i, j);
992 oobregion.length--;
993 oobregion.offset++;
994 section++;
995 }
996 }
997 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
998
999 return 0;
1000 }
1001
1002 static void atmel_pmecc_core_init(struct mtd_info *mtd)
1003 {
1004 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1005 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1006 int eccbytes = mtd_ooblayout_count_eccbytes(mtd);
1007 uint32_t val = 0;
1008 struct mtd_oob_region oobregion;
1009
1010 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1011 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1012
1013 switch (host->pmecc_corr_cap) {
1014 case 2:
1015 val = PMECC_CFG_BCH_ERR2;
1016 break;
1017 case 4:
1018 val = PMECC_CFG_BCH_ERR4;
1019 break;
1020 case 8:
1021 val = PMECC_CFG_BCH_ERR8;
1022 break;
1023 case 12:
1024 val = PMECC_CFG_BCH_ERR12;
1025 break;
1026 case 24:
1027 val = PMECC_CFG_BCH_ERR24;
1028 break;
1029 case 32:
1030 val = PMECC_CFG_BCH_ERR32;
1031 break;
1032 }
1033
1034 if (host->pmecc_sector_size == 512)
1035 val |= PMECC_CFG_SECTOR512;
1036 else if (host->pmecc_sector_size == 1024)
1037 val |= PMECC_CFG_SECTOR1024;
1038
1039 switch (nand_chip->ecc.steps) {
1040 case 1:
1041 val |= PMECC_CFG_PAGE_1SECTOR;
1042 break;
1043 case 2:
1044 val |= PMECC_CFG_PAGE_2SECTORS;
1045 break;
1046 case 4:
1047 val |= PMECC_CFG_PAGE_4SECTORS;
1048 break;
1049 case 8:
1050 val |= PMECC_CFG_PAGE_8SECTORS;
1051 break;
1052 }
1053
1054 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1055 | PMECC_CFG_AUTO_DISABLE);
1056 pmecc_writel(host->ecc, CFG, val);
1057
1058 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1059 mtd_ooblayout_ecc(mtd, 0, &oobregion);
1060 pmecc_writel(host->ecc, SADDR, oobregion.offset);
1061 pmecc_writel(host->ecc, EADDR,
1062 oobregion.offset + eccbytes - 1);
1063 /* See datasheet about PMECC Clock Control Register */
1064 pmecc_writel(host->ecc, CLK, 2);
1065 pmecc_writel(host->ecc, IDR, 0xff);
1066 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1067 }
1068
1069 /*
1070 * Get minimum ecc requirements from NAND.
1071 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1072 * will set them according to minimum ecc requirement. Otherwise, use the
1073 * value in DTS file.
1074 * return 0 if success. otherwise return error code.
1075 */
1076 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1077 int *cap, int *sector_size)
1078 {
1079 /* Get minimum ECC requirements */
1080 if (host->nand_chip.ecc_strength_ds) {
1081 *cap = host->nand_chip.ecc_strength_ds;
1082 *sector_size = host->nand_chip.ecc_step_ds;
1083 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1084 *cap, *sector_size);
1085 } else {
1086 *cap = 2;
1087 *sector_size = 512;
1088 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1089 }
1090
1091 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1092 if (host->pmecc_corr_cap == 0) {
1093 if (*cap > host->caps->pmecc_max_correction)
1094 return -EINVAL;
1095
1096 /* use the most fitable ecc bits (the near bigger one ) */
1097 if (*cap <= 2)
1098 host->pmecc_corr_cap = 2;
1099 else if (*cap <= 4)
1100 host->pmecc_corr_cap = 4;
1101 else if (*cap <= 8)
1102 host->pmecc_corr_cap = 8;
1103 else if (*cap <= 12)
1104 host->pmecc_corr_cap = 12;
1105 else if (*cap <= 24)
1106 host->pmecc_corr_cap = 24;
1107 else if (*cap <= 32)
1108 host->pmecc_corr_cap = 32;
1109 else
1110 return -EINVAL;
1111 }
1112 if (host->pmecc_sector_size == 0) {
1113 /* use the most fitable sector size (the near smaller one ) */
1114 if (*sector_size >= 1024)
1115 host->pmecc_sector_size = 1024;
1116 else if (*sector_size >= 512)
1117 host->pmecc_sector_size = 512;
1118 else
1119 return -EINVAL;
1120 }
1121 return 0;
1122 }
1123
1124 static inline int deg(unsigned int poly)
1125 {
1126 /* polynomial degree is the most-significant bit index */
1127 return fls(poly) - 1;
1128 }
1129
1130 static int build_gf_tables(int mm, unsigned int poly,
1131 int16_t *index_of, int16_t *alpha_to)
1132 {
1133 unsigned int i, x = 1;
1134 const unsigned int k = 1 << deg(poly);
1135 unsigned int nn = (1 << mm) - 1;
1136
1137 /* primitive polynomial must be of degree m */
1138 if (k != (1u << mm))
1139 return -EINVAL;
1140
1141 for (i = 0; i < nn; i++) {
1142 alpha_to[i] = x;
1143 index_of[x] = i;
1144 if (i && (x == 1))
1145 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1146 return -EINVAL;
1147 x <<= 1;
1148 if (x & k)
1149 x ^= poly;
1150 }
1151 alpha_to[nn] = 1;
1152 index_of[0] = 0;
1153
1154 return 0;
1155 }
1156
1157 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1158 {
1159 int degree = (sector_size == 512) ?
1160 PMECC_GF_DIMENSION_13 :
1161 PMECC_GF_DIMENSION_14;
1162 unsigned int poly = (sector_size == 512) ?
1163 PMECC_GF_13_PRIMITIVE_POLY :
1164 PMECC_GF_14_PRIMITIVE_POLY;
1165 int table_size = (sector_size == 512) ?
1166 PMECC_LOOKUP_TABLE_SIZE_512 :
1167 PMECC_LOOKUP_TABLE_SIZE_1024;
1168
1169 int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1170 GFP_KERNEL);
1171 if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1172 return NULL;
1173
1174 return addr;
1175 }
1176
1177 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1178 struct atmel_nand_host *host)
1179 {
1180 struct nand_chip *nand_chip = &host->nand_chip;
1181 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1182 struct resource *regs, *regs_pmerr, *regs_rom;
1183 uint16_t *galois_table;
1184 int cap, sector_size, err_no;
1185
1186 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1187 if (err_no) {
1188 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1189 return err_no;
1190 }
1191
1192 if (cap > host->pmecc_corr_cap ||
1193 sector_size != host->pmecc_sector_size)
1194 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1195
1196 cap = host->pmecc_corr_cap;
1197 sector_size = host->pmecc_sector_size;
1198 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1199 host->pmecc_lookup_table_offset_512 :
1200 host->pmecc_lookup_table_offset_1024;
1201
1202 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1203 cap, sector_size);
1204
1205 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1206 if (!regs) {
1207 dev_warn(host->dev,
1208 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1209 nand_chip->ecc.mode = NAND_ECC_SOFT;
1210 nand_chip->ecc.algo = NAND_ECC_HAMMING;
1211 return 0;
1212 }
1213
1214 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1215 if (IS_ERR(host->ecc)) {
1216 err_no = PTR_ERR(host->ecc);
1217 goto err;
1218 }
1219
1220 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1221 host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1222 if (IS_ERR(host->pmerrloc_base)) {
1223 err_no = PTR_ERR(host->pmerrloc_base);
1224 goto err;
1225 }
1226 host->pmerrloc_el_base = host->pmerrloc_base + ATMEL_PMERRLOC_SIGMAx +
1227 (host->caps->pmecc_max_correction + 1) * 4;
1228
1229 if (!host->has_no_lookup_table) {
1230 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1231 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1232 regs_rom);
1233 if (IS_ERR(host->pmecc_rom_base)) {
1234 dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1235 host->has_no_lookup_table = true;
1236 }
1237 }
1238
1239 if (host->has_no_lookup_table) {
1240 /* Build the look-up table in runtime */
1241 galois_table = create_lookup_table(host->dev, sector_size);
1242 if (!galois_table) {
1243 dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1244 err_no = -EINVAL;
1245 goto err;
1246 }
1247
1248 host->pmecc_rom_base = (void __iomem *)galois_table;
1249 host->pmecc_lookup_table_offset = 0;
1250 }
1251
1252 nand_chip->ecc.size = sector_size;
1253
1254 /* set ECC page size and oob layout */
1255 switch (mtd->writesize) {
1256 case 512:
1257 case 1024:
1258 case 2048:
1259 case 4096:
1260 case 8192:
1261 if (sector_size > mtd->writesize) {
1262 dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1263 err_no = -EINVAL;
1264 goto err;
1265 }
1266
1267 host->pmecc_degree = (sector_size == 512) ?
1268 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1269 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1270 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1271 host->pmecc_index_of = host->pmecc_rom_base +
1272 host->pmecc_lookup_table_offset;
1273
1274 nand_chip->ecc.strength = cap;
1275 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1276 nand_chip->ecc.steps = mtd->writesize / sector_size;
1277 nand_chip->ecc.total = nand_chip->ecc.bytes *
1278 nand_chip->ecc.steps;
1279 if (nand_chip->ecc.total >
1280 mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1281 dev_err(host->dev, "No room for ECC bytes\n");
1282 err_no = -EINVAL;
1283 goto err;
1284 }
1285
1286 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1287 break;
1288 default:
1289 dev_warn(host->dev,
1290 "Unsupported page size for PMECC, use Software ECC\n");
1291 /* page size not handled by HW ECC */
1292 /* switching back to soft ECC */
1293 nand_chip->ecc.mode = NAND_ECC_SOFT;
1294 nand_chip->ecc.algo = NAND_ECC_HAMMING;
1295 return 0;
1296 }
1297
1298 /* Allocate data for PMECC computation */
1299 err_no = pmecc_data_alloc(host);
1300 if (err_no) {
1301 dev_err(host->dev,
1302 "Cannot allocate memory for PMECC computation!\n");
1303 goto err;
1304 }
1305
1306 nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1307 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1308 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1309
1310 atmel_pmecc_core_init(mtd);
1311
1312 return 0;
1313
1314 err:
1315 return err_no;
1316 }
1317
1318 /*
1319 * Calculate HW ECC
1320 *
1321 * function called after a write
1322 *
1323 * mtd: MTD block structure
1324 * dat: raw data (unused)
1325 * ecc_code: buffer for ECC
1326 */
1327 static int atmel_nand_calculate(struct mtd_info *mtd,
1328 const u_char *dat, unsigned char *ecc_code)
1329 {
1330 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1331 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1332 unsigned int ecc_value;
1333
1334 /* get the first 2 ECC bytes */
1335 ecc_value = ecc_readl(host->ecc, PR);
1336
1337 ecc_code[0] = ecc_value & 0xFF;
1338 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1339
1340 /* get the last 2 ECC bytes */
1341 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1342
1343 ecc_code[2] = ecc_value & 0xFF;
1344 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * HW ECC read page function
1351 *
1352 * mtd: mtd info structure
1353 * chip: nand chip info structure
1354 * buf: buffer to store read data
1355 * oob_required: caller expects OOB data read to chip->oob_poi
1356 */
1357 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1358 uint8_t *buf, int oob_required, int page)
1359 {
1360 int eccsize = chip->ecc.size;
1361 int eccbytes = chip->ecc.bytes;
1362 uint8_t *p = buf;
1363 uint8_t *oob = chip->oob_poi;
1364 uint8_t *ecc_pos;
1365 int stat;
1366 unsigned int max_bitflips = 0;
1367 struct mtd_oob_region oobregion = {};
1368
1369 /*
1370 * Errata: ALE is incorrectly wired up to the ECC controller
1371 * on the AP7000, so it will include the address cycles in the
1372 * ECC calculation.
1373 *
1374 * Workaround: Reset the parity registers before reading the
1375 * actual data.
1376 */
1377 struct atmel_nand_host *host = nand_get_controller_data(chip);
1378 if (host->board.need_reset_workaround)
1379 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1380
1381 /* read the page */
1382 chip->read_buf(mtd, p, eccsize);
1383
1384 /* move to ECC position if needed */
1385 mtd_ooblayout_ecc(mtd, 0, &oobregion);
1386 if (oobregion.offset != 0) {
1387 /*
1388 * This only works on large pages because the ECC controller
1389 * waits for NAND_CMD_RNDOUTSTART after the NAND_CMD_RNDOUT.
1390 * Anyway, for small pages, the first ECC byte is at offset
1391 * 0 in the OOB area.
1392 */
1393 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1394 mtd->writesize + oobregion.offset, -1);
1395 }
1396
1397 /* the ECC controller needs to read the ECC just after the data */
1398 ecc_pos = oob + oobregion.offset;
1399 chip->read_buf(mtd, ecc_pos, eccbytes);
1400
1401 /* check if there's an error */
1402 stat = chip->ecc.correct(mtd, p, oob, NULL);
1403
1404 if (stat < 0) {
1405 mtd->ecc_stats.failed++;
1406 } else {
1407 mtd->ecc_stats.corrected += stat;
1408 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1409 }
1410
1411 /* get back to oob start (end of page) */
1412 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1413
1414 /* read the oob */
1415 chip->read_buf(mtd, oob, mtd->oobsize);
1416
1417 return max_bitflips;
1418 }
1419
1420 /*
1421 * HW ECC Correction
1422 *
1423 * function called after a read
1424 *
1425 * mtd: MTD block structure
1426 * dat: raw data read from the chip
1427 * read_ecc: ECC from the chip (unused)
1428 * isnull: unused
1429 *
1430 * Detect and correct a 1 bit error for a page
1431 */
1432 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1433 u_char *read_ecc, u_char *isnull)
1434 {
1435 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1436 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1437 unsigned int ecc_status;
1438 unsigned int ecc_word, ecc_bit;
1439
1440 /* get the status from the Status Register */
1441 ecc_status = ecc_readl(host->ecc, SR);
1442
1443 /* if there's no error */
1444 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1445 return 0;
1446
1447 /* get error bit offset (4 bits) */
1448 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1449 /* get word address (12 bits) */
1450 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1451 ecc_word >>= 4;
1452
1453 /* if there are multiple errors */
1454 if (ecc_status & ATMEL_ECC_MULERR) {
1455 /* check if it is a freshly erased block
1456 * (filled with 0xff) */
1457 if ((ecc_bit == ATMEL_ECC_BITADDR)
1458 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1459 /* the block has just been erased, return OK */
1460 return 0;
1461 }
1462 /* it doesn't seems to be a freshly
1463 * erased block.
1464 * We can't correct so many errors */
1465 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1466 " Unable to correct.\n");
1467 return -EBADMSG;
1468 }
1469
1470 /* if there's a single bit error : we can correct it */
1471 if (ecc_status & ATMEL_ECC_ECCERR) {
1472 /* there's nothing much to do here.
1473 * the bit error is on the ECC itself.
1474 */
1475 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1476 " Nothing to correct\n");
1477 return 0;
1478 }
1479
1480 dev_dbg(host->dev, "atmel_nand : one bit error on data."
1481 " (word offset in the page :"
1482 " 0x%x bit offset : 0x%x)\n",
1483 ecc_word, ecc_bit);
1484 /* correct the error */
1485 if (nand_chip->options & NAND_BUSWIDTH_16) {
1486 /* 16 bits words */
1487 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1488 } else {
1489 /* 8 bits words */
1490 dat[ecc_word] ^= (1 << ecc_bit);
1491 }
1492 dev_dbg(host->dev, "atmel_nand : error corrected\n");
1493 return 1;
1494 }
1495
1496 /*
1497 * Enable HW ECC : unused on most chips
1498 */
1499 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1500 {
1501 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1502 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1503
1504 if (host->board.need_reset_workaround)
1505 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1506 }
1507
1508 static int atmel_of_init_ecc(struct atmel_nand_host *host,
1509 struct device_node *np)
1510 {
1511 u32 offset[2];
1512 u32 val;
1513
1514 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1515
1516 /* Not using PMECC */
1517 if (!(host->nand_chip.ecc.mode == NAND_ECC_HW) || !host->has_pmecc)
1518 return 0;
1519
1520 /* use PMECC, get correction capability, sector size and lookup
1521 * table offset.
1522 * If correction bits and sector size are not specified, then find
1523 * them from NAND ONFI parameters.
1524 */
1525 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1526 if (val > host->caps->pmecc_max_correction) {
1527 dev_err(host->dev,
1528 "Required ECC strength too high: %u max %u\n",
1529 val, host->caps->pmecc_max_correction);
1530 return -EINVAL;
1531 }
1532 if ((val != 2) && (val != 4) && (val != 8) &&
1533 (val != 12) && (val != 24) && (val != 32)) {
1534 dev_err(host->dev,
1535 "Required ECC strength not supported: %u\n",
1536 val);
1537 return -EINVAL;
1538 }
1539 host->pmecc_corr_cap = (u8)val;
1540 }
1541
1542 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1543 if ((val != 512) && (val != 1024)) {
1544 dev_err(host->dev,
1545 "Required ECC sector size not supported: %u\n",
1546 val);
1547 return -EINVAL;
1548 }
1549 host->pmecc_sector_size = (u16)val;
1550 }
1551
1552 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1553 offset, 2) != 0) {
1554 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1555 host->has_no_lookup_table = true;
1556 /* Will build a lookup table and initialize the offset later */
1557 return 0;
1558 }
1559
1560 if (!offset[0] && !offset[1]) {
1561 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1562 return -EINVAL;
1563 }
1564
1565 host->pmecc_lookup_table_offset_512 = offset[0];
1566 host->pmecc_lookup_table_offset_1024 = offset[1];
1567
1568 return 0;
1569 }
1570
1571 static int atmel_of_init_port(struct atmel_nand_host *host,
1572 struct device_node *np)
1573 {
1574 u32 val;
1575 struct atmel_nand_data *board = &host->board;
1576 enum of_gpio_flags flags = 0;
1577
1578 host->caps = (struct atmel_nand_caps *)
1579 of_device_get_match_data(host->dev);
1580
1581 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1582 if (val >= 32) {
1583 dev_err(host->dev, "invalid addr-offset %u\n", val);
1584 return -EINVAL;
1585 }
1586 board->ale = val;
1587 }
1588
1589 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1590 if (val >= 32) {
1591 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1592 return -EINVAL;
1593 }
1594 board->cle = val;
1595 }
1596
1597 board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1598
1599 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1600 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1601
1602 board->enable_pin = of_get_gpio(np, 1);
1603 board->det_pin = of_get_gpio(np, 2);
1604
1605 /* load the nfc driver if there is */
1606 of_platform_populate(np, NULL, NULL, host->dev);
1607
1608 /*
1609 * Initialize ECC mode to NAND_ECC_SOFT so that we have a correct value
1610 * even if the nand-ecc-mode property is not defined.
1611 */
1612 host->nand_chip.ecc.mode = NAND_ECC_SOFT;
1613 host->nand_chip.ecc.algo = NAND_ECC_HAMMING;
1614
1615 return 0;
1616 }
1617
1618 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1619 struct atmel_nand_host *host)
1620 {
1621 struct nand_chip *nand_chip = &host->nand_chip;
1622 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1623 struct resource *regs;
1624
1625 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1626 if (!regs) {
1627 dev_err(host->dev,
1628 "Can't get I/O resource regs, use software ECC\n");
1629 nand_chip->ecc.mode = NAND_ECC_SOFT;
1630 nand_chip->ecc.algo = NAND_ECC_HAMMING;
1631 return 0;
1632 }
1633
1634 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1635 if (IS_ERR(host->ecc))
1636 return PTR_ERR(host->ecc);
1637
1638 /* ECC is calculated for the whole page (1 step) */
1639 nand_chip->ecc.size = mtd->writesize;
1640
1641 /* set ECC page size and oob layout */
1642 switch (mtd->writesize) {
1643 case 512:
1644 mtd_set_ooblayout(mtd, &atmel_ooblayout_sp_ops);
1645 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1646 break;
1647 case 1024:
1648 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1649 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1650 break;
1651 case 2048:
1652 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1653 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1654 break;
1655 case 4096:
1656 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1657 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1658 break;
1659 default:
1660 /* page size not handled by HW ECC */
1661 /* switching back to soft ECC */
1662 nand_chip->ecc.mode = NAND_ECC_SOFT;
1663 nand_chip->ecc.algo = NAND_ECC_HAMMING;
1664 return 0;
1665 }
1666
1667 /* set up for HW ECC */
1668 nand_chip->ecc.calculate = atmel_nand_calculate;
1669 nand_chip->ecc.correct = atmel_nand_correct;
1670 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1671 nand_chip->ecc.read_page = atmel_nand_read_page;
1672 nand_chip->ecc.bytes = 4;
1673 nand_chip->ecc.strength = 1;
1674
1675 return 0;
1676 }
1677
1678 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1679 {
1680 u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1681 u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1682
1683 if (unlikely(nfc_status & err_flags)) {
1684 if (nfc_status & NFC_SR_DTOE)
1685 dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1686 else if (nfc_status & NFC_SR_UNDEF)
1687 dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1688 else if (nfc_status & NFC_SR_AWB)
1689 dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1690 else if (nfc_status & NFC_SR_ASE)
1691 dev_err(host->dev, "NFC: Access memory Size Error\n");
1692 }
1693
1694 return nfc_status;
1695 }
1696
1697 /* SMC interrupt service routine */
1698 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1699 {
1700 struct atmel_nand_host *host = dev_id;
1701 u32 status, mask, pending;
1702 irqreturn_t ret = IRQ_NONE;
1703
1704 status = nfc_read_status(host);
1705 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1706 pending = status & mask;
1707
1708 if (pending & NFC_SR_XFR_DONE) {
1709 complete(&host->nfc->comp_xfer_done);
1710 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1711 ret = IRQ_HANDLED;
1712 }
1713 if (pending & NFC_SR_RB_EDGE) {
1714 complete(&host->nfc->comp_ready);
1715 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1716 ret = IRQ_HANDLED;
1717 }
1718 if (pending & NFC_SR_CMD_DONE) {
1719 complete(&host->nfc->comp_cmd_done);
1720 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1721 ret = IRQ_HANDLED;
1722 }
1723
1724 return ret;
1725 }
1726
1727 /* NFC(Nand Flash Controller) related functions */
1728 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1729 {
1730 if (flag & NFC_SR_XFR_DONE)
1731 init_completion(&host->nfc->comp_xfer_done);
1732
1733 if (flag & NFC_SR_RB_EDGE)
1734 init_completion(&host->nfc->comp_ready);
1735
1736 if (flag & NFC_SR_CMD_DONE)
1737 init_completion(&host->nfc->comp_cmd_done);
1738
1739 /* Enable interrupt that need to wait for */
1740 nfc_writel(host->nfc->hsmc_regs, IER, flag);
1741 }
1742
1743 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1744 {
1745 int i, index = 0;
1746 struct completion *comp[3]; /* Support 3 interrupt completion */
1747
1748 if (flag & NFC_SR_XFR_DONE)
1749 comp[index++] = &host->nfc->comp_xfer_done;
1750
1751 if (flag & NFC_SR_RB_EDGE)
1752 comp[index++] = &host->nfc->comp_ready;
1753
1754 if (flag & NFC_SR_CMD_DONE)
1755 comp[index++] = &host->nfc->comp_cmd_done;
1756
1757 if (index == 0) {
1758 dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1759 return -EINVAL;
1760 }
1761
1762 for (i = 0; i < index; i++) {
1763 if (wait_for_completion_timeout(comp[i],
1764 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1765 continue; /* wait for next completion */
1766 else
1767 goto err_timeout;
1768 }
1769
1770 return 0;
1771
1772 err_timeout:
1773 dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1774 /* Disable the interrupt as it is not handled by interrupt handler */
1775 nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1776 return -ETIMEDOUT;
1777 }
1778
1779 static int nfc_send_command(struct atmel_nand_host *host,
1780 unsigned int cmd, unsigned int addr, unsigned char cycle0)
1781 {
1782 unsigned long timeout;
1783 u32 flag = NFC_SR_CMD_DONE;
1784 flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1785
1786 dev_dbg(host->dev,
1787 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1788 cmd, addr, cycle0);
1789
1790 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1791 while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1792 if (time_after(jiffies, timeout)) {
1793 dev_err(host->dev,
1794 "Time out to wait for NFC ready!\n");
1795 return -ETIMEDOUT;
1796 }
1797 }
1798
1799 nfc_prepare_interrupt(host, flag);
1800 nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1801 nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1802 return nfc_wait_interrupt(host, flag);
1803 }
1804
1805 static int nfc_device_ready(struct mtd_info *mtd)
1806 {
1807 u32 status, mask;
1808 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1809 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1810
1811 status = nfc_read_status(host);
1812 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1813
1814 /* The mask should be 0. If not we may lost interrupts */
1815 if (unlikely(mask & status))
1816 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1817 mask & status);
1818
1819 return status & NFC_SR_RB_EDGE;
1820 }
1821
1822 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1823 {
1824 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1825 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1826
1827 if (chip == -1)
1828 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1829 else
1830 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1831 }
1832
1833 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1834 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1835 {
1836 struct nand_chip *chip = mtd_to_nand(mtd);
1837
1838 int acycle = 0;
1839 unsigned char addr_bytes[8];
1840 int index = 0, bit_shift;
1841
1842 BUG_ON(addr1234 == NULL || cycle0 == NULL);
1843
1844 *cycle0 = 0;
1845 *addr1234 = 0;
1846
1847 if (column != -1) {
1848 if (chip->options & NAND_BUSWIDTH_16 &&
1849 !nand_opcode_8bits(command))
1850 column >>= 1;
1851 addr_bytes[acycle++] = column & 0xff;
1852 if (mtd->writesize > 512)
1853 addr_bytes[acycle++] = (column >> 8) & 0xff;
1854 }
1855
1856 if (page_addr != -1) {
1857 addr_bytes[acycle++] = page_addr & 0xff;
1858 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1859 if (chip->chipsize > (128 << 20))
1860 addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1861 }
1862
1863 if (acycle > 4)
1864 *cycle0 = addr_bytes[index++];
1865
1866 for (bit_shift = 0; index < acycle; bit_shift += 8)
1867 *addr1234 += addr_bytes[index++] << bit_shift;
1868
1869 /* return acycle in cmd register */
1870 return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1871 }
1872
1873 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1874 int column, int page_addr)
1875 {
1876 struct nand_chip *chip = mtd_to_nand(mtd);
1877 struct atmel_nand_host *host = nand_get_controller_data(chip);
1878 unsigned long timeout;
1879 unsigned int nfc_addr_cmd = 0;
1880
1881 unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1882
1883 /* Set default settings: no cmd2, no addr cycle. read from nand */
1884 unsigned int cmd2 = 0;
1885 unsigned int vcmd2 = 0;
1886 int acycle = NFCADDR_CMD_ACYCLE_NONE;
1887 int csid = NFCADDR_CMD_CSID_3;
1888 int dataen = NFCADDR_CMD_DATADIS;
1889 int nfcwr = NFCADDR_CMD_NFCRD;
1890 unsigned int addr1234 = 0;
1891 unsigned int cycle0 = 0;
1892 bool do_addr = true;
1893 host->nfc->data_in_sram = NULL;
1894
1895 dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1896 __func__, command, column, page_addr);
1897
1898 switch (command) {
1899 case NAND_CMD_RESET:
1900 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1901 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1902 udelay(chip->chip_delay);
1903
1904 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1905 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1906 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1907 if (time_after(jiffies, timeout)) {
1908 dev_err(host->dev,
1909 "Time out to wait status ready!\n");
1910 break;
1911 }
1912 }
1913 return;
1914 case NAND_CMD_STATUS:
1915 do_addr = false;
1916 break;
1917 case NAND_CMD_PARAM:
1918 case NAND_CMD_READID:
1919 do_addr = false;
1920 acycle = NFCADDR_CMD_ACYCLE_1;
1921 if (column != -1)
1922 addr1234 = column;
1923 break;
1924 case NAND_CMD_RNDOUT:
1925 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1926 vcmd2 = NFCADDR_CMD_VCMD2;
1927 break;
1928 case NAND_CMD_READ0:
1929 case NAND_CMD_READOOB:
1930 if (command == NAND_CMD_READOOB) {
1931 column += mtd->writesize;
1932 command = NAND_CMD_READ0; /* only READ0 is valid */
1933 cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1934 }
1935 if (host->nfc->use_nfc_sram) {
1936 /* Enable Data transfer to sram */
1937 dataen = NFCADDR_CMD_DATAEN;
1938
1939 /* Need enable PMECC now, since NFC will transfer
1940 * data in bus after sending nfc read command.
1941 */
1942 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1943 pmecc_enable(host, NAND_ECC_READ);
1944 }
1945
1946 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1947 vcmd2 = NFCADDR_CMD_VCMD2;
1948 break;
1949 /* For prgramming command, the cmd need set to write enable */
1950 case NAND_CMD_PAGEPROG:
1951 case NAND_CMD_SEQIN:
1952 case NAND_CMD_RNDIN:
1953 nfcwr = NFCADDR_CMD_NFCWR;
1954 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1955 dataen = NFCADDR_CMD_DATAEN;
1956 break;
1957 default:
1958 break;
1959 }
1960
1961 if (do_addr)
1962 acycle = nfc_make_addr(mtd, command, column, page_addr,
1963 &addr1234, &cycle0);
1964
1965 nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1966 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1967
1968 /*
1969 * Program and erase have their own busy handlers status, sequential
1970 * in, and deplete1 need no delay.
1971 */
1972 switch (command) {
1973 case NAND_CMD_CACHEDPROG:
1974 case NAND_CMD_PAGEPROG:
1975 case NAND_CMD_ERASE1:
1976 case NAND_CMD_ERASE2:
1977 case NAND_CMD_RNDIN:
1978 case NAND_CMD_STATUS:
1979 case NAND_CMD_RNDOUT:
1980 case NAND_CMD_SEQIN:
1981 case NAND_CMD_READID:
1982 return;
1983
1984 case NAND_CMD_READ0:
1985 if (dataen == NFCADDR_CMD_DATAEN) {
1986 host->nfc->data_in_sram = host->nfc->sram_bank0 +
1987 nfc_get_sram_off(host);
1988 return;
1989 }
1990 /* fall through */
1991 default:
1992 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1993 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1994 }
1995 }
1996
1997 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1998 uint32_t offset, int data_len, const uint8_t *buf,
1999 int oob_required, int page, int cached, int raw)
2000 {
2001 int cfg, len;
2002 int status = 0;
2003 struct atmel_nand_host *host = nand_get_controller_data(chip);
2004 void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
2005
2006 /* Subpage write is not supported */
2007 if (offset || (data_len < mtd->writesize))
2008 return -EINVAL;
2009
2010 len = mtd->writesize;
2011 /* Copy page data to sram that will write to nand via NFC */
2012 if (use_dma) {
2013 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
2014 /* Fall back to use cpu copy */
2015 memcpy(sram, buf, len);
2016 } else {
2017 memcpy(sram, buf, len);
2018 }
2019
2020 cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
2021 if (unlikely(raw) && oob_required) {
2022 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
2023 len += mtd->oobsize;
2024 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
2025 } else {
2026 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
2027 }
2028
2029 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
2030 /*
2031 * When use NFC sram, need set up PMECC before send
2032 * NAND_CMD_SEQIN command. Since when the nand command
2033 * is sent, nfc will do transfer from sram and nand.
2034 */
2035 pmecc_enable(host, NAND_ECC_WRITE);
2036
2037 host->nfc->will_write_sram = true;
2038 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2039 host->nfc->will_write_sram = false;
2040
2041 if (likely(!raw))
2042 /* Need to write ecc into oob */
2043 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2044 page);
2045
2046 if (status < 0)
2047 return status;
2048
2049 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2050 status = chip->waitfunc(mtd, chip);
2051
2052 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2053 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2054
2055 if (status & NAND_STATUS_FAIL)
2056 return -EIO;
2057
2058 return 0;
2059 }
2060
2061 static int nfc_sram_init(struct mtd_info *mtd)
2062 {
2063 struct nand_chip *chip = mtd_to_nand(mtd);
2064 struct atmel_nand_host *host = nand_get_controller_data(chip);
2065 int res = 0;
2066
2067 /* Initialize the NFC CFG register */
2068 unsigned int cfg_nfc = 0;
2069
2070 /* set page size and oob layout */
2071 switch (mtd->writesize) {
2072 case 512:
2073 cfg_nfc = NFC_CFG_PAGESIZE_512;
2074 break;
2075 case 1024:
2076 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2077 break;
2078 case 2048:
2079 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2080 break;
2081 case 4096:
2082 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2083 break;
2084 case 8192:
2085 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2086 break;
2087 default:
2088 dev_err(host->dev, "Unsupported page size for NFC.\n");
2089 res = -ENXIO;
2090 return res;
2091 }
2092
2093 /* oob bytes size = (NFCSPARESIZE + 1) * 4
2094 * Max support spare size is 512 bytes. */
2095 cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2096 & NFC_CFG_NFC_SPARESIZE);
2097 /* default set a max timeout */
2098 cfg_nfc |= NFC_CFG_RSPARE |
2099 NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2100
2101 nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2102
2103 host->nfc->will_write_sram = false;
2104 nfc_set_sram_bank(host, 0);
2105
2106 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2107 if (host->nfc->write_by_sram) {
2108 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2109 chip->ecc.mode == NAND_ECC_NONE)
2110 chip->write_page = nfc_sram_write_page;
2111 else
2112 host->nfc->write_by_sram = false;
2113 }
2114
2115 dev_info(host->dev, "Using NFC Sram read %s\n",
2116 host->nfc->write_by_sram ? "and write" : "");
2117 return 0;
2118 }
2119
2120 static struct platform_driver atmel_nand_nfc_driver;
2121 /*
2122 * Probe for the NAND device.
2123 */
2124 static int atmel_nand_probe(struct platform_device *pdev)
2125 {
2126 struct atmel_nand_host *host;
2127 struct mtd_info *mtd;
2128 struct nand_chip *nand_chip;
2129 struct resource *mem;
2130 int res, irq;
2131
2132 /* Allocate memory for the device structure (and zero it) */
2133 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2134 if (!host)
2135 return -ENOMEM;
2136
2137 res = platform_driver_register(&atmel_nand_nfc_driver);
2138 if (res)
2139 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2140
2141 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2142 host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2143 if (IS_ERR(host->io_base)) {
2144 res = PTR_ERR(host->io_base);
2145 goto err_nand_ioremap;
2146 }
2147 host->io_phys = (dma_addr_t)mem->start;
2148
2149 nand_chip = &host->nand_chip;
2150 mtd = nand_to_mtd(nand_chip);
2151 host->dev = &pdev->dev;
2152 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2153 nand_set_flash_node(nand_chip, pdev->dev.of_node);
2154 /* Only when CONFIG_OF is enabled of_node can be parsed */
2155 res = atmel_of_init_port(host, pdev->dev.of_node);
2156 if (res)
2157 goto err_nand_ioremap;
2158 } else {
2159 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2160 sizeof(struct atmel_nand_data));
2161 nand_chip->ecc.mode = host->board.ecc_mode;
2162
2163 /*
2164 * When using software ECC every supported avr32 board means
2165 * Hamming algorithm. If that ever changes we'll need to add
2166 * ecc_algo field to the struct atmel_nand_data.
2167 */
2168 if (nand_chip->ecc.mode == NAND_ECC_SOFT)
2169 nand_chip->ecc.algo = NAND_ECC_HAMMING;
2170
2171 /* 16-bit bus width */
2172 if (host->board.bus_width_16)
2173 nand_chip->options |= NAND_BUSWIDTH_16;
2174 }
2175
2176 /* link the private data structures */
2177 nand_set_controller_data(nand_chip, host);
2178 mtd->dev.parent = &pdev->dev;
2179
2180 /* Set address of NAND IO lines */
2181 nand_chip->IO_ADDR_R = host->io_base;
2182 nand_chip->IO_ADDR_W = host->io_base;
2183
2184 if (nand_nfc.is_initialized) {
2185 /* NFC driver is probed and initialized */
2186 host->nfc = &nand_nfc;
2187
2188 nand_chip->select_chip = nfc_select_chip;
2189 nand_chip->dev_ready = nfc_device_ready;
2190 nand_chip->cmdfunc = nfc_nand_command;
2191
2192 /* Initialize the interrupt for NFC */
2193 irq = platform_get_irq(pdev, 0);
2194 if (irq < 0) {
2195 dev_err(host->dev, "Cannot get HSMC irq!\n");
2196 res = irq;
2197 goto err_nand_ioremap;
2198 }
2199
2200 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2201 0, "hsmc", host);
2202 if (res) {
2203 dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2204 irq);
2205 goto err_nand_ioremap;
2206 }
2207 } else {
2208 res = atmel_nand_set_enable_ready_pins(mtd);
2209 if (res)
2210 goto err_nand_ioremap;
2211
2212 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2213 }
2214
2215 nand_chip->chip_delay = 40; /* 40us command delay time */
2216
2217
2218 nand_chip->read_buf = atmel_read_buf;
2219 nand_chip->write_buf = atmel_write_buf;
2220
2221 platform_set_drvdata(pdev, host);
2222 atmel_nand_enable(host);
2223
2224 if (gpio_is_valid(host->board.det_pin)) {
2225 res = devm_gpio_request(&pdev->dev,
2226 host->board.det_pin, "nand_det");
2227 if (res < 0) {
2228 dev_err(&pdev->dev,
2229 "can't request det gpio %d\n",
2230 host->board.det_pin);
2231 goto err_no_card;
2232 }
2233
2234 res = gpio_direction_input(host->board.det_pin);
2235 if (res < 0) {
2236 dev_err(&pdev->dev,
2237 "can't request input direction det gpio %d\n",
2238 host->board.det_pin);
2239 goto err_no_card;
2240 }
2241
2242 if (gpio_get_value(host->board.det_pin)) {
2243 dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2244 res = -ENXIO;
2245 goto err_no_card;
2246 }
2247 }
2248
2249 if (!host->board.has_dma)
2250 use_dma = 0;
2251
2252 if (use_dma) {
2253 dma_cap_mask_t mask;
2254
2255 dma_cap_zero(mask);
2256 dma_cap_set(DMA_MEMCPY, mask);
2257 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2258 if (!host->dma_chan) {
2259 dev_err(host->dev, "Failed to request DMA channel\n");
2260 use_dma = 0;
2261 }
2262 }
2263 if (use_dma)
2264 dev_info(host->dev, "Using %s for DMA transfers.\n",
2265 dma_chan_name(host->dma_chan));
2266 else
2267 dev_info(host->dev, "No DMA support for NAND access.\n");
2268
2269 /* first scan to find the device and get the page size */
2270 res = nand_scan_ident(mtd, 1, NULL);
2271 if (res)
2272 goto err_scan_ident;
2273
2274 if (host->board.on_flash_bbt || on_flash_bbt)
2275 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2276
2277 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
2278 dev_info(&pdev->dev, "Use On Flash BBT\n");
2279
2280 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2281 res = atmel_of_init_ecc(host, pdev->dev.of_node);
2282 if (res)
2283 goto err_hw_ecc;
2284 }
2285
2286 if (nand_chip->ecc.mode == NAND_ECC_HW) {
2287 if (host->has_pmecc)
2288 res = atmel_pmecc_nand_init_params(pdev, host);
2289 else
2290 res = atmel_hw_nand_init_params(pdev, host);
2291
2292 if (res != 0)
2293 goto err_hw_ecc;
2294 }
2295
2296 /* initialize the nfc configuration register */
2297 if (host->nfc && host->nfc->use_nfc_sram) {
2298 res = nfc_sram_init(mtd);
2299 if (res) {
2300 host->nfc->use_nfc_sram = false;
2301 dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2302 }
2303 }
2304
2305 /* second phase scan */
2306 res = nand_scan_tail(mtd);
2307 if (res)
2308 goto err_scan_tail;
2309
2310 mtd->name = "atmel_nand";
2311 res = mtd_device_register(mtd, host->board.parts,
2312 host->board.num_parts);
2313 if (!res)
2314 return res;
2315
2316 err_scan_tail:
2317 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2318 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2319 err_hw_ecc:
2320 err_scan_ident:
2321 err_no_card:
2322 atmel_nand_disable(host);
2323 if (host->dma_chan)
2324 dma_release_channel(host->dma_chan);
2325 err_nand_ioremap:
2326 return res;
2327 }
2328
2329 /*
2330 * Remove a NAND device.
2331 */
2332 static int atmel_nand_remove(struct platform_device *pdev)
2333 {
2334 struct atmel_nand_host *host = platform_get_drvdata(pdev);
2335 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
2336
2337 nand_release(mtd);
2338
2339 atmel_nand_disable(host);
2340
2341 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2342 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2343 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2344 PMERRLOC_DISABLE);
2345 }
2346
2347 if (host->dma_chan)
2348 dma_release_channel(host->dma_chan);
2349
2350 platform_driver_unregister(&atmel_nand_nfc_driver);
2351
2352 return 0;
2353 }
2354
2355 /*
2356 * AT91RM9200 does not have PMECC or PMECC Errloc peripherals for
2357 * BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe
2358 * devices from the SAM9 family that have those.
2359 */
2360 static const struct atmel_nand_caps at91rm9200_caps = {
2361 .pmecc_correct_erase_page = false,
2362 .pmecc_max_correction = 24,
2363 };
2364
2365 static const struct atmel_nand_caps sama5d4_caps = {
2366 .pmecc_correct_erase_page = true,
2367 .pmecc_max_correction = 24,
2368 };
2369
2370 /*
2371 * The PMECC Errloc controller starting in SAMA5D2 is not compatible,
2372 * as the increased correction strength requires more registers.
2373 */
2374 static const struct atmel_nand_caps sama5d2_caps = {
2375 .pmecc_correct_erase_page = true,
2376 .pmecc_max_correction = 32,
2377 };
2378
2379 static const struct of_device_id atmel_nand_dt_ids[] = {
2380 { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2381 { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2382 { .compatible = "atmel,sama5d2-nand", .data = &sama5d2_caps },
2383 { /* sentinel */ }
2384 };
2385
2386 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2387
2388 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2389 {
2390 struct atmel_nfc *nfc = &nand_nfc;
2391 struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2392 int ret;
2393
2394 nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2395 nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2396 if (IS_ERR(nfc->base_cmd_regs))
2397 return PTR_ERR(nfc->base_cmd_regs);
2398
2399 nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2400 nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2401 if (IS_ERR(nfc->hsmc_regs))
2402 return PTR_ERR(nfc->hsmc_regs);
2403
2404 nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2405 if (nfc_sram) {
2406 nfc->sram_bank0 = (void * __force)
2407 devm_ioremap_resource(&pdev->dev, nfc_sram);
2408 if (IS_ERR(nfc->sram_bank0)) {
2409 dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2410 PTR_ERR(nfc->sram_bank0));
2411 } else {
2412 nfc->use_nfc_sram = true;
2413 nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2414
2415 if (pdev->dev.of_node)
2416 nfc->write_by_sram = of_property_read_bool(
2417 pdev->dev.of_node,
2418 "atmel,write-by-sram");
2419 }
2420 }
2421
2422 nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2423 nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
2424
2425 nfc->clk = devm_clk_get(&pdev->dev, NULL);
2426 if (!IS_ERR(nfc->clk)) {
2427 ret = clk_prepare_enable(nfc->clk);
2428 if (ret)
2429 return ret;
2430 } else {
2431 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2432 }
2433
2434 nfc->is_initialized = true;
2435 dev_info(&pdev->dev, "NFC is probed.\n");
2436
2437 return 0;
2438 }
2439
2440 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2441 {
2442 struct atmel_nfc *nfc = &nand_nfc;
2443
2444 if (!IS_ERR(nfc->clk))
2445 clk_disable_unprepare(nfc->clk);
2446
2447 return 0;
2448 }
2449
2450 static const struct of_device_id atmel_nand_nfc_match[] = {
2451 { .compatible = "atmel,sama5d3-nfc" },
2452 { /* sentinel */ }
2453 };
2454 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2455
2456 static struct platform_driver atmel_nand_nfc_driver = {
2457 .driver = {
2458 .name = "atmel_nand_nfc",
2459 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2460 },
2461 .probe = atmel_nand_nfc_probe,
2462 .remove = atmel_nand_nfc_remove,
2463 };
2464
2465 static struct platform_driver atmel_nand_driver = {
2466 .probe = atmel_nand_probe,
2467 .remove = atmel_nand_remove,
2468 .driver = {
2469 .name = "atmel_nand",
2470 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2471 },
2472 };
2473
2474 module_platform_driver(atmel_nand_driver);
2475
2476 MODULE_LICENSE("GPL");
2477 MODULE_AUTHOR("Rick Bronson");
2478 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2479 MODULE_ALIAS("platform:atmel_nand");