]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/atmel_nand.c
Merge tag 'for-linus-20141215' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright © 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
20 *
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
48 #include <linux/io.h>
49 #include <linux/platform_data/atmel.h>
50
51 static int use_dma = 1;
52 module_param(use_dma, int, 0);
53
54 static int on_flash_bbt = 0;
55 module_param(on_flash_bbt, int, 0);
56
57 /* Register access macros */
58 #define ecc_readl(add, reg) \
59 __raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value) \
61 __raw_writel((value), add + ATMEL_ECC_##reg)
62
63 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
64 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
65
66 /* oob layout for large page size
67 * bad block info is on bytes 0 and 1
68 * the bytes have to be consecutives to avoid
69 * several NAND_CMD_RNDOUT during read
70 */
71 static struct nand_ecclayout atmel_oobinfo_large = {
72 .eccbytes = 4,
73 .eccpos = {60, 61, 62, 63},
74 .oobfree = {
75 {2, 58}
76 },
77 };
78
79 /* oob layout for small page size
80 * bad block info is on bytes 4 and 5
81 * the bytes have to be consecutives to avoid
82 * several NAND_CMD_RNDOUT during read
83 */
84 static struct nand_ecclayout atmel_oobinfo_small = {
85 .eccbytes = 4,
86 .eccpos = {0, 1, 2, 3},
87 .oobfree = {
88 {6, 10}
89 },
90 };
91
92 struct atmel_nfc {
93 void __iomem *base_cmd_regs;
94 void __iomem *hsmc_regs;
95 void *sram_bank0;
96 dma_addr_t sram_bank0_phys;
97 bool use_nfc_sram;
98 bool write_by_sram;
99
100 struct clk *clk;
101
102 bool is_initialized;
103 struct completion comp_ready;
104 struct completion comp_cmd_done;
105 struct completion comp_xfer_done;
106
107 /* Point to the sram bank which include readed data via NFC */
108 void *data_in_sram;
109 bool will_write_sram;
110 };
111 static struct atmel_nfc nand_nfc;
112
113 struct atmel_nand_host {
114 struct nand_chip nand_chip;
115 struct mtd_info mtd;
116 void __iomem *io_base;
117 dma_addr_t io_phys;
118 struct atmel_nand_data board;
119 struct device *dev;
120 void __iomem *ecc;
121
122 struct completion comp;
123 struct dma_chan *dma_chan;
124
125 struct atmel_nfc *nfc;
126
127 bool has_pmecc;
128 u8 pmecc_corr_cap;
129 u16 pmecc_sector_size;
130 bool has_no_lookup_table;
131 u32 pmecc_lookup_table_offset;
132 u32 pmecc_lookup_table_offset_512;
133 u32 pmecc_lookup_table_offset_1024;
134
135 int pmecc_degree; /* Degree of remainders */
136 int pmecc_cw_len; /* Length of codeword */
137
138 void __iomem *pmerrloc_base;
139 void __iomem *pmecc_rom_base;
140
141 /* lookup table for alpha_to and index_of */
142 void __iomem *pmecc_alpha_to;
143 void __iomem *pmecc_index_of;
144
145 /* data for pmecc computation */
146 int16_t *pmecc_partial_syn;
147 int16_t *pmecc_si;
148 int16_t *pmecc_smu; /* Sigma table */
149 int16_t *pmecc_lmu; /* polynomal order */
150 int *pmecc_mu;
151 int *pmecc_dmu;
152 int *pmecc_delta;
153 };
154
155 static struct nand_ecclayout atmel_pmecc_oobinfo;
156
157 /*
158 * Enable NAND.
159 */
160 static void atmel_nand_enable(struct atmel_nand_host *host)
161 {
162 if (gpio_is_valid(host->board.enable_pin))
163 gpio_set_value(host->board.enable_pin, 0);
164 }
165
166 /*
167 * Disable NAND.
168 */
169 static void atmel_nand_disable(struct atmel_nand_host *host)
170 {
171 if (gpio_is_valid(host->board.enable_pin))
172 gpio_set_value(host->board.enable_pin, 1);
173 }
174
175 /*
176 * Hardware specific access to control-lines
177 */
178 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
179 {
180 struct nand_chip *nand_chip = mtd->priv;
181 struct atmel_nand_host *host = nand_chip->priv;
182
183 if (ctrl & NAND_CTRL_CHANGE) {
184 if (ctrl & NAND_NCE)
185 atmel_nand_enable(host);
186 else
187 atmel_nand_disable(host);
188 }
189 if (cmd == NAND_CMD_NONE)
190 return;
191
192 if (ctrl & NAND_CLE)
193 writeb(cmd, host->io_base + (1 << host->board.cle));
194 else
195 writeb(cmd, host->io_base + (1 << host->board.ale));
196 }
197
198 /*
199 * Read the Device Ready pin.
200 */
201 static int atmel_nand_device_ready(struct mtd_info *mtd)
202 {
203 struct nand_chip *nand_chip = mtd->priv;
204 struct atmel_nand_host *host = nand_chip->priv;
205
206 return gpio_get_value(host->board.rdy_pin) ^
207 !!host->board.rdy_pin_active_low;
208 }
209
210 /* Set up for hardware ready pin and enable pin. */
211 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
212 {
213 struct nand_chip *chip = mtd->priv;
214 struct atmel_nand_host *host = chip->priv;
215 int res = 0;
216
217 if (gpio_is_valid(host->board.rdy_pin)) {
218 res = devm_gpio_request(host->dev,
219 host->board.rdy_pin, "nand_rdy");
220 if (res < 0) {
221 dev_err(host->dev,
222 "can't request rdy gpio %d\n",
223 host->board.rdy_pin);
224 return res;
225 }
226
227 res = gpio_direction_input(host->board.rdy_pin);
228 if (res < 0) {
229 dev_err(host->dev,
230 "can't request input direction rdy gpio %d\n",
231 host->board.rdy_pin);
232 return res;
233 }
234
235 chip->dev_ready = atmel_nand_device_ready;
236 }
237
238 if (gpio_is_valid(host->board.enable_pin)) {
239 res = devm_gpio_request(host->dev,
240 host->board.enable_pin, "nand_enable");
241 if (res < 0) {
242 dev_err(host->dev,
243 "can't request enable gpio %d\n",
244 host->board.enable_pin);
245 return res;
246 }
247
248 res = gpio_direction_output(host->board.enable_pin, 1);
249 if (res < 0) {
250 dev_err(host->dev,
251 "can't request output direction enable gpio %d\n",
252 host->board.enable_pin);
253 return res;
254 }
255 }
256
257 return res;
258 }
259
260 /*
261 * Minimal-overhead PIO for data access.
262 */
263 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
264 {
265 struct nand_chip *nand_chip = mtd->priv;
266 struct atmel_nand_host *host = nand_chip->priv;
267
268 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
269 memcpy(buf, host->nfc->data_in_sram, len);
270 host->nfc->data_in_sram += len;
271 } else {
272 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
273 }
274 }
275
276 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
277 {
278 struct nand_chip *nand_chip = mtd->priv;
279 struct atmel_nand_host *host = nand_chip->priv;
280
281 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
282 memcpy(buf, host->nfc->data_in_sram, len);
283 host->nfc->data_in_sram += len;
284 } else {
285 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
286 }
287 }
288
289 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
290 {
291 struct nand_chip *nand_chip = mtd->priv;
292
293 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
294 }
295
296 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
297 {
298 struct nand_chip *nand_chip = mtd->priv;
299
300 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
301 }
302
303 static void dma_complete_func(void *completion)
304 {
305 complete(completion);
306 }
307
308 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
309 {
310 /* NFC only has two banks. Must be 0 or 1 */
311 if (bank > 1)
312 return -EINVAL;
313
314 if (bank) {
315 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
316 if (host->mtd.writesize > 2048)
317 return -EINVAL;
318 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
319 } else {
320 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
321 }
322
323 return 0;
324 }
325
326 static uint nfc_get_sram_off(struct atmel_nand_host *host)
327 {
328 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
329 return NFC_SRAM_BANK1_OFFSET;
330 else
331 return 0;
332 }
333
334 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
335 {
336 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
337 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
338 else
339 return host->nfc->sram_bank0_phys;
340 }
341
342 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
343 int is_read)
344 {
345 struct dma_device *dma_dev;
346 enum dma_ctrl_flags flags;
347 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
348 struct dma_async_tx_descriptor *tx = NULL;
349 dma_cookie_t cookie;
350 struct nand_chip *chip = mtd->priv;
351 struct atmel_nand_host *host = chip->priv;
352 void *p = buf;
353 int err = -EIO;
354 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
355 struct atmel_nfc *nfc = host->nfc;
356
357 if (buf >= high_memory)
358 goto err_buf;
359
360 dma_dev = host->dma_chan->device;
361
362 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
363
364 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
365 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
366 dev_err(host->dev, "Failed to dma_map_single\n");
367 goto err_buf;
368 }
369
370 if (is_read) {
371 if (nfc && nfc->data_in_sram)
372 dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
373 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
374 else
375 dma_src_addr = host->io_phys;
376
377 dma_dst_addr = phys_addr;
378 } else {
379 dma_src_addr = phys_addr;
380
381 if (nfc && nfc->write_by_sram)
382 dma_dst_addr = nfc_sram_phys(host);
383 else
384 dma_dst_addr = host->io_phys;
385 }
386
387 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
388 dma_src_addr, len, flags);
389 if (!tx) {
390 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
391 goto err_dma;
392 }
393
394 init_completion(&host->comp);
395 tx->callback = dma_complete_func;
396 tx->callback_param = &host->comp;
397
398 cookie = tx->tx_submit(tx);
399 if (dma_submit_error(cookie)) {
400 dev_err(host->dev, "Failed to do DMA tx_submit\n");
401 goto err_dma;
402 }
403
404 dma_async_issue_pending(host->dma_chan);
405 wait_for_completion(&host->comp);
406
407 if (is_read && nfc && nfc->data_in_sram)
408 /* After read data from SRAM, need to increase the position */
409 nfc->data_in_sram += len;
410
411 err = 0;
412
413 err_dma:
414 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
415 err_buf:
416 if (err != 0)
417 dev_dbg(host->dev, "Fall back to CPU I/O\n");
418 return err;
419 }
420
421 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
422 {
423 struct nand_chip *chip = mtd->priv;
424 struct atmel_nand_host *host = chip->priv;
425
426 if (use_dma && len > mtd->oobsize)
427 /* only use DMA for bigger than oob size: better performances */
428 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
429 return;
430
431 if (host->board.bus_width_16)
432 atmel_read_buf16(mtd, buf, len);
433 else
434 atmel_read_buf8(mtd, buf, len);
435 }
436
437 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
438 {
439 struct nand_chip *chip = mtd->priv;
440 struct atmel_nand_host *host = chip->priv;
441
442 if (use_dma && len > mtd->oobsize)
443 /* only use DMA for bigger than oob size: better performances */
444 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
445 return;
446
447 if (host->board.bus_width_16)
448 atmel_write_buf16(mtd, buf, len);
449 else
450 atmel_write_buf8(mtd, buf, len);
451 }
452
453 /*
454 * Return number of ecc bytes per sector according to sector size and
455 * correction capability
456 *
457 * Following table shows what at91 PMECC supported:
458 * Correction Capability Sector_512_bytes Sector_1024_bytes
459 * ===================== ================ =================
460 * 2-bits 4-bytes 4-bytes
461 * 4-bits 7-bytes 7-bytes
462 * 8-bits 13-bytes 14-bytes
463 * 12-bits 20-bytes 21-bytes
464 * 24-bits 39-bytes 42-bytes
465 */
466 static int pmecc_get_ecc_bytes(int cap, int sector_size)
467 {
468 int m = 12 + sector_size / 512;
469 return (m * cap + 7) / 8;
470 }
471
472 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
473 int oobsize, int ecc_len)
474 {
475 int i;
476
477 layout->eccbytes = ecc_len;
478
479 /* ECC will occupy the last ecc_len bytes continuously */
480 for (i = 0; i < ecc_len; i++)
481 layout->eccpos[i] = oobsize - ecc_len + i;
482
483 layout->oobfree[0].offset = 2;
484 layout->oobfree[0].length =
485 oobsize - ecc_len - layout->oobfree[0].offset;
486 }
487
488 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
489 {
490 int table_size;
491
492 table_size = host->pmecc_sector_size == 512 ?
493 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
494
495 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
496 table_size * sizeof(int16_t);
497 }
498
499 static int pmecc_data_alloc(struct atmel_nand_host *host)
500 {
501 const int cap = host->pmecc_corr_cap;
502 int size;
503
504 size = (2 * cap + 1) * sizeof(int16_t);
505 host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
506 host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
507 host->pmecc_lmu = devm_kzalloc(host->dev,
508 (cap + 1) * sizeof(int16_t), GFP_KERNEL);
509 host->pmecc_smu = devm_kzalloc(host->dev,
510 (cap + 2) * size, GFP_KERNEL);
511
512 size = (cap + 1) * sizeof(int);
513 host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
514 host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
515 host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
516
517 if (!host->pmecc_partial_syn ||
518 !host->pmecc_si ||
519 !host->pmecc_lmu ||
520 !host->pmecc_smu ||
521 !host->pmecc_mu ||
522 !host->pmecc_dmu ||
523 !host->pmecc_delta)
524 return -ENOMEM;
525
526 return 0;
527 }
528
529 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
530 {
531 struct nand_chip *nand_chip = mtd->priv;
532 struct atmel_nand_host *host = nand_chip->priv;
533 int i;
534 uint32_t value;
535
536 /* Fill odd syndromes */
537 for (i = 0; i < host->pmecc_corr_cap; i++) {
538 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
539 if (i & 1)
540 value >>= 16;
541 value &= 0xffff;
542 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
543 }
544 }
545
546 static void pmecc_substitute(struct mtd_info *mtd)
547 {
548 struct nand_chip *nand_chip = mtd->priv;
549 struct atmel_nand_host *host = nand_chip->priv;
550 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
551 int16_t __iomem *index_of = host->pmecc_index_of;
552 int16_t *partial_syn = host->pmecc_partial_syn;
553 const int cap = host->pmecc_corr_cap;
554 int16_t *si;
555 int i, j;
556
557 /* si[] is a table that holds the current syndrome value,
558 * an element of that table belongs to the field
559 */
560 si = host->pmecc_si;
561
562 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
563
564 /* Computation 2t syndromes based on S(x) */
565 /* Odd syndromes */
566 for (i = 1; i < 2 * cap; i += 2) {
567 for (j = 0; j < host->pmecc_degree; j++) {
568 if (partial_syn[i] & ((unsigned short)0x1 << j))
569 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
570 }
571 }
572 /* Even syndrome = (Odd syndrome) ** 2 */
573 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
574 if (si[j] == 0) {
575 si[i] = 0;
576 } else {
577 int16_t tmp;
578
579 tmp = readw_relaxed(index_of + si[j]);
580 tmp = (tmp * 2) % host->pmecc_cw_len;
581 si[i] = readw_relaxed(alpha_to + tmp);
582 }
583 }
584
585 return;
586 }
587
588 static void pmecc_get_sigma(struct mtd_info *mtd)
589 {
590 struct nand_chip *nand_chip = mtd->priv;
591 struct atmel_nand_host *host = nand_chip->priv;
592
593 int16_t *lmu = host->pmecc_lmu;
594 int16_t *si = host->pmecc_si;
595 int *mu = host->pmecc_mu;
596 int *dmu = host->pmecc_dmu; /* Discrepancy */
597 int *delta = host->pmecc_delta; /* Delta order */
598 int cw_len = host->pmecc_cw_len;
599 const int16_t cap = host->pmecc_corr_cap;
600 const int num = 2 * cap + 1;
601 int16_t __iomem *index_of = host->pmecc_index_of;
602 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
603 int i, j, k;
604 uint32_t dmu_0_count, tmp;
605 int16_t *smu = host->pmecc_smu;
606
607 /* index of largest delta */
608 int ro;
609 int largest;
610 int diff;
611
612 dmu_0_count = 0;
613
614 /* First Row */
615
616 /* Mu */
617 mu[0] = -1;
618
619 memset(smu, 0, sizeof(int16_t) * num);
620 smu[0] = 1;
621
622 /* discrepancy set to 1 */
623 dmu[0] = 1;
624 /* polynom order set to 0 */
625 lmu[0] = 0;
626 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
627
628 /* Second Row */
629
630 /* Mu */
631 mu[1] = 0;
632 /* Sigma(x) set to 1 */
633 memset(&smu[num], 0, sizeof(int16_t) * num);
634 smu[num] = 1;
635
636 /* discrepancy set to S1 */
637 dmu[1] = si[1];
638
639 /* polynom order set to 0 */
640 lmu[1] = 0;
641
642 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
643
644 /* Init the Sigma(x) last row */
645 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
646
647 for (i = 1; i <= cap; i++) {
648 mu[i + 1] = i << 1;
649 /* Begin Computing Sigma (Mu+1) and L(mu) */
650 /* check if discrepancy is set to 0 */
651 if (dmu[i] == 0) {
652 dmu_0_count++;
653
654 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
655 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
656 tmp += 2;
657 else
658 tmp += 1;
659
660 if (dmu_0_count == tmp) {
661 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
662 smu[(cap + 1) * num + j] =
663 smu[i * num + j];
664
665 lmu[cap + 1] = lmu[i];
666 return;
667 }
668
669 /* copy polynom */
670 for (j = 0; j <= lmu[i] >> 1; j++)
671 smu[(i + 1) * num + j] = smu[i * num + j];
672
673 /* copy previous polynom order to the next */
674 lmu[i + 1] = lmu[i];
675 } else {
676 ro = 0;
677 largest = -1;
678 /* find largest delta with dmu != 0 */
679 for (j = 0; j < i; j++) {
680 if ((dmu[j]) && (delta[j] > largest)) {
681 largest = delta[j];
682 ro = j;
683 }
684 }
685
686 /* compute difference */
687 diff = (mu[i] - mu[ro]);
688
689 /* Compute degree of the new smu polynomial */
690 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
691 lmu[i + 1] = lmu[i];
692 else
693 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
694
695 /* Init smu[i+1] with 0 */
696 for (k = 0; k < num; k++)
697 smu[(i + 1) * num + k] = 0;
698
699 /* Compute smu[i+1] */
700 for (k = 0; k <= lmu[ro] >> 1; k++) {
701 int16_t a, b, c;
702
703 if (!(smu[ro * num + k] && dmu[i]))
704 continue;
705 a = readw_relaxed(index_of + dmu[i]);
706 b = readw_relaxed(index_of + dmu[ro]);
707 c = readw_relaxed(index_of + smu[ro * num + k]);
708 tmp = a + (cw_len - b) + c;
709 a = readw_relaxed(alpha_to + tmp % cw_len);
710 smu[(i + 1) * num + (k + diff)] = a;
711 }
712
713 for (k = 0; k <= lmu[i] >> 1; k++)
714 smu[(i + 1) * num + k] ^= smu[i * num + k];
715 }
716
717 /* End Computing Sigma (Mu+1) and L(mu) */
718 /* In either case compute delta */
719 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
720
721 /* Do not compute discrepancy for the last iteration */
722 if (i >= cap)
723 continue;
724
725 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
726 tmp = 2 * (i - 1);
727 if (k == 0) {
728 dmu[i + 1] = si[tmp + 3];
729 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
730 int16_t a, b, c;
731 a = readw_relaxed(index_of +
732 smu[(i + 1) * num + k]);
733 b = si[2 * (i - 1) + 3 - k];
734 c = readw_relaxed(index_of + b);
735 tmp = a + c;
736 tmp %= cw_len;
737 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
738 dmu[i + 1];
739 }
740 }
741 }
742
743 return;
744 }
745
746 static int pmecc_err_location(struct mtd_info *mtd)
747 {
748 struct nand_chip *nand_chip = mtd->priv;
749 struct atmel_nand_host *host = nand_chip->priv;
750 unsigned long end_time;
751 const int cap = host->pmecc_corr_cap;
752 const int num = 2 * cap + 1;
753 int sector_size = host->pmecc_sector_size;
754 int err_nbr = 0; /* number of error */
755 int roots_nbr; /* number of roots */
756 int i;
757 uint32_t val;
758 int16_t *smu = host->pmecc_smu;
759
760 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
761
762 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
763 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
764 smu[(cap + 1) * num + i]);
765 err_nbr++;
766 }
767
768 val = (err_nbr - 1) << 16;
769 if (sector_size == 1024)
770 val |= 1;
771
772 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
773 pmerrloc_writel(host->pmerrloc_base, ELEN,
774 sector_size * 8 + host->pmecc_degree * cap);
775
776 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
777 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
778 & PMERRLOC_CALC_DONE)) {
779 if (unlikely(time_after(jiffies, end_time))) {
780 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
781 return -1;
782 }
783 cpu_relax();
784 }
785
786 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
787 & PMERRLOC_ERR_NUM_MASK) >> 8;
788 /* Number of roots == degree of smu hence <= cap */
789 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
790 return err_nbr - 1;
791
792 /* Number of roots does not match the degree of smu
793 * unable to correct error */
794 return -1;
795 }
796
797 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
798 int sector_num, int extra_bytes, int err_nbr)
799 {
800 struct nand_chip *nand_chip = mtd->priv;
801 struct atmel_nand_host *host = nand_chip->priv;
802 int i = 0;
803 int byte_pos, bit_pos, sector_size, pos;
804 uint32_t tmp;
805 uint8_t err_byte;
806
807 sector_size = host->pmecc_sector_size;
808
809 while (err_nbr) {
810 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
811 byte_pos = tmp / 8;
812 bit_pos = tmp % 8;
813
814 if (byte_pos >= (sector_size + extra_bytes))
815 BUG(); /* should never happen */
816
817 if (byte_pos < sector_size) {
818 err_byte = *(buf + byte_pos);
819 *(buf + byte_pos) ^= (1 << bit_pos);
820
821 pos = sector_num * host->pmecc_sector_size + byte_pos;
822 dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
823 pos, bit_pos, err_byte, *(buf + byte_pos));
824 } else {
825 /* Bit flip in OOB area */
826 tmp = sector_num * nand_chip->ecc.bytes
827 + (byte_pos - sector_size);
828 err_byte = ecc[tmp];
829 ecc[tmp] ^= (1 << bit_pos);
830
831 pos = tmp + nand_chip->ecc.layout->eccpos[0];
832 dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
833 pos, bit_pos, err_byte, ecc[tmp]);
834 }
835
836 i++;
837 err_nbr--;
838 }
839
840 return;
841 }
842
843 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
844 u8 *ecc)
845 {
846 struct nand_chip *nand_chip = mtd->priv;
847 struct atmel_nand_host *host = nand_chip->priv;
848 int i, err_nbr;
849 uint8_t *buf_pos;
850 int total_err = 0;
851
852 for (i = 0; i < nand_chip->ecc.total; i++)
853 if (ecc[i] != 0xff)
854 goto normal_check;
855 /* Erased page, return OK */
856 return 0;
857
858 normal_check:
859 for (i = 0; i < nand_chip->ecc.steps; i++) {
860 err_nbr = 0;
861 if (pmecc_stat & 0x1) {
862 buf_pos = buf + i * host->pmecc_sector_size;
863
864 pmecc_gen_syndrome(mtd, i);
865 pmecc_substitute(mtd);
866 pmecc_get_sigma(mtd);
867
868 err_nbr = pmecc_err_location(mtd);
869 if (err_nbr == -1) {
870 dev_err(host->dev, "PMECC: Too many errors\n");
871 mtd->ecc_stats.failed++;
872 return -EIO;
873 } else {
874 pmecc_correct_data(mtd, buf_pos, ecc, i,
875 nand_chip->ecc.bytes, err_nbr);
876 mtd->ecc_stats.corrected += err_nbr;
877 total_err += err_nbr;
878 }
879 }
880 pmecc_stat >>= 1;
881 }
882
883 return total_err;
884 }
885
886 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
887 {
888 u32 val;
889
890 if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
891 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
892 return;
893 }
894
895 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
896 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
897 val = pmecc_readl_relaxed(host->ecc, CFG);
898
899 if (ecc_op == NAND_ECC_READ)
900 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
901 | PMECC_CFG_AUTO_ENABLE);
902 else
903 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
904 & ~PMECC_CFG_AUTO_ENABLE);
905
906 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
907 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
908 }
909
910 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
911 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
912 {
913 struct atmel_nand_host *host = chip->priv;
914 int eccsize = chip->ecc.size * chip->ecc.steps;
915 uint8_t *oob = chip->oob_poi;
916 uint32_t *eccpos = chip->ecc.layout->eccpos;
917 uint32_t stat;
918 unsigned long end_time;
919 int bitflips = 0;
920
921 if (!host->nfc || !host->nfc->use_nfc_sram)
922 pmecc_enable(host, NAND_ECC_READ);
923
924 chip->read_buf(mtd, buf, eccsize);
925 chip->read_buf(mtd, oob, mtd->oobsize);
926
927 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
928 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
929 if (unlikely(time_after(jiffies, end_time))) {
930 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
931 return -EIO;
932 }
933 cpu_relax();
934 }
935
936 stat = pmecc_readl_relaxed(host->ecc, ISR);
937 if (stat != 0) {
938 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
939 if (bitflips < 0)
940 /* uncorrectable errors */
941 return 0;
942 }
943
944 return bitflips;
945 }
946
947 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
948 struct nand_chip *chip, const uint8_t *buf, int oob_required)
949 {
950 struct atmel_nand_host *host = chip->priv;
951 uint32_t *eccpos = chip->ecc.layout->eccpos;
952 int i, j;
953 unsigned long end_time;
954
955 if (!host->nfc || !host->nfc->write_by_sram) {
956 pmecc_enable(host, NAND_ECC_WRITE);
957 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
958 }
959
960 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
961 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
962 if (unlikely(time_after(jiffies, end_time))) {
963 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
964 return -EIO;
965 }
966 cpu_relax();
967 }
968
969 for (i = 0; i < chip->ecc.steps; i++) {
970 for (j = 0; j < chip->ecc.bytes; j++) {
971 int pos;
972
973 pos = i * chip->ecc.bytes + j;
974 chip->oob_poi[eccpos[pos]] =
975 pmecc_readb_ecc_relaxed(host->ecc, i, j);
976 }
977 }
978 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
979
980 return 0;
981 }
982
983 static void atmel_pmecc_core_init(struct mtd_info *mtd)
984 {
985 struct nand_chip *nand_chip = mtd->priv;
986 struct atmel_nand_host *host = nand_chip->priv;
987 uint32_t val = 0;
988 struct nand_ecclayout *ecc_layout;
989
990 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
991 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
992
993 switch (host->pmecc_corr_cap) {
994 case 2:
995 val = PMECC_CFG_BCH_ERR2;
996 break;
997 case 4:
998 val = PMECC_CFG_BCH_ERR4;
999 break;
1000 case 8:
1001 val = PMECC_CFG_BCH_ERR8;
1002 break;
1003 case 12:
1004 val = PMECC_CFG_BCH_ERR12;
1005 break;
1006 case 24:
1007 val = PMECC_CFG_BCH_ERR24;
1008 break;
1009 }
1010
1011 if (host->pmecc_sector_size == 512)
1012 val |= PMECC_CFG_SECTOR512;
1013 else if (host->pmecc_sector_size == 1024)
1014 val |= PMECC_CFG_SECTOR1024;
1015
1016 switch (nand_chip->ecc.steps) {
1017 case 1:
1018 val |= PMECC_CFG_PAGE_1SECTOR;
1019 break;
1020 case 2:
1021 val |= PMECC_CFG_PAGE_2SECTORS;
1022 break;
1023 case 4:
1024 val |= PMECC_CFG_PAGE_4SECTORS;
1025 break;
1026 case 8:
1027 val |= PMECC_CFG_PAGE_8SECTORS;
1028 break;
1029 }
1030
1031 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1032 | PMECC_CFG_AUTO_DISABLE);
1033 pmecc_writel(host->ecc, CFG, val);
1034
1035 ecc_layout = nand_chip->ecc.layout;
1036 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1037 pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1038 pmecc_writel(host->ecc, EADDR,
1039 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1040 /* See datasheet about PMECC Clock Control Register */
1041 pmecc_writel(host->ecc, CLK, 2);
1042 pmecc_writel(host->ecc, IDR, 0xff);
1043 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1044 }
1045
1046 /*
1047 * Get minimum ecc requirements from NAND.
1048 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1049 * will set them according to minimum ecc requirement. Otherwise, use the
1050 * value in DTS file.
1051 * return 0 if success. otherwise return error code.
1052 */
1053 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1054 int *cap, int *sector_size)
1055 {
1056 /* Get minimum ECC requirements */
1057 if (host->nand_chip.ecc_strength_ds) {
1058 *cap = host->nand_chip.ecc_strength_ds;
1059 *sector_size = host->nand_chip.ecc_step_ds;
1060 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1061 *cap, *sector_size);
1062 } else {
1063 *cap = 2;
1064 *sector_size = 512;
1065 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1066 }
1067
1068 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1069 if (host->pmecc_corr_cap == 0) {
1070 /* use the most fitable ecc bits (the near bigger one ) */
1071 if (*cap <= 2)
1072 host->pmecc_corr_cap = 2;
1073 else if (*cap <= 4)
1074 host->pmecc_corr_cap = 4;
1075 else if (*cap <= 8)
1076 host->pmecc_corr_cap = 8;
1077 else if (*cap <= 12)
1078 host->pmecc_corr_cap = 12;
1079 else if (*cap <= 24)
1080 host->pmecc_corr_cap = 24;
1081 else
1082 return -EINVAL;
1083 }
1084 if (host->pmecc_sector_size == 0) {
1085 /* use the most fitable sector size (the near smaller one ) */
1086 if (*sector_size >= 1024)
1087 host->pmecc_sector_size = 1024;
1088 else if (*sector_size >= 512)
1089 host->pmecc_sector_size = 512;
1090 else
1091 return -EINVAL;
1092 }
1093 return 0;
1094 }
1095
1096 static inline int deg(unsigned int poly)
1097 {
1098 /* polynomial degree is the most-significant bit index */
1099 return fls(poly) - 1;
1100 }
1101
1102 static int build_gf_tables(int mm, unsigned int poly,
1103 int16_t *index_of, int16_t *alpha_to)
1104 {
1105 unsigned int i, x = 1;
1106 const unsigned int k = 1 << deg(poly);
1107 unsigned int nn = (1 << mm) - 1;
1108
1109 /* primitive polynomial must be of degree m */
1110 if (k != (1u << mm))
1111 return -EINVAL;
1112
1113 for (i = 0; i < nn; i++) {
1114 alpha_to[i] = x;
1115 index_of[x] = i;
1116 if (i && (x == 1))
1117 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1118 return -EINVAL;
1119 x <<= 1;
1120 if (x & k)
1121 x ^= poly;
1122 }
1123 alpha_to[nn] = 1;
1124 index_of[0] = 0;
1125
1126 return 0;
1127 }
1128
1129 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1130 {
1131 int degree = (sector_size == 512) ?
1132 PMECC_GF_DIMENSION_13 :
1133 PMECC_GF_DIMENSION_14;
1134 unsigned int poly = (sector_size == 512) ?
1135 PMECC_GF_13_PRIMITIVE_POLY :
1136 PMECC_GF_14_PRIMITIVE_POLY;
1137 int table_size = (sector_size == 512) ?
1138 PMECC_LOOKUP_TABLE_SIZE_512 :
1139 PMECC_LOOKUP_TABLE_SIZE_1024;
1140
1141 int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1142 GFP_KERNEL);
1143 if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1144 return NULL;
1145
1146 return addr;
1147 }
1148
1149 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1150 struct atmel_nand_host *host)
1151 {
1152 struct mtd_info *mtd = &host->mtd;
1153 struct nand_chip *nand_chip = &host->nand_chip;
1154 struct resource *regs, *regs_pmerr, *regs_rom;
1155 uint16_t *galois_table;
1156 int cap, sector_size, err_no;
1157
1158 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1159 if (err_no) {
1160 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1161 return err_no;
1162 }
1163
1164 if (cap > host->pmecc_corr_cap ||
1165 sector_size != host->pmecc_sector_size)
1166 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1167
1168 cap = host->pmecc_corr_cap;
1169 sector_size = host->pmecc_sector_size;
1170 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1171 host->pmecc_lookup_table_offset_512 :
1172 host->pmecc_lookup_table_offset_1024;
1173
1174 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1175 cap, sector_size);
1176
1177 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178 if (!regs) {
1179 dev_warn(host->dev,
1180 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1181 nand_chip->ecc.mode = NAND_ECC_SOFT;
1182 return 0;
1183 }
1184
1185 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1186 if (IS_ERR(host->ecc)) {
1187 err_no = PTR_ERR(host->ecc);
1188 goto err;
1189 }
1190
1191 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1192 host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1193 if (IS_ERR(host->pmerrloc_base)) {
1194 err_no = PTR_ERR(host->pmerrloc_base);
1195 goto err;
1196 }
1197
1198 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1199 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1200 if (IS_ERR(host->pmecc_rom_base)) {
1201 if (!host->has_no_lookup_table)
1202 /* Don't display the information again */
1203 dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1204
1205 host->has_no_lookup_table = true;
1206 }
1207
1208 if (host->has_no_lookup_table) {
1209 /* Build the look-up table in runtime */
1210 galois_table = create_lookup_table(host->dev, sector_size);
1211 if (!galois_table) {
1212 dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1213 err_no = -EINVAL;
1214 goto err;
1215 }
1216
1217 host->pmecc_rom_base = (void __iomem *)galois_table;
1218 host->pmecc_lookup_table_offset = 0;
1219 }
1220
1221 nand_chip->ecc.size = sector_size;
1222
1223 /* set ECC page size and oob layout */
1224 switch (mtd->writesize) {
1225 case 512:
1226 case 1024:
1227 case 2048:
1228 case 4096:
1229 case 8192:
1230 if (sector_size > mtd->writesize) {
1231 dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1232 err_no = -EINVAL;
1233 goto err;
1234 }
1235
1236 host->pmecc_degree = (sector_size == 512) ?
1237 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1238 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1239 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1240 host->pmecc_index_of = host->pmecc_rom_base +
1241 host->pmecc_lookup_table_offset;
1242
1243 nand_chip->ecc.strength = cap;
1244 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1245 nand_chip->ecc.steps = mtd->writesize / sector_size;
1246 nand_chip->ecc.total = nand_chip->ecc.bytes *
1247 nand_chip->ecc.steps;
1248 if (nand_chip->ecc.total > mtd->oobsize - 2) {
1249 dev_err(host->dev, "No room for ECC bytes\n");
1250 err_no = -EINVAL;
1251 goto err;
1252 }
1253 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1254 mtd->oobsize,
1255 nand_chip->ecc.total);
1256
1257 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1258 break;
1259 default:
1260 dev_warn(host->dev,
1261 "Unsupported page size for PMECC, use Software ECC\n");
1262 /* page size not handled by HW ECC */
1263 /* switching back to soft ECC */
1264 nand_chip->ecc.mode = NAND_ECC_SOFT;
1265 return 0;
1266 }
1267
1268 /* Allocate data for PMECC computation */
1269 err_no = pmecc_data_alloc(host);
1270 if (err_no) {
1271 dev_err(host->dev,
1272 "Cannot allocate memory for PMECC computation!\n");
1273 goto err;
1274 }
1275
1276 nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1277 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1278 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1279
1280 atmel_pmecc_core_init(mtd);
1281
1282 return 0;
1283
1284 err:
1285 return err_no;
1286 }
1287
1288 /*
1289 * Calculate HW ECC
1290 *
1291 * function called after a write
1292 *
1293 * mtd: MTD block structure
1294 * dat: raw data (unused)
1295 * ecc_code: buffer for ECC
1296 */
1297 static int atmel_nand_calculate(struct mtd_info *mtd,
1298 const u_char *dat, unsigned char *ecc_code)
1299 {
1300 struct nand_chip *nand_chip = mtd->priv;
1301 struct atmel_nand_host *host = nand_chip->priv;
1302 unsigned int ecc_value;
1303
1304 /* get the first 2 ECC bytes */
1305 ecc_value = ecc_readl(host->ecc, PR);
1306
1307 ecc_code[0] = ecc_value & 0xFF;
1308 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1309
1310 /* get the last 2 ECC bytes */
1311 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1312
1313 ecc_code[2] = ecc_value & 0xFF;
1314 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * HW ECC read page function
1321 *
1322 * mtd: mtd info structure
1323 * chip: nand chip info structure
1324 * buf: buffer to store read data
1325 * oob_required: caller expects OOB data read to chip->oob_poi
1326 */
1327 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1328 uint8_t *buf, int oob_required, int page)
1329 {
1330 int eccsize = chip->ecc.size;
1331 int eccbytes = chip->ecc.bytes;
1332 uint32_t *eccpos = chip->ecc.layout->eccpos;
1333 uint8_t *p = buf;
1334 uint8_t *oob = chip->oob_poi;
1335 uint8_t *ecc_pos;
1336 int stat;
1337 unsigned int max_bitflips = 0;
1338
1339 /*
1340 * Errata: ALE is incorrectly wired up to the ECC controller
1341 * on the AP7000, so it will include the address cycles in the
1342 * ECC calculation.
1343 *
1344 * Workaround: Reset the parity registers before reading the
1345 * actual data.
1346 */
1347 struct atmel_nand_host *host = chip->priv;
1348 if (host->board.need_reset_workaround)
1349 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1350
1351 /* read the page */
1352 chip->read_buf(mtd, p, eccsize);
1353
1354 /* move to ECC position if needed */
1355 if (eccpos[0] != 0) {
1356 /* This only works on large pages
1357 * because the ECC controller waits for
1358 * NAND_CMD_RNDOUTSTART after the
1359 * NAND_CMD_RNDOUT.
1360 * anyway, for small pages, the eccpos[0] == 0
1361 */
1362 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1363 mtd->writesize + eccpos[0], -1);
1364 }
1365
1366 /* the ECC controller needs to read the ECC just after the data */
1367 ecc_pos = oob + eccpos[0];
1368 chip->read_buf(mtd, ecc_pos, eccbytes);
1369
1370 /* check if there's an error */
1371 stat = chip->ecc.correct(mtd, p, oob, NULL);
1372
1373 if (stat < 0) {
1374 mtd->ecc_stats.failed++;
1375 } else {
1376 mtd->ecc_stats.corrected += stat;
1377 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1378 }
1379
1380 /* get back to oob start (end of page) */
1381 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1382
1383 /* read the oob */
1384 chip->read_buf(mtd, oob, mtd->oobsize);
1385
1386 return max_bitflips;
1387 }
1388
1389 /*
1390 * HW ECC Correction
1391 *
1392 * function called after a read
1393 *
1394 * mtd: MTD block structure
1395 * dat: raw data read from the chip
1396 * read_ecc: ECC from the chip (unused)
1397 * isnull: unused
1398 *
1399 * Detect and correct a 1 bit error for a page
1400 */
1401 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1402 u_char *read_ecc, u_char *isnull)
1403 {
1404 struct nand_chip *nand_chip = mtd->priv;
1405 struct atmel_nand_host *host = nand_chip->priv;
1406 unsigned int ecc_status;
1407 unsigned int ecc_word, ecc_bit;
1408
1409 /* get the status from the Status Register */
1410 ecc_status = ecc_readl(host->ecc, SR);
1411
1412 /* if there's no error */
1413 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1414 return 0;
1415
1416 /* get error bit offset (4 bits) */
1417 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1418 /* get word address (12 bits) */
1419 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1420 ecc_word >>= 4;
1421
1422 /* if there are multiple errors */
1423 if (ecc_status & ATMEL_ECC_MULERR) {
1424 /* check if it is a freshly erased block
1425 * (filled with 0xff) */
1426 if ((ecc_bit == ATMEL_ECC_BITADDR)
1427 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1428 /* the block has just been erased, return OK */
1429 return 0;
1430 }
1431 /* it doesn't seems to be a freshly
1432 * erased block.
1433 * We can't correct so many errors */
1434 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1435 " Unable to correct.\n");
1436 return -EIO;
1437 }
1438
1439 /* if there's a single bit error : we can correct it */
1440 if (ecc_status & ATMEL_ECC_ECCERR) {
1441 /* there's nothing much to do here.
1442 * the bit error is on the ECC itself.
1443 */
1444 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1445 " Nothing to correct\n");
1446 return 0;
1447 }
1448
1449 dev_dbg(host->dev, "atmel_nand : one bit error on data."
1450 " (word offset in the page :"
1451 " 0x%x bit offset : 0x%x)\n",
1452 ecc_word, ecc_bit);
1453 /* correct the error */
1454 if (nand_chip->options & NAND_BUSWIDTH_16) {
1455 /* 16 bits words */
1456 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1457 } else {
1458 /* 8 bits words */
1459 dat[ecc_word] ^= (1 << ecc_bit);
1460 }
1461 dev_dbg(host->dev, "atmel_nand : error corrected\n");
1462 return 1;
1463 }
1464
1465 /*
1466 * Enable HW ECC : unused on most chips
1467 */
1468 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1469 {
1470 struct nand_chip *nand_chip = mtd->priv;
1471 struct atmel_nand_host *host = nand_chip->priv;
1472
1473 if (host->board.need_reset_workaround)
1474 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1475 }
1476
1477 static int atmel_of_init_port(struct atmel_nand_host *host,
1478 struct device_node *np)
1479 {
1480 u32 val;
1481 u32 offset[2];
1482 int ecc_mode;
1483 struct atmel_nand_data *board = &host->board;
1484 enum of_gpio_flags flags = 0;
1485
1486 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1487 if (val >= 32) {
1488 dev_err(host->dev, "invalid addr-offset %u\n", val);
1489 return -EINVAL;
1490 }
1491 board->ale = val;
1492 }
1493
1494 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1495 if (val >= 32) {
1496 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1497 return -EINVAL;
1498 }
1499 board->cle = val;
1500 }
1501
1502 ecc_mode = of_get_nand_ecc_mode(np);
1503
1504 board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1505
1506 board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1507
1508 board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1509
1510 if (of_get_nand_bus_width(np) == 16)
1511 board->bus_width_16 = 1;
1512
1513 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1514 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1515
1516 board->enable_pin = of_get_gpio(np, 1);
1517 board->det_pin = of_get_gpio(np, 2);
1518
1519 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1520
1521 /* load the nfc driver if there is */
1522 of_platform_populate(np, NULL, NULL, host->dev);
1523
1524 if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1525 return 0; /* Not using PMECC */
1526
1527 /* use PMECC, get correction capability, sector size and lookup
1528 * table offset.
1529 * If correction bits and sector size are not specified, then find
1530 * them from NAND ONFI parameters.
1531 */
1532 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1533 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1534 (val != 24)) {
1535 dev_err(host->dev,
1536 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1537 val);
1538 return -EINVAL;
1539 }
1540 host->pmecc_corr_cap = (u8)val;
1541 }
1542
1543 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1544 if ((val != 512) && (val != 1024)) {
1545 dev_err(host->dev,
1546 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1547 val);
1548 return -EINVAL;
1549 }
1550 host->pmecc_sector_size = (u16)val;
1551 }
1552
1553 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1554 offset, 2) != 0) {
1555 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1556 host->has_no_lookup_table = true;
1557 /* Will build a lookup table and initialize the offset later */
1558 return 0;
1559 }
1560 if (!offset[0] && !offset[1]) {
1561 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1562 return -EINVAL;
1563 }
1564 host->pmecc_lookup_table_offset_512 = offset[0];
1565 host->pmecc_lookup_table_offset_1024 = offset[1];
1566
1567 return 0;
1568 }
1569
1570 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1571 struct atmel_nand_host *host)
1572 {
1573 struct mtd_info *mtd = &host->mtd;
1574 struct nand_chip *nand_chip = &host->nand_chip;
1575 struct resource *regs;
1576
1577 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1578 if (!regs) {
1579 dev_err(host->dev,
1580 "Can't get I/O resource regs, use software ECC\n");
1581 nand_chip->ecc.mode = NAND_ECC_SOFT;
1582 return 0;
1583 }
1584
1585 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1586 if (IS_ERR(host->ecc))
1587 return PTR_ERR(host->ecc);
1588
1589 /* ECC is calculated for the whole page (1 step) */
1590 nand_chip->ecc.size = mtd->writesize;
1591
1592 /* set ECC page size and oob layout */
1593 switch (mtd->writesize) {
1594 case 512:
1595 nand_chip->ecc.layout = &atmel_oobinfo_small;
1596 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1597 break;
1598 case 1024:
1599 nand_chip->ecc.layout = &atmel_oobinfo_large;
1600 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1601 break;
1602 case 2048:
1603 nand_chip->ecc.layout = &atmel_oobinfo_large;
1604 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1605 break;
1606 case 4096:
1607 nand_chip->ecc.layout = &atmel_oobinfo_large;
1608 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1609 break;
1610 default:
1611 /* page size not handled by HW ECC */
1612 /* switching back to soft ECC */
1613 nand_chip->ecc.mode = NAND_ECC_SOFT;
1614 return 0;
1615 }
1616
1617 /* set up for HW ECC */
1618 nand_chip->ecc.calculate = atmel_nand_calculate;
1619 nand_chip->ecc.correct = atmel_nand_correct;
1620 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1621 nand_chip->ecc.read_page = atmel_nand_read_page;
1622 nand_chip->ecc.bytes = 4;
1623 nand_chip->ecc.strength = 1;
1624
1625 return 0;
1626 }
1627
1628 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1629 {
1630 u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1631 u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1632
1633 if (unlikely(nfc_status & err_flags)) {
1634 if (nfc_status & NFC_SR_DTOE)
1635 dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1636 else if (nfc_status & NFC_SR_UNDEF)
1637 dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1638 else if (nfc_status & NFC_SR_AWB)
1639 dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1640 else if (nfc_status & NFC_SR_ASE)
1641 dev_err(host->dev, "NFC: Access memory Size Error\n");
1642 }
1643
1644 return nfc_status;
1645 }
1646
1647 /* SMC interrupt service routine */
1648 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1649 {
1650 struct atmel_nand_host *host = dev_id;
1651 u32 status, mask, pending;
1652 irqreturn_t ret = IRQ_NONE;
1653
1654 status = nfc_read_status(host);
1655 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1656 pending = status & mask;
1657
1658 if (pending & NFC_SR_XFR_DONE) {
1659 complete(&host->nfc->comp_xfer_done);
1660 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1661 ret = IRQ_HANDLED;
1662 }
1663 if (pending & NFC_SR_RB_EDGE) {
1664 complete(&host->nfc->comp_ready);
1665 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1666 ret = IRQ_HANDLED;
1667 }
1668 if (pending & NFC_SR_CMD_DONE) {
1669 complete(&host->nfc->comp_cmd_done);
1670 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1671 ret = IRQ_HANDLED;
1672 }
1673
1674 return ret;
1675 }
1676
1677 /* NFC(Nand Flash Controller) related functions */
1678 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1679 {
1680 if (flag & NFC_SR_XFR_DONE)
1681 init_completion(&host->nfc->comp_xfer_done);
1682
1683 if (flag & NFC_SR_RB_EDGE)
1684 init_completion(&host->nfc->comp_ready);
1685
1686 if (flag & NFC_SR_CMD_DONE)
1687 init_completion(&host->nfc->comp_cmd_done);
1688
1689 /* Enable interrupt that need to wait for */
1690 nfc_writel(host->nfc->hsmc_regs, IER, flag);
1691 }
1692
1693 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1694 {
1695 int i, index = 0;
1696 struct completion *comp[3]; /* Support 3 interrupt completion */
1697
1698 if (flag & NFC_SR_XFR_DONE)
1699 comp[index++] = &host->nfc->comp_xfer_done;
1700
1701 if (flag & NFC_SR_RB_EDGE)
1702 comp[index++] = &host->nfc->comp_ready;
1703
1704 if (flag & NFC_SR_CMD_DONE)
1705 comp[index++] = &host->nfc->comp_cmd_done;
1706
1707 if (index == 0) {
1708 dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag);
1709 return -EINVAL;
1710 }
1711
1712 for (i = 0; i < index; i++) {
1713 if (wait_for_completion_timeout(comp[i],
1714 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1715 continue; /* wait for next completion */
1716 else
1717 goto err_timeout;
1718 }
1719
1720 return 0;
1721
1722 err_timeout:
1723 dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1724 /* Disable the interrupt as it is not handled by interrupt handler */
1725 nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1726 return -ETIMEDOUT;
1727 }
1728
1729 static int nfc_send_command(struct atmel_nand_host *host,
1730 unsigned int cmd, unsigned int addr, unsigned char cycle0)
1731 {
1732 unsigned long timeout;
1733 u32 flag = NFC_SR_CMD_DONE;
1734 flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1735
1736 dev_dbg(host->dev,
1737 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1738 cmd, addr, cycle0);
1739
1740 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1741 while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1742 & NFCADDR_CMD_NFCBUSY) {
1743 if (time_after(jiffies, timeout)) {
1744 dev_err(host->dev,
1745 "Time out to wait CMD_NFCBUSY ready!\n");
1746 return -ETIMEDOUT;
1747 }
1748 }
1749
1750 nfc_prepare_interrupt(host, flag);
1751 nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1752 nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1753 return nfc_wait_interrupt(host, flag);
1754 }
1755
1756 static int nfc_device_ready(struct mtd_info *mtd)
1757 {
1758 u32 status, mask;
1759 struct nand_chip *nand_chip = mtd->priv;
1760 struct atmel_nand_host *host = nand_chip->priv;
1761
1762 status = nfc_read_status(host);
1763 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1764
1765 /* The mask should be 0. If not we may lost interrupts */
1766 if (unlikely(mask & status))
1767 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1768 mask & status);
1769
1770 return status & NFC_SR_RB_EDGE;
1771 }
1772
1773 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1774 {
1775 struct nand_chip *nand_chip = mtd->priv;
1776 struct atmel_nand_host *host = nand_chip->priv;
1777
1778 if (chip == -1)
1779 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1780 else
1781 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1782 }
1783
1784 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1785 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1786 {
1787 struct nand_chip *chip = mtd->priv;
1788
1789 int acycle = 0;
1790 unsigned char addr_bytes[8];
1791 int index = 0, bit_shift;
1792
1793 BUG_ON(addr1234 == NULL || cycle0 == NULL);
1794
1795 *cycle0 = 0;
1796 *addr1234 = 0;
1797
1798 if (column != -1) {
1799 if (chip->options & NAND_BUSWIDTH_16 &&
1800 !nand_opcode_8bits(command))
1801 column >>= 1;
1802 addr_bytes[acycle++] = column & 0xff;
1803 if (mtd->writesize > 512)
1804 addr_bytes[acycle++] = (column >> 8) & 0xff;
1805 }
1806
1807 if (page_addr != -1) {
1808 addr_bytes[acycle++] = page_addr & 0xff;
1809 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1810 if (chip->chipsize > (128 << 20))
1811 addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1812 }
1813
1814 if (acycle > 4)
1815 *cycle0 = addr_bytes[index++];
1816
1817 for (bit_shift = 0; index < acycle; bit_shift += 8)
1818 *addr1234 += addr_bytes[index++] << bit_shift;
1819
1820 /* return acycle in cmd register */
1821 return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1822 }
1823
1824 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1825 int column, int page_addr)
1826 {
1827 struct nand_chip *chip = mtd->priv;
1828 struct atmel_nand_host *host = chip->priv;
1829 unsigned long timeout;
1830 unsigned int nfc_addr_cmd = 0;
1831
1832 unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1833
1834 /* Set default settings: no cmd2, no addr cycle. read from nand */
1835 unsigned int cmd2 = 0;
1836 unsigned int vcmd2 = 0;
1837 int acycle = NFCADDR_CMD_ACYCLE_NONE;
1838 int csid = NFCADDR_CMD_CSID_3;
1839 int dataen = NFCADDR_CMD_DATADIS;
1840 int nfcwr = NFCADDR_CMD_NFCRD;
1841 unsigned int addr1234 = 0;
1842 unsigned int cycle0 = 0;
1843 bool do_addr = true;
1844 host->nfc->data_in_sram = NULL;
1845
1846 dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1847 __func__, command, column, page_addr);
1848
1849 switch (command) {
1850 case NAND_CMD_RESET:
1851 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1852 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1853 udelay(chip->chip_delay);
1854
1855 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1856 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1857 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1858 if (time_after(jiffies, timeout)) {
1859 dev_err(host->dev,
1860 "Time out to wait status ready!\n");
1861 break;
1862 }
1863 }
1864 return;
1865 case NAND_CMD_STATUS:
1866 do_addr = false;
1867 break;
1868 case NAND_CMD_PARAM:
1869 case NAND_CMD_READID:
1870 do_addr = false;
1871 acycle = NFCADDR_CMD_ACYCLE_1;
1872 if (column != -1)
1873 addr1234 = column;
1874 break;
1875 case NAND_CMD_RNDOUT:
1876 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1877 vcmd2 = NFCADDR_CMD_VCMD2;
1878 break;
1879 case NAND_CMD_READ0:
1880 case NAND_CMD_READOOB:
1881 if (command == NAND_CMD_READOOB) {
1882 column += mtd->writesize;
1883 command = NAND_CMD_READ0; /* only READ0 is valid */
1884 cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1885 }
1886 if (host->nfc->use_nfc_sram) {
1887 /* Enable Data transfer to sram */
1888 dataen = NFCADDR_CMD_DATAEN;
1889
1890 /* Need enable PMECC now, since NFC will transfer
1891 * data in bus after sending nfc read command.
1892 */
1893 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1894 pmecc_enable(host, NAND_ECC_READ);
1895 }
1896
1897 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1898 vcmd2 = NFCADDR_CMD_VCMD2;
1899 break;
1900 /* For prgramming command, the cmd need set to write enable */
1901 case NAND_CMD_PAGEPROG:
1902 case NAND_CMD_SEQIN:
1903 case NAND_CMD_RNDIN:
1904 nfcwr = NFCADDR_CMD_NFCWR;
1905 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1906 dataen = NFCADDR_CMD_DATAEN;
1907 break;
1908 default:
1909 break;
1910 }
1911
1912 if (do_addr)
1913 acycle = nfc_make_addr(mtd, command, column, page_addr,
1914 &addr1234, &cycle0);
1915
1916 nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1917 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1918
1919 /*
1920 * Program and erase have their own busy handlers status, sequential
1921 * in, and deplete1 need no delay.
1922 */
1923 switch (command) {
1924 case NAND_CMD_CACHEDPROG:
1925 case NAND_CMD_PAGEPROG:
1926 case NAND_CMD_ERASE1:
1927 case NAND_CMD_ERASE2:
1928 case NAND_CMD_RNDIN:
1929 case NAND_CMD_STATUS:
1930 case NAND_CMD_RNDOUT:
1931 case NAND_CMD_SEQIN:
1932 case NAND_CMD_READID:
1933 return;
1934
1935 case NAND_CMD_READ0:
1936 if (dataen == NFCADDR_CMD_DATAEN) {
1937 host->nfc->data_in_sram = host->nfc->sram_bank0 +
1938 nfc_get_sram_off(host);
1939 return;
1940 }
1941 /* fall through */
1942 default:
1943 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1944 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1945 }
1946 }
1947
1948 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1949 uint32_t offset, int data_len, const uint8_t *buf,
1950 int oob_required, int page, int cached, int raw)
1951 {
1952 int cfg, len;
1953 int status = 0;
1954 struct atmel_nand_host *host = chip->priv;
1955 void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1956
1957 /* Subpage write is not supported */
1958 if (offset || (data_len < mtd->writesize))
1959 return -EINVAL;
1960
1961 len = mtd->writesize;
1962 /* Copy page data to sram that will write to nand via NFC */
1963 if (use_dma) {
1964 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1965 /* Fall back to use cpu copy */
1966 memcpy(sram, buf, len);
1967 } else {
1968 memcpy(sram, buf, len);
1969 }
1970
1971 cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1972 if (unlikely(raw) && oob_required) {
1973 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1974 len += mtd->oobsize;
1975 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1976 } else {
1977 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1978 }
1979
1980 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1981 /*
1982 * When use NFC sram, need set up PMECC before send
1983 * NAND_CMD_SEQIN command. Since when the nand command
1984 * is sent, nfc will do transfer from sram and nand.
1985 */
1986 pmecc_enable(host, NAND_ECC_WRITE);
1987
1988 host->nfc->will_write_sram = true;
1989 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1990 host->nfc->will_write_sram = false;
1991
1992 if (likely(!raw))
1993 /* Need to write ecc into oob */
1994 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1995
1996 if (status < 0)
1997 return status;
1998
1999 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2000 status = chip->waitfunc(mtd, chip);
2001
2002 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2003 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2004
2005 if (status & NAND_STATUS_FAIL)
2006 return -EIO;
2007
2008 return 0;
2009 }
2010
2011 static int nfc_sram_init(struct mtd_info *mtd)
2012 {
2013 struct nand_chip *chip = mtd->priv;
2014 struct atmel_nand_host *host = chip->priv;
2015 int res = 0;
2016
2017 /* Initialize the NFC CFG register */
2018 unsigned int cfg_nfc = 0;
2019
2020 /* set page size and oob layout */
2021 switch (mtd->writesize) {
2022 case 512:
2023 cfg_nfc = NFC_CFG_PAGESIZE_512;
2024 break;
2025 case 1024:
2026 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2027 break;
2028 case 2048:
2029 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2030 break;
2031 case 4096:
2032 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2033 break;
2034 case 8192:
2035 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2036 break;
2037 default:
2038 dev_err(host->dev, "Unsupported page size for NFC.\n");
2039 res = -ENXIO;
2040 return res;
2041 }
2042
2043 /* oob bytes size = (NFCSPARESIZE + 1) * 4
2044 * Max support spare size is 512 bytes. */
2045 cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2046 & NFC_CFG_NFC_SPARESIZE);
2047 /* default set a max timeout */
2048 cfg_nfc |= NFC_CFG_RSPARE |
2049 NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2050
2051 nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2052
2053 host->nfc->will_write_sram = false;
2054 nfc_set_sram_bank(host, 0);
2055
2056 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2057 if (host->nfc->write_by_sram) {
2058 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2059 chip->ecc.mode == NAND_ECC_NONE)
2060 chip->write_page = nfc_sram_write_page;
2061 else
2062 host->nfc->write_by_sram = false;
2063 }
2064
2065 dev_info(host->dev, "Using NFC Sram read %s\n",
2066 host->nfc->write_by_sram ? "and write" : "");
2067 return 0;
2068 }
2069
2070 static struct platform_driver atmel_nand_nfc_driver;
2071 /*
2072 * Probe for the NAND device.
2073 */
2074 static int atmel_nand_probe(struct platform_device *pdev)
2075 {
2076 struct atmel_nand_host *host;
2077 struct mtd_info *mtd;
2078 struct nand_chip *nand_chip;
2079 struct resource *mem;
2080 struct mtd_part_parser_data ppdata = {};
2081 int res, irq;
2082
2083 /* Allocate memory for the device structure (and zero it) */
2084 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2085 if (!host)
2086 return -ENOMEM;
2087
2088 res = platform_driver_register(&atmel_nand_nfc_driver);
2089 if (res)
2090 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2091
2092 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2093 host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2094 if (IS_ERR(host->io_base)) {
2095 res = PTR_ERR(host->io_base);
2096 goto err_nand_ioremap;
2097 }
2098 host->io_phys = (dma_addr_t)mem->start;
2099
2100 mtd = &host->mtd;
2101 nand_chip = &host->nand_chip;
2102 host->dev = &pdev->dev;
2103 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2104 /* Only when CONFIG_OF is enabled of_node can be parsed */
2105 res = atmel_of_init_port(host, pdev->dev.of_node);
2106 if (res)
2107 goto err_nand_ioremap;
2108 } else {
2109 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2110 sizeof(struct atmel_nand_data));
2111 }
2112
2113 nand_chip->priv = host; /* link the private data structures */
2114 mtd->priv = nand_chip;
2115 mtd->owner = THIS_MODULE;
2116
2117 /* Set address of NAND IO lines */
2118 nand_chip->IO_ADDR_R = host->io_base;
2119 nand_chip->IO_ADDR_W = host->io_base;
2120
2121 if (nand_nfc.is_initialized) {
2122 /* NFC driver is probed and initialized */
2123 host->nfc = &nand_nfc;
2124
2125 nand_chip->select_chip = nfc_select_chip;
2126 nand_chip->dev_ready = nfc_device_ready;
2127 nand_chip->cmdfunc = nfc_nand_command;
2128
2129 /* Initialize the interrupt for NFC */
2130 irq = platform_get_irq(pdev, 0);
2131 if (irq < 0) {
2132 dev_err(host->dev, "Cannot get HSMC irq!\n");
2133 res = irq;
2134 goto err_nand_ioremap;
2135 }
2136
2137 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2138 0, "hsmc", host);
2139 if (res) {
2140 dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2141 irq);
2142 goto err_nand_ioremap;
2143 }
2144 } else {
2145 res = atmel_nand_set_enable_ready_pins(mtd);
2146 if (res)
2147 goto err_nand_ioremap;
2148
2149 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2150 }
2151
2152 nand_chip->ecc.mode = host->board.ecc_mode;
2153 nand_chip->chip_delay = 40; /* 40us command delay time */
2154
2155 if (host->board.bus_width_16) /* 16-bit bus width */
2156 nand_chip->options |= NAND_BUSWIDTH_16;
2157
2158 nand_chip->read_buf = atmel_read_buf;
2159 nand_chip->write_buf = atmel_write_buf;
2160
2161 platform_set_drvdata(pdev, host);
2162 atmel_nand_enable(host);
2163
2164 if (gpio_is_valid(host->board.det_pin)) {
2165 res = devm_gpio_request(&pdev->dev,
2166 host->board.det_pin, "nand_det");
2167 if (res < 0) {
2168 dev_err(&pdev->dev,
2169 "can't request det gpio %d\n",
2170 host->board.det_pin);
2171 goto err_no_card;
2172 }
2173
2174 res = gpio_direction_input(host->board.det_pin);
2175 if (res < 0) {
2176 dev_err(&pdev->dev,
2177 "can't request input direction det gpio %d\n",
2178 host->board.det_pin);
2179 goto err_no_card;
2180 }
2181
2182 if (gpio_get_value(host->board.det_pin)) {
2183 dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2184 res = -ENXIO;
2185 goto err_no_card;
2186 }
2187 }
2188
2189 if (host->board.on_flash_bbt || on_flash_bbt) {
2190 dev_info(&pdev->dev, "Use On Flash BBT\n");
2191 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2192 }
2193
2194 if (!host->board.has_dma)
2195 use_dma = 0;
2196
2197 if (use_dma) {
2198 dma_cap_mask_t mask;
2199
2200 dma_cap_zero(mask);
2201 dma_cap_set(DMA_MEMCPY, mask);
2202 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2203 if (!host->dma_chan) {
2204 dev_err(host->dev, "Failed to request DMA channel\n");
2205 use_dma = 0;
2206 }
2207 }
2208 if (use_dma)
2209 dev_info(host->dev, "Using %s for DMA transfers.\n",
2210 dma_chan_name(host->dma_chan));
2211 else
2212 dev_info(host->dev, "No DMA support for NAND access.\n");
2213
2214 /* first scan to find the device and get the page size */
2215 if (nand_scan_ident(mtd, 1, NULL)) {
2216 res = -ENXIO;
2217 goto err_scan_ident;
2218 }
2219
2220 if (nand_chip->ecc.mode == NAND_ECC_HW) {
2221 if (host->has_pmecc)
2222 res = atmel_pmecc_nand_init_params(pdev, host);
2223 else
2224 res = atmel_hw_nand_init_params(pdev, host);
2225
2226 if (res != 0)
2227 goto err_hw_ecc;
2228 }
2229
2230 /* initialize the nfc configuration register */
2231 if (host->nfc && host->nfc->use_nfc_sram) {
2232 res = nfc_sram_init(mtd);
2233 if (res) {
2234 host->nfc->use_nfc_sram = false;
2235 dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2236 }
2237 }
2238
2239 /* second phase scan */
2240 if (nand_scan_tail(mtd)) {
2241 res = -ENXIO;
2242 goto err_scan_tail;
2243 }
2244
2245 mtd->name = "atmel_nand";
2246 ppdata.of_node = pdev->dev.of_node;
2247 res = mtd_device_parse_register(mtd, NULL, &ppdata,
2248 host->board.parts, host->board.num_parts);
2249 if (!res)
2250 return res;
2251
2252 err_scan_tail:
2253 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2254 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2255 err_hw_ecc:
2256 err_scan_ident:
2257 err_no_card:
2258 atmel_nand_disable(host);
2259 if (host->dma_chan)
2260 dma_release_channel(host->dma_chan);
2261 err_nand_ioremap:
2262 return res;
2263 }
2264
2265 /*
2266 * Remove a NAND device.
2267 */
2268 static int atmel_nand_remove(struct platform_device *pdev)
2269 {
2270 struct atmel_nand_host *host = platform_get_drvdata(pdev);
2271 struct mtd_info *mtd = &host->mtd;
2272
2273 nand_release(mtd);
2274
2275 atmel_nand_disable(host);
2276
2277 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2278 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2279 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2280 PMERRLOC_DISABLE);
2281 }
2282
2283 if (host->dma_chan)
2284 dma_release_channel(host->dma_chan);
2285
2286 platform_driver_unregister(&atmel_nand_nfc_driver);
2287
2288 return 0;
2289 }
2290
2291 static const struct of_device_id atmel_nand_dt_ids[] = {
2292 { .compatible = "atmel,at91rm9200-nand" },
2293 { /* sentinel */ }
2294 };
2295
2296 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2297
2298 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2299 {
2300 struct atmel_nfc *nfc = &nand_nfc;
2301 struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2302 int ret;
2303
2304 nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2305 nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2306 if (IS_ERR(nfc->base_cmd_regs))
2307 return PTR_ERR(nfc->base_cmd_regs);
2308
2309 nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2310 nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2311 if (IS_ERR(nfc->hsmc_regs))
2312 return PTR_ERR(nfc->hsmc_regs);
2313
2314 nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2315 if (nfc_sram) {
2316 nfc->sram_bank0 = (void * __force)
2317 devm_ioremap_resource(&pdev->dev, nfc_sram);
2318 if (IS_ERR(nfc->sram_bank0)) {
2319 dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2320 PTR_ERR(nfc->sram_bank0));
2321 } else {
2322 nfc->use_nfc_sram = true;
2323 nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2324
2325 if (pdev->dev.of_node)
2326 nfc->write_by_sram = of_property_read_bool(
2327 pdev->dev.of_node,
2328 "atmel,write-by-sram");
2329 }
2330 }
2331
2332 nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2333 nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
2334
2335 nfc->clk = devm_clk_get(&pdev->dev, NULL);
2336 if (!IS_ERR(nfc->clk)) {
2337 ret = clk_prepare_enable(nfc->clk);
2338 if (ret)
2339 return ret;
2340 } else {
2341 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2342 }
2343
2344 nfc->is_initialized = true;
2345 dev_info(&pdev->dev, "NFC is probed.\n");
2346
2347 return 0;
2348 }
2349
2350 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2351 {
2352 struct atmel_nfc *nfc = &nand_nfc;
2353
2354 if (!IS_ERR(nfc->clk))
2355 clk_disable_unprepare(nfc->clk);
2356
2357 return 0;
2358 }
2359
2360 static const struct of_device_id atmel_nand_nfc_match[] = {
2361 { .compatible = "atmel,sama5d3-nfc" },
2362 { /* sentinel */ }
2363 };
2364 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2365
2366 static struct platform_driver atmel_nand_nfc_driver = {
2367 .driver = {
2368 .name = "atmel_nand_nfc",
2369 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2370 },
2371 .probe = atmel_nand_nfc_probe,
2372 .remove = atmel_nand_nfc_remove,
2373 };
2374
2375 static struct platform_driver atmel_nand_driver = {
2376 .probe = atmel_nand_probe,
2377 .remove = atmel_nand_remove,
2378 .driver = {
2379 .name = "atmel_nand",
2380 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2381 },
2382 };
2383
2384 module_platform_driver(atmel_nand_driver);
2385
2386 MODULE_LICENSE("GPL");
2387 MODULE_AUTHOR("Rick Bronson");
2388 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2389 MODULE_ALIAS("platform:atmel_nand");