]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/mtd/nand/au1550nd.c
mtd: nand: make use of mtd_to_nand() in NAND drivers
[mirror_ubuntu-focal-kernel.git] / drivers / mtd / nand / au1550nd.c
1 /*
2 * drivers/mtd/nand/au1550nd.c
3 *
4 * Copyright (C) 2004 Embedded Edge, LLC
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
20 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
23
24
25 struct au1550nd_ctx {
26 struct mtd_info info;
27 struct nand_chip chip;
28
29 int cs;
30 void __iomem *base;
31 void (*write_byte)(struct mtd_info *, u_char);
32 };
33
34 /**
35 * au_read_byte - read one byte from the chip
36 * @mtd: MTD device structure
37 *
38 * read function for 8bit buswidth
39 */
40 static u_char au_read_byte(struct mtd_info *mtd)
41 {
42 struct nand_chip *this = mtd_to_nand(mtd);
43 u_char ret = readb(this->IO_ADDR_R);
44 wmb(); /* drain writebuffer */
45 return ret;
46 }
47
48 /**
49 * au_write_byte - write one byte to the chip
50 * @mtd: MTD device structure
51 * @byte: pointer to data byte to write
52 *
53 * write function for 8it buswidth
54 */
55 static void au_write_byte(struct mtd_info *mtd, u_char byte)
56 {
57 struct nand_chip *this = mtd_to_nand(mtd);
58 writeb(byte, this->IO_ADDR_W);
59 wmb(); /* drain writebuffer */
60 }
61
62 /**
63 * au_read_byte16 - read one byte endianness aware from the chip
64 * @mtd: MTD device structure
65 *
66 * read function for 16bit buswidth with endianness conversion
67 */
68 static u_char au_read_byte16(struct mtd_info *mtd)
69 {
70 struct nand_chip *this = mtd_to_nand(mtd);
71 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
72 wmb(); /* drain writebuffer */
73 return ret;
74 }
75
76 /**
77 * au_write_byte16 - write one byte endianness aware to the chip
78 * @mtd: MTD device structure
79 * @byte: pointer to data byte to write
80 *
81 * write function for 16bit buswidth with endianness conversion
82 */
83 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
84 {
85 struct nand_chip *this = mtd_to_nand(mtd);
86 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
87 wmb(); /* drain writebuffer */
88 }
89
90 /**
91 * au_read_word - read one word from the chip
92 * @mtd: MTD device structure
93 *
94 * read function for 16bit buswidth without endianness conversion
95 */
96 static u16 au_read_word(struct mtd_info *mtd)
97 {
98 struct nand_chip *this = mtd_to_nand(mtd);
99 u16 ret = readw(this->IO_ADDR_R);
100 wmb(); /* drain writebuffer */
101 return ret;
102 }
103
104 /**
105 * au_write_buf - write buffer to chip
106 * @mtd: MTD device structure
107 * @buf: data buffer
108 * @len: number of bytes to write
109 *
110 * write function for 8bit buswidth
111 */
112 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
113 {
114 int i;
115 struct nand_chip *this = mtd_to_nand(mtd);
116
117 for (i = 0; i < len; i++) {
118 writeb(buf[i], this->IO_ADDR_W);
119 wmb(); /* drain writebuffer */
120 }
121 }
122
123 /**
124 * au_read_buf - read chip data into buffer
125 * @mtd: MTD device structure
126 * @buf: buffer to store date
127 * @len: number of bytes to read
128 *
129 * read function for 8bit buswidth
130 */
131 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
132 {
133 int i;
134 struct nand_chip *this = mtd_to_nand(mtd);
135
136 for (i = 0; i < len; i++) {
137 buf[i] = readb(this->IO_ADDR_R);
138 wmb(); /* drain writebuffer */
139 }
140 }
141
142 /**
143 * au_write_buf16 - write buffer to chip
144 * @mtd: MTD device structure
145 * @buf: data buffer
146 * @len: number of bytes to write
147 *
148 * write function for 16bit buswidth
149 */
150 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
151 {
152 int i;
153 struct nand_chip *this = mtd_to_nand(mtd);
154 u16 *p = (u16 *) buf;
155 len >>= 1;
156
157 for (i = 0; i < len; i++) {
158 writew(p[i], this->IO_ADDR_W);
159 wmb(); /* drain writebuffer */
160 }
161
162 }
163
164 /**
165 * au_read_buf16 - read chip data into buffer
166 * @mtd: MTD device structure
167 * @buf: buffer to store date
168 * @len: number of bytes to read
169 *
170 * read function for 16bit buswidth
171 */
172 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
173 {
174 int i;
175 struct nand_chip *this = mtd_to_nand(mtd);
176 u16 *p = (u16 *) buf;
177 len >>= 1;
178
179 for (i = 0; i < len; i++) {
180 p[i] = readw(this->IO_ADDR_R);
181 wmb(); /* drain writebuffer */
182 }
183 }
184
185 /* Select the chip by setting nCE to low */
186 #define NAND_CTL_SETNCE 1
187 /* Deselect the chip by setting nCE to high */
188 #define NAND_CTL_CLRNCE 2
189 /* Select the command latch by setting CLE to high */
190 #define NAND_CTL_SETCLE 3
191 /* Deselect the command latch by setting CLE to low */
192 #define NAND_CTL_CLRCLE 4
193 /* Select the address latch by setting ALE to high */
194 #define NAND_CTL_SETALE 5
195 /* Deselect the address latch by setting ALE to low */
196 #define NAND_CTL_CLRALE 6
197
198 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
199 {
200 struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
201 struct nand_chip *this = mtd_to_nand(mtd);
202
203 switch (cmd) {
204
205 case NAND_CTL_SETCLE:
206 this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
207 break;
208
209 case NAND_CTL_CLRCLE:
210 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
211 break;
212
213 case NAND_CTL_SETALE:
214 this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
215 break;
216
217 case NAND_CTL_CLRALE:
218 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
219 /* FIXME: Nobody knows why this is necessary,
220 * but it works only that way */
221 udelay(1);
222 break;
223
224 case NAND_CTL_SETNCE:
225 /* assert (force assert) chip enable */
226 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
227 break;
228
229 case NAND_CTL_CLRNCE:
230 /* deassert chip enable */
231 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
232 break;
233 }
234
235 this->IO_ADDR_R = this->IO_ADDR_W;
236
237 wmb(); /* Drain the writebuffer */
238 }
239
240 int au1550_device_ready(struct mtd_info *mtd)
241 {
242 return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 }
244
245 /**
246 * au1550_select_chip - control -CE line
247 * Forbid driving -CE manually permitting the NAND controller to do this.
248 * Keeping -CE asserted during the whole sector reads interferes with the
249 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
250 * We only have to hold -CE low for the NAND read commands since the flash
251 * chip needs it to be asserted during chip not ready time but the NAND
252 * controller keeps it released.
253 *
254 * @mtd: MTD device structure
255 * @chip: chipnumber to select, -1 for deselect
256 */
257 static void au1550_select_chip(struct mtd_info *mtd, int chip)
258 {
259 }
260
261 /**
262 * au1550_command - Send command to NAND device
263 * @mtd: MTD device structure
264 * @command: the command to be sent
265 * @column: the column address for this command, -1 if none
266 * @page_addr: the page address for this command, -1 if none
267 */
268 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
269 {
270 struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
271 struct nand_chip *this = mtd_to_nand(mtd);
272 int ce_override = 0, i;
273 unsigned long flags = 0;
274
275 /* Begin command latch cycle */
276 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
277 /*
278 * Write out the command to the device.
279 */
280 if (command == NAND_CMD_SEQIN) {
281 int readcmd;
282
283 if (column >= mtd->writesize) {
284 /* OOB area */
285 column -= mtd->writesize;
286 readcmd = NAND_CMD_READOOB;
287 } else if (column < 256) {
288 /* First 256 bytes --> READ0 */
289 readcmd = NAND_CMD_READ0;
290 } else {
291 column -= 256;
292 readcmd = NAND_CMD_READ1;
293 }
294 ctx->write_byte(mtd, readcmd);
295 }
296 ctx->write_byte(mtd, command);
297
298 /* Set ALE and clear CLE to start address cycle */
299 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
300
301 if (column != -1 || page_addr != -1) {
302 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
303
304 /* Serially input address */
305 if (column != -1) {
306 /* Adjust columns for 16 bit buswidth */
307 if (this->options & NAND_BUSWIDTH_16 &&
308 !nand_opcode_8bits(command))
309 column >>= 1;
310 ctx->write_byte(mtd, column);
311 }
312 if (page_addr != -1) {
313 ctx->write_byte(mtd, (u8)(page_addr & 0xff));
314
315 if (command == NAND_CMD_READ0 ||
316 command == NAND_CMD_READ1 ||
317 command == NAND_CMD_READOOB) {
318 /*
319 * NAND controller will release -CE after
320 * the last address byte is written, so we'll
321 * have to forcibly assert it. No interrupts
322 * are allowed while we do this as we don't
323 * want the NOR flash or PCMCIA drivers to
324 * steal our precious bytes of data...
325 */
326 ce_override = 1;
327 local_irq_save(flags);
328 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
329 }
330
331 ctx->write_byte(mtd, (u8)(page_addr >> 8));
332
333 /* One more address cycle for devices > 32MiB */
334 if (this->chipsize > (32 << 20))
335 ctx->write_byte(mtd,
336 ((page_addr >> 16) & 0x0f));
337 }
338 /* Latch in address */
339 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
340 }
341
342 /*
343 * Program and erase have their own busy handlers.
344 * Status and sequential in need no delay.
345 */
346 switch (command) {
347
348 case NAND_CMD_PAGEPROG:
349 case NAND_CMD_ERASE1:
350 case NAND_CMD_ERASE2:
351 case NAND_CMD_SEQIN:
352 case NAND_CMD_STATUS:
353 return;
354
355 case NAND_CMD_RESET:
356 break;
357
358 case NAND_CMD_READ0:
359 case NAND_CMD_READ1:
360 case NAND_CMD_READOOB:
361 /* Check if we're really driving -CE low (just in case) */
362 if (unlikely(!ce_override))
363 break;
364
365 /* Apply a short delay always to ensure that we do wait tWB. */
366 ndelay(100);
367 /* Wait for a chip to become ready... */
368 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
369 udelay(1);
370
371 /* Release -CE and re-enable interrupts. */
372 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
373 local_irq_restore(flags);
374 return;
375 }
376 /* Apply this short delay always to ensure that we do wait tWB. */
377 ndelay(100);
378
379 while(!this->dev_ready(mtd));
380 }
381
382 static int find_nand_cs(unsigned long nand_base)
383 {
384 void __iomem *base =
385 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
386 unsigned long addr, staddr, start, mask, end;
387 int i;
388
389 for (i = 0; i < 4; i++) {
390 addr = 0x1000 + (i * 0x10); /* CSx */
391 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
392 /* figure out the decoded range of this CS */
393 start = (staddr << 4) & 0xfffc0000;
394 mask = (staddr << 18) & 0xfffc0000;
395 end = (start | (start - 1)) & ~(start ^ mask);
396 if ((nand_base >= start) && (nand_base < end))
397 return i;
398 }
399
400 return -ENODEV;
401 }
402
403 static int au1550nd_probe(struct platform_device *pdev)
404 {
405 struct au1550nd_platdata *pd;
406 struct au1550nd_ctx *ctx;
407 struct nand_chip *this;
408 struct resource *r;
409 int ret, cs;
410
411 pd = dev_get_platdata(&pdev->dev);
412 if (!pd) {
413 dev_err(&pdev->dev, "missing platform data\n");
414 return -ENODEV;
415 }
416
417 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
418 if (!ctx)
419 return -ENOMEM;
420
421 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
422 if (!r) {
423 dev_err(&pdev->dev, "no NAND memory resource\n");
424 ret = -ENODEV;
425 goto out1;
426 }
427 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
428 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
429 ret = -ENOMEM;
430 goto out1;
431 }
432
433 ctx->base = ioremap_nocache(r->start, 0x1000);
434 if (!ctx->base) {
435 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
436 ret = -ENODEV;
437 goto out2;
438 }
439
440 this = &ctx->chip;
441 ctx->info.priv = this;
442 ctx->info.dev.parent = &pdev->dev;
443
444 /* figure out which CS# r->start belongs to */
445 cs = find_nand_cs(r->start);
446 if (cs < 0) {
447 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
448 ret = -ENODEV;
449 goto out3;
450 }
451 ctx->cs = cs;
452
453 this->dev_ready = au1550_device_ready;
454 this->select_chip = au1550_select_chip;
455 this->cmdfunc = au1550_command;
456
457 /* 30 us command delay time */
458 this->chip_delay = 30;
459 this->ecc.mode = NAND_ECC_SOFT;
460
461 if (pd->devwidth)
462 this->options |= NAND_BUSWIDTH_16;
463
464 this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
465 ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
466 this->read_word = au_read_word;
467 this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
468 this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
469
470 ret = nand_scan(&ctx->info, 1);
471 if (ret) {
472 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
473 goto out3;
474 }
475
476 mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
477
478 platform_set_drvdata(pdev, ctx);
479
480 return 0;
481
482 out3:
483 iounmap(ctx->base);
484 out2:
485 release_mem_region(r->start, resource_size(r));
486 out1:
487 kfree(ctx);
488 return ret;
489 }
490
491 static int au1550nd_remove(struct platform_device *pdev)
492 {
493 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
494 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495
496 nand_release(&ctx->info);
497 iounmap(ctx->base);
498 release_mem_region(r->start, 0x1000);
499 kfree(ctx);
500 return 0;
501 }
502
503 static struct platform_driver au1550nd_driver = {
504 .driver = {
505 .name = "au1550-nand",
506 },
507 .probe = au1550nd_probe,
508 .remove = au1550nd_remove,
509 };
510
511 module_platform_driver(au1550nd_driver);
512
513 MODULE_LICENSE("GPL");
514 MODULE_AUTHOR("Embedded Edge, LLC");
515 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");