]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/nand/bf5xx_nand.c
Merge branch 'for-33' of git://repo.or.cz/linux-kbuild
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / bf5xx_nand.c
1 /* linux/drivers/mtd/nand/bf5xx_nand.c
2 *
3 * Copyright 2006-2008 Analog Devices Inc.
4 * http://blackfin.uclinux.org/
5 * Bryan Wu <bryan.wu@analog.com>
6 *
7 * Blackfin BF5xx on-chip NAND flash controller driver
8 *
9 * Derived from drivers/mtd/nand/s3c2410.c
10 * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
11 *
12 * Derived from drivers/mtd/nand/cafe.c
13 * Copyright © 2006 Red Hat, Inc.
14 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
15 *
16 * Changelog:
17 * 12-Jun-2007 Bryan Wu: Initial version
18 * 18-Jul-2007 Bryan Wu:
19 * - ECC_HW and ECC_SW supported
20 * - DMA supported in ECC_HW
21 * - YAFFS tested as rootfs in both ECC_HW and ECC_SW
22 *
23 * TODO:
24 * Enable JFFS2 over NAND as rootfs
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/init.h>
44 #include <linux/kernel.h>
45 #include <linux/string.h>
46 #include <linux/ioport.h>
47 #include <linux/platform_device.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/err.h>
51 #include <linux/slab.h>
52 #include <linux/io.h>
53 #include <linux/bitops.h>
54
55 #include <linux/mtd/mtd.h>
56 #include <linux/mtd/nand.h>
57 #include <linux/mtd/nand_ecc.h>
58 #include <linux/mtd/partitions.h>
59
60 #include <asm/blackfin.h>
61 #include <asm/dma.h>
62 #include <asm/cacheflush.h>
63 #include <asm/nand.h>
64 #include <asm/portmux.h>
65
66 #define DRV_NAME "bf5xx-nand"
67 #define DRV_VERSION "1.2"
68 #define DRV_AUTHOR "Bryan Wu <bryan.wu@analog.com>"
69 #define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver"
70
71 #ifdef CONFIG_MTD_NAND_BF5XX_HWECC
72 static int hardware_ecc = 1;
73 #else
74 static int hardware_ecc;
75 #endif
76
77 static const unsigned short bfin_nfc_pin_req[] =
78 {P_NAND_CE,
79 P_NAND_RB,
80 P_NAND_D0,
81 P_NAND_D1,
82 P_NAND_D2,
83 P_NAND_D3,
84 P_NAND_D4,
85 P_NAND_D5,
86 P_NAND_D6,
87 P_NAND_D7,
88 P_NAND_WE,
89 P_NAND_RE,
90 P_NAND_CLE,
91 P_NAND_ALE,
92 0};
93
94 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
95 static uint8_t bbt_pattern[] = { 0xff };
96
97 static struct nand_bbt_descr bootrom_bbt = {
98 .options = 0,
99 .offs = 63,
100 .len = 1,
101 .pattern = bbt_pattern,
102 };
103
104 static struct nand_ecclayout bootrom_ecclayout = {
105 .eccbytes = 24,
106 .eccpos = {
107 0x8 * 0, 0x8 * 0 + 1, 0x8 * 0 + 2,
108 0x8 * 1, 0x8 * 1 + 1, 0x8 * 1 + 2,
109 0x8 * 2, 0x8 * 2 + 1, 0x8 * 2 + 2,
110 0x8 * 3, 0x8 * 3 + 1, 0x8 * 3 + 2,
111 0x8 * 4, 0x8 * 4 + 1, 0x8 * 4 + 2,
112 0x8 * 5, 0x8 * 5 + 1, 0x8 * 5 + 2,
113 0x8 * 6, 0x8 * 6 + 1, 0x8 * 6 + 2,
114 0x8 * 7, 0x8 * 7 + 1, 0x8 * 7 + 2
115 },
116 .oobfree = {
117 { 0x8 * 0 + 3, 5 },
118 { 0x8 * 1 + 3, 5 },
119 { 0x8 * 2 + 3, 5 },
120 { 0x8 * 3 + 3, 5 },
121 { 0x8 * 4 + 3, 5 },
122 { 0x8 * 5 + 3, 5 },
123 { 0x8 * 6 + 3, 5 },
124 { 0x8 * 7 + 3, 5 },
125 }
126 };
127 #endif
128
129 /*
130 * Data structures for bf5xx nand flash controller driver
131 */
132
133 /* bf5xx nand info */
134 struct bf5xx_nand_info {
135 /* mtd info */
136 struct nand_hw_control controller;
137 struct mtd_info mtd;
138 struct nand_chip chip;
139
140 /* platform info */
141 struct bf5xx_nand_platform *platform;
142
143 /* device info */
144 struct device *device;
145
146 /* DMA stuff */
147 struct completion dma_completion;
148 };
149
150 /*
151 * Conversion functions
152 */
153 static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
154 {
155 return container_of(mtd, struct bf5xx_nand_info, mtd);
156 }
157
158 static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
159 {
160 return platform_get_drvdata(pdev);
161 }
162
163 static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
164 {
165 return pdev->dev.platform_data;
166 }
167
168 /*
169 * struct nand_chip interface function pointers
170 */
171
172 /*
173 * bf5xx_nand_hwcontrol
174 *
175 * Issue command and address cycles to the chip
176 */
177 static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
178 unsigned int ctrl)
179 {
180 if (cmd == NAND_CMD_NONE)
181 return;
182
183 while (bfin_read_NFC_STAT() & WB_FULL)
184 cpu_relax();
185
186 if (ctrl & NAND_CLE)
187 bfin_write_NFC_CMD(cmd);
188 else
189 bfin_write_NFC_ADDR(cmd);
190 SSYNC();
191 }
192
193 /*
194 * bf5xx_nand_devready()
195 *
196 * returns 0 if the nand is busy, 1 if it is ready
197 */
198 static int bf5xx_nand_devready(struct mtd_info *mtd)
199 {
200 unsigned short val = bfin_read_NFC_IRQSTAT();
201
202 if ((val & NBUSYIRQ) == NBUSYIRQ)
203 return 1;
204 else
205 return 0;
206 }
207
208 /*
209 * ECC functions
210 * These allow the bf5xx to use the controller's ECC
211 * generator block to ECC the data as it passes through
212 */
213
214 /*
215 * ECC error correction function
216 */
217 static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
218 u_char *read_ecc, u_char *calc_ecc)
219 {
220 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
221 u32 syndrome[5];
222 u32 calced, stored;
223 int i;
224 unsigned short failing_bit, failing_byte;
225 u_char data;
226
227 calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
228 stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
229
230 syndrome[0] = (calced ^ stored);
231
232 /*
233 * syndrome 0: all zero
234 * No error in data
235 * No action
236 */
237 if (!syndrome[0] || !calced || !stored)
238 return 0;
239
240 /*
241 * sysdrome 0: only one bit is one
242 * ECC data was incorrect
243 * No action
244 */
245 if (hweight32(syndrome[0]) == 1) {
246 dev_err(info->device, "ECC data was incorrect!\n");
247 return 1;
248 }
249
250 syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
251 syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
252 syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
253 syndrome[4] = syndrome[2] ^ syndrome[3];
254
255 for (i = 0; i < 5; i++)
256 dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
257
258 dev_info(info->device,
259 "calced[0x%08x], stored[0x%08x]\n",
260 calced, stored);
261
262 /*
263 * sysdrome 0: exactly 11 bits are one, each parity
264 * and parity' pair is 1 & 0 or 0 & 1.
265 * 1-bit correctable error
266 * Correct the error
267 */
268 if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
269 dev_info(info->device,
270 "1-bit correctable error, correct it.\n");
271 dev_info(info->device,
272 "syndrome[1] 0x%08x\n", syndrome[1]);
273
274 failing_bit = syndrome[1] & 0x7;
275 failing_byte = syndrome[1] >> 0x3;
276 data = *(dat + failing_byte);
277 data = data ^ (0x1 << failing_bit);
278 *(dat + failing_byte) = data;
279
280 return 0;
281 }
282
283 /*
284 * sysdrome 0: random data
285 * More than 1-bit error, non-correctable error
286 * Discard data, mark bad block
287 */
288 dev_err(info->device,
289 "More than 1-bit error, non-correctable error.\n");
290 dev_err(info->device,
291 "Please discard data, mark bad block\n");
292
293 return 1;
294 }
295
296 static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
297 u_char *read_ecc, u_char *calc_ecc)
298 {
299 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
300 struct bf5xx_nand_platform *plat = info->platform;
301 unsigned short page_size = (plat->page_size ? 512 : 256);
302 int ret;
303
304 ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
305
306 /* If page size is 512, correct second 256 bytes */
307 if (page_size == 512) {
308 dat += 256;
309 read_ecc += 8;
310 calc_ecc += 8;
311 ret |= bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
312 }
313
314 return ret;
315 }
316
317 static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
318 {
319 return;
320 }
321
322 static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
323 const u_char *dat, u_char *ecc_code)
324 {
325 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
326 struct bf5xx_nand_platform *plat = info->platform;
327 u16 page_size = (plat->page_size ? 512 : 256);
328 u16 ecc0, ecc1;
329 u32 code[2];
330 u8 *p;
331
332 /* first 4 bytes ECC code for 256 page size */
333 ecc0 = bfin_read_NFC_ECC0();
334 ecc1 = bfin_read_NFC_ECC1();
335
336 code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
337
338 dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
339
340 /* first 3 bytes in ecc_code for 256 page size */
341 p = (u8 *) code;
342 memcpy(ecc_code, p, 3);
343
344 /* second 4 bytes ECC code for 512 page size */
345 if (page_size == 512) {
346 ecc0 = bfin_read_NFC_ECC2();
347 ecc1 = bfin_read_NFC_ECC3();
348 code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
349
350 /* second 3 bytes in ecc_code for second 256
351 * bytes of 512 page size
352 */
353 p = (u8 *) (code + 1);
354 memcpy((ecc_code + 3), p, 3);
355 dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
356 }
357
358 return 0;
359 }
360
361 /*
362 * PIO mode for buffer writing and reading
363 */
364 static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
365 {
366 int i;
367 unsigned short val;
368
369 /*
370 * Data reads are requested by first writing to NFC_DATA_RD
371 * and then reading back from NFC_READ.
372 */
373 for (i = 0; i < len; i++) {
374 while (bfin_read_NFC_STAT() & WB_FULL)
375 cpu_relax();
376
377 /* Contents do not matter */
378 bfin_write_NFC_DATA_RD(0x0000);
379 SSYNC();
380
381 while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
382 cpu_relax();
383
384 buf[i] = bfin_read_NFC_READ();
385
386 val = bfin_read_NFC_IRQSTAT();
387 val |= RD_RDY;
388 bfin_write_NFC_IRQSTAT(val);
389 SSYNC();
390 }
391 }
392
393 static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
394 {
395 uint8_t val;
396
397 bf5xx_nand_read_buf(mtd, &val, 1);
398
399 return val;
400 }
401
402 static void bf5xx_nand_write_buf(struct mtd_info *mtd,
403 const uint8_t *buf, int len)
404 {
405 int i;
406
407 for (i = 0; i < len; i++) {
408 while (bfin_read_NFC_STAT() & WB_FULL)
409 cpu_relax();
410
411 bfin_write_NFC_DATA_WR(buf[i]);
412 SSYNC();
413 }
414 }
415
416 static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
417 {
418 int i;
419 u16 *p = (u16 *) buf;
420 len >>= 1;
421
422 /*
423 * Data reads are requested by first writing to NFC_DATA_RD
424 * and then reading back from NFC_READ.
425 */
426 bfin_write_NFC_DATA_RD(0x5555);
427
428 SSYNC();
429
430 for (i = 0; i < len; i++)
431 p[i] = bfin_read_NFC_READ();
432 }
433
434 static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
435 const uint8_t *buf, int len)
436 {
437 int i;
438 u16 *p = (u16 *) buf;
439 len >>= 1;
440
441 for (i = 0; i < len; i++)
442 bfin_write_NFC_DATA_WR(p[i]);
443
444 SSYNC();
445 }
446
447 /*
448 * DMA functions for buffer writing and reading
449 */
450 static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
451 {
452 struct bf5xx_nand_info *info = dev_id;
453
454 clear_dma_irqstat(CH_NFC);
455 disable_dma(CH_NFC);
456 complete(&info->dma_completion);
457
458 return IRQ_HANDLED;
459 }
460
461 static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
462 uint8_t *buf, int is_read)
463 {
464 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
465 struct bf5xx_nand_platform *plat = info->platform;
466 unsigned short page_size = (plat->page_size ? 512 : 256);
467 unsigned short val;
468
469 dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
470 mtd, buf, is_read);
471
472 /*
473 * Before starting a dma transfer, be sure to invalidate/flush
474 * the cache over the address range of your DMA buffer to
475 * prevent cache coherency problems. Otherwise very subtle bugs
476 * can be introduced to your driver.
477 */
478 if (is_read)
479 invalidate_dcache_range((unsigned int)buf,
480 (unsigned int)(buf + page_size));
481 else
482 flush_dcache_range((unsigned int)buf,
483 (unsigned int)(buf + page_size));
484
485 /*
486 * This register must be written before each page is
487 * transferred to generate the correct ECC register
488 * values.
489 */
490 bfin_write_NFC_RST(0x1);
491 SSYNC();
492
493 disable_dma(CH_NFC);
494 clear_dma_irqstat(CH_NFC);
495
496 /* setup DMA register with Blackfin DMA API */
497 set_dma_config(CH_NFC, 0x0);
498 set_dma_start_addr(CH_NFC, (unsigned long) buf);
499
500 /* The DMAs have different size on BF52x and BF54x */
501 #ifdef CONFIG_BF52x
502 set_dma_x_count(CH_NFC, (page_size >> 1));
503 set_dma_x_modify(CH_NFC, 2);
504 val = DI_EN | WDSIZE_16;
505 #endif
506
507 #ifdef CONFIG_BF54x
508 set_dma_x_count(CH_NFC, (page_size >> 2));
509 set_dma_x_modify(CH_NFC, 4);
510 val = DI_EN | WDSIZE_32;
511 #endif
512 /* setup write or read operation */
513 if (is_read)
514 val |= WNR;
515 set_dma_config(CH_NFC, val);
516 enable_dma(CH_NFC);
517
518 /* Start PAGE read/write operation */
519 if (is_read)
520 bfin_write_NFC_PGCTL(0x1);
521 else
522 bfin_write_NFC_PGCTL(0x2);
523 wait_for_completion(&info->dma_completion);
524 }
525
526 static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
527 uint8_t *buf, int len)
528 {
529 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
530 struct bf5xx_nand_platform *plat = info->platform;
531 unsigned short page_size = (plat->page_size ? 512 : 256);
532
533 dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
534
535 if (len == page_size)
536 bf5xx_nand_dma_rw(mtd, buf, 1);
537 else
538 bf5xx_nand_read_buf(mtd, buf, len);
539 }
540
541 static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
542 const uint8_t *buf, int len)
543 {
544 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
545 struct bf5xx_nand_platform *plat = info->platform;
546 unsigned short page_size = (plat->page_size ? 512 : 256);
547
548 dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
549
550 if (len == page_size)
551 bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
552 else
553 bf5xx_nand_write_buf(mtd, buf, len);
554 }
555
556 /*
557 * System initialization functions
558 */
559 static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
560 {
561 int ret;
562
563 /* Do not use dma */
564 if (!hardware_ecc)
565 return 0;
566
567 init_completion(&info->dma_completion);
568
569 /* Request NFC DMA channel */
570 ret = request_dma(CH_NFC, "BF5XX NFC driver");
571 if (ret < 0) {
572 dev_err(info->device, " unable to get DMA channel\n");
573 return ret;
574 }
575
576 #ifdef CONFIG_BF54x
577 /* Setup DMAC1 channel mux for NFC which shared with SDH */
578 bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
579 SSYNC();
580 #endif
581
582 set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
583
584 /* Turn off the DMA channel first */
585 disable_dma(CH_NFC);
586 return 0;
587 }
588
589 static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
590 {
591 /* Free NFC DMA channel */
592 if (hardware_ecc)
593 free_dma(CH_NFC);
594 }
595
596 /*
597 * BF5XX NFC hardware initialization
598 * - pin mux setup
599 * - clear interrupt status
600 */
601 static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
602 {
603 int err = 0;
604 unsigned short val;
605 struct bf5xx_nand_platform *plat = info->platform;
606
607 /* setup NFC_CTL register */
608 dev_info(info->device,
609 "page_size=%d, data_width=%d, wr_dly=%d, rd_dly=%d\n",
610 (plat->page_size ? 512 : 256),
611 (plat->data_width ? 16 : 8),
612 plat->wr_dly, plat->rd_dly);
613
614 val = (plat->page_size << NFC_PG_SIZE_OFFSET) |
615 (plat->data_width << NFC_NWIDTH_OFFSET) |
616 (plat->rd_dly << NFC_RDDLY_OFFSET) |
617 (plat->rd_dly << NFC_WRDLY_OFFSET);
618 dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
619
620 bfin_write_NFC_CTL(val);
621 SSYNC();
622
623 /* clear interrupt status */
624 bfin_write_NFC_IRQMASK(0x0);
625 SSYNC();
626 val = bfin_read_NFC_IRQSTAT();
627 bfin_write_NFC_IRQSTAT(val);
628 SSYNC();
629
630 /* DMA initialization */
631 if (bf5xx_nand_dma_init(info))
632 err = -ENXIO;
633
634 return err;
635 }
636
637 /*
638 * Device management interface
639 */
640 static int __devinit bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
641 {
642 struct mtd_info *mtd = &info->mtd;
643
644 #ifdef CONFIG_MTD_PARTITIONS
645 struct mtd_partition *parts = info->platform->partitions;
646 int nr = info->platform->nr_partitions;
647
648 return add_mtd_partitions(mtd, parts, nr);
649 #else
650 return add_mtd_device(mtd);
651 #endif
652 }
653
654 static int __devexit bf5xx_nand_remove(struct platform_device *pdev)
655 {
656 struct bf5xx_nand_info *info = to_nand_info(pdev);
657 struct mtd_info *mtd = NULL;
658
659 platform_set_drvdata(pdev, NULL);
660
661 /* first thing we need to do is release all our mtds
662 * and their partitions, then go through freeing the
663 * resources used
664 */
665 mtd = &info->mtd;
666 if (mtd) {
667 nand_release(mtd);
668 kfree(mtd);
669 }
670
671 peripheral_free_list(bfin_nfc_pin_req);
672 bf5xx_nand_dma_remove(info);
673
674 /* free the common resources */
675 kfree(info);
676
677 return 0;
678 }
679
680 /*
681 * bf5xx_nand_probe
682 *
683 * called by device layer when it finds a device matching
684 * one our driver can handled. This code checks to see if
685 * it can allocate all necessary resources then calls the
686 * nand layer to look for devices
687 */
688 static int __devinit bf5xx_nand_probe(struct platform_device *pdev)
689 {
690 struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
691 struct bf5xx_nand_info *info = NULL;
692 struct nand_chip *chip = NULL;
693 struct mtd_info *mtd = NULL;
694 int err = 0;
695
696 dev_dbg(&pdev->dev, "(%p)\n", pdev);
697
698 if (!plat) {
699 dev_err(&pdev->dev, "no platform specific information\n");
700 return -EINVAL;
701 }
702
703 if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
704 dev_err(&pdev->dev, "requesting Peripherals failed\n");
705 return -EFAULT;
706 }
707
708 info = kzalloc(sizeof(*info), GFP_KERNEL);
709 if (info == NULL) {
710 dev_err(&pdev->dev, "no memory for flash info\n");
711 err = -ENOMEM;
712 goto out_err_kzalloc;
713 }
714
715 platform_set_drvdata(pdev, info);
716
717 spin_lock_init(&info->controller.lock);
718 init_waitqueue_head(&info->controller.wq);
719
720 info->device = &pdev->dev;
721 info->platform = plat;
722
723 /* initialise chip data struct */
724 chip = &info->chip;
725
726 if (plat->data_width)
727 chip->options |= NAND_BUSWIDTH_16;
728
729 chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
730
731 chip->read_buf = (plat->data_width) ?
732 bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
733 chip->write_buf = (plat->data_width) ?
734 bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
735
736 chip->read_byte = bf5xx_nand_read_byte;
737
738 chip->cmd_ctrl = bf5xx_nand_hwcontrol;
739 chip->dev_ready = bf5xx_nand_devready;
740
741 chip->priv = &info->mtd;
742 chip->controller = &info->controller;
743
744 chip->IO_ADDR_R = (void __iomem *) NFC_READ;
745 chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR;
746
747 chip->chip_delay = 0;
748
749 /* initialise mtd info data struct */
750 mtd = &info->mtd;
751 mtd->priv = chip;
752 mtd->owner = THIS_MODULE;
753
754 /* initialise the hardware */
755 err = bf5xx_nand_hw_init(info);
756 if (err)
757 goto out_err_hw_init;
758
759 /* setup hardware ECC data struct */
760 if (hardware_ecc) {
761 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
762 chip->badblock_pattern = &bootrom_bbt;
763 chip->ecc.layout = &bootrom_ecclayout;
764 #endif
765
766 if (plat->page_size == NFC_PG_SIZE_256) {
767 chip->ecc.bytes = 3;
768 chip->ecc.size = 256;
769 } else if (plat->page_size == NFC_PG_SIZE_512) {
770 chip->ecc.bytes = 6;
771 chip->ecc.size = 512;
772 }
773
774 chip->read_buf = bf5xx_nand_dma_read_buf;
775 chip->write_buf = bf5xx_nand_dma_write_buf;
776 chip->ecc.calculate = bf5xx_nand_calculate_ecc;
777 chip->ecc.correct = bf5xx_nand_correct_data;
778 chip->ecc.mode = NAND_ECC_HW;
779 chip->ecc.hwctl = bf5xx_nand_enable_hwecc;
780 } else {
781 chip->ecc.mode = NAND_ECC_SOFT;
782 }
783
784 /* scan hardware nand chip and setup mtd info data struct */
785 if (nand_scan(mtd, 1)) {
786 err = -ENXIO;
787 goto out_err_nand_scan;
788 }
789
790 /* add NAND partition */
791 bf5xx_nand_add_partition(info);
792
793 dev_dbg(&pdev->dev, "initialised ok\n");
794 return 0;
795
796 out_err_nand_scan:
797 bf5xx_nand_dma_remove(info);
798 out_err_hw_init:
799 platform_set_drvdata(pdev, NULL);
800 kfree(info);
801 out_err_kzalloc:
802 peripheral_free_list(bfin_nfc_pin_req);
803
804 return err;
805 }
806
807 /* PM Support */
808 #ifdef CONFIG_PM
809
810 static int bf5xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
811 {
812 struct bf5xx_nand_info *info = platform_get_drvdata(dev);
813
814 return 0;
815 }
816
817 static int bf5xx_nand_resume(struct platform_device *dev)
818 {
819 struct bf5xx_nand_info *info = platform_get_drvdata(dev);
820
821 return 0;
822 }
823
824 #else
825 #define bf5xx_nand_suspend NULL
826 #define bf5xx_nand_resume NULL
827 #endif
828
829 /* driver device registration */
830 static struct platform_driver bf5xx_nand_driver = {
831 .probe = bf5xx_nand_probe,
832 .remove = __devexit_p(bf5xx_nand_remove),
833 .suspend = bf5xx_nand_suspend,
834 .resume = bf5xx_nand_resume,
835 .driver = {
836 .name = DRV_NAME,
837 .owner = THIS_MODULE,
838 },
839 };
840
841 static int __init bf5xx_nand_init(void)
842 {
843 printk(KERN_INFO "%s, Version %s (c) 2007 Analog Devices, Inc.\n",
844 DRV_DESC, DRV_VERSION);
845
846 return platform_driver_register(&bf5xx_nand_driver);
847 }
848
849 static void __exit bf5xx_nand_exit(void)
850 {
851 platform_driver_unregister(&bf5xx_nand_driver);
852 }
853
854 module_init(bf5xx_nand_init);
855 module_exit(bf5xx_nand_exit);
856
857 MODULE_LICENSE("GPL");
858 MODULE_AUTHOR(DRV_AUTHOR);
859 MODULE_DESCRIPTION(DRV_DESC);
860 MODULE_ALIAS("platform:" DRV_NAME);