]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/davinci_nand.c
Merge tag 'drm-intel-fixes-2014-02-14' of ssh://git.freedesktop.org/git/drm-intel...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36 #include <linux/of_device.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39
40 #include <linux/platform_data/mtd-davinci.h>
41 #include <linux/platform_data/mtd-davinci-aemif.h>
42
43 /*
44 * This is a device driver for the NAND flash controller found on the
45 * various DaVinci family chips. It handles up to four SoC chipselects,
46 * and some flavors of secondary chipselect (e.g. based on A12) as used
47 * with multichip packages.
48 *
49 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
50 * available on chips like the DM355 and OMAP-L137 and needed with the
51 * more error-prone MLC NAND chips.
52 *
53 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
54 * outputs in a "wire-AND" configuration, with no per-chip signals.
55 */
56 struct davinci_nand_info {
57 struct mtd_info mtd;
58 struct nand_chip chip;
59 struct nand_ecclayout ecclayout;
60
61 struct device *dev;
62 struct clk *clk;
63
64 bool is_readmode;
65
66 void __iomem *base;
67 void __iomem *vaddr;
68
69 uint32_t ioaddr;
70 uint32_t current_cs;
71
72 uint32_t mask_chipsel;
73 uint32_t mask_ale;
74 uint32_t mask_cle;
75
76 uint32_t core_chipsel;
77
78 struct davinci_aemif_timing *timing;
79 };
80
81 static DEFINE_SPINLOCK(davinci_nand_lock);
82 static bool ecc4_busy;
83
84 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
85
86
87 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
88 int offset)
89 {
90 return __raw_readl(info->base + offset);
91 }
92
93 static inline void davinci_nand_writel(struct davinci_nand_info *info,
94 int offset, unsigned long value)
95 {
96 __raw_writel(value, info->base + offset);
97 }
98
99 /*----------------------------------------------------------------------*/
100
101 /*
102 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 */
104
105 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
106 unsigned int ctrl)
107 {
108 struct davinci_nand_info *info = to_davinci_nand(mtd);
109 uint32_t addr = info->current_cs;
110 struct nand_chip *nand = mtd->priv;
111
112 /* Did the control lines change? */
113 if (ctrl & NAND_CTRL_CHANGE) {
114 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
115 addr |= info->mask_cle;
116 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
117 addr |= info->mask_ale;
118
119 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 }
121
122 if (cmd != NAND_CMD_NONE)
123 iowrite8(cmd, nand->IO_ADDR_W);
124 }
125
126 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
127 {
128 struct davinci_nand_info *info = to_davinci_nand(mtd);
129 uint32_t addr = info->ioaddr;
130
131 /* maybe kick in a second chipselect */
132 if (chip > 0)
133 addr |= info->mask_chipsel;
134 info->current_cs = addr;
135
136 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
137 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138 }
139
140 /*----------------------------------------------------------------------*/
141
142 /*
143 * 1-bit hardware ECC ... context maintained for each core chipselect
144 */
145
146 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
147 {
148 struct davinci_nand_info *info = to_davinci_nand(mtd);
149
150 return davinci_nand_readl(info, NANDF1ECC_OFFSET
151 + 4 * info->core_chipsel);
152 }
153
154 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
155 {
156 struct davinci_nand_info *info;
157 uint32_t nandcfr;
158 unsigned long flags;
159
160 info = to_davinci_nand(mtd);
161
162 /* Reset ECC hardware */
163 nand_davinci_readecc_1bit(mtd);
164
165 spin_lock_irqsave(&davinci_nand_lock, flags);
166
167 /* Restart ECC hardware */
168 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
169 nandcfr |= BIT(8 + info->core_chipsel);
170 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
171
172 spin_unlock_irqrestore(&davinci_nand_lock, flags);
173 }
174
175 /*
176 * Read hardware ECC value and pack into three bytes
177 */
178 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
179 const u_char *dat, u_char *ecc_code)
180 {
181 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
182 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
183
184 /* invert so that erased block ecc is correct */
185 ecc24 = ~ecc24;
186 ecc_code[0] = (u_char)(ecc24);
187 ecc_code[1] = (u_char)(ecc24 >> 8);
188 ecc_code[2] = (u_char)(ecc24 >> 16);
189
190 return 0;
191 }
192
193 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
194 u_char *read_ecc, u_char *calc_ecc)
195 {
196 struct nand_chip *chip = mtd->priv;
197 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
198 (read_ecc[2] << 16);
199 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
200 (calc_ecc[2] << 16);
201 uint32_t diff = eccCalc ^ eccNand;
202
203 if (diff) {
204 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
205 /* Correctable error */
206 if ((diff >> (12 + 3)) < chip->ecc.size) {
207 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
208 return 1;
209 } else {
210 return -1;
211 }
212 } else if (!(diff & (diff - 1))) {
213 /* Single bit ECC error in the ECC itself,
214 * nothing to fix */
215 return 1;
216 } else {
217 /* Uncorrectable error */
218 return -1;
219 }
220
221 }
222 return 0;
223 }
224
225 /*----------------------------------------------------------------------*/
226
227 /*
228 * 4-bit hardware ECC ... context maintained over entire AEMIF
229 *
230 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
231 * since that forces use of a problematic "infix OOB" layout.
232 * Among other things, it trashes manufacturer bad block markers.
233 * Also, and specific to this hardware, it ECC-protects the "prepad"
234 * in the OOB ... while having ECC protection for parts of OOB would
235 * seem useful, the current MTD stack sometimes wants to update the
236 * OOB without recomputing ECC.
237 */
238
239 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
240 {
241 struct davinci_nand_info *info = to_davinci_nand(mtd);
242 unsigned long flags;
243 u32 val;
244
245 spin_lock_irqsave(&davinci_nand_lock, flags);
246
247 /* Start 4-bit ECC calculation for read/write */
248 val = davinci_nand_readl(info, NANDFCR_OFFSET);
249 val &= ~(0x03 << 4);
250 val |= (info->core_chipsel << 4) | BIT(12);
251 davinci_nand_writel(info, NANDFCR_OFFSET, val);
252
253 info->is_readmode = (mode == NAND_ECC_READ);
254
255 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 }
257
258 /* Read raw ECC code after writing to NAND. */
259 static void
260 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
261 {
262 const u32 mask = 0x03ff03ff;
263
264 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
265 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
266 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
267 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 }
269
270 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
271 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
272 const u_char *dat, u_char *ecc_code)
273 {
274 struct davinci_nand_info *info = to_davinci_nand(mtd);
275 u32 raw_ecc[4], *p;
276 unsigned i;
277
278 /* After a read, terminate ECC calculation by a dummy read
279 * of some 4-bit ECC register. ECC covers everything that
280 * was read; correct() just uses the hardware state, so
281 * ecc_code is not needed.
282 */
283 if (info->is_readmode) {
284 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
285 return 0;
286 }
287
288 /* Pack eight raw 10-bit ecc values into ten bytes, making
289 * two passes which each convert four values (in upper and
290 * lower halves of two 32-bit words) into five bytes. The
291 * ROM boot loader uses this same packing scheme.
292 */
293 nand_davinci_readecc_4bit(info, raw_ecc);
294 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
295 *ecc_code++ = p[0] & 0xff;
296 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
297 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
298 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
299 *ecc_code++ = (p[1] >> 18) & 0xff;
300 }
301
302 return 0;
303 }
304
305 /* Correct up to 4 bits in data we just read, using state left in the
306 * hardware plus the ecc_code computed when it was first written.
307 */
308 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
309 u_char *data, u_char *ecc_code, u_char *null)
310 {
311 int i;
312 struct davinci_nand_info *info = to_davinci_nand(mtd);
313 unsigned short ecc10[8];
314 unsigned short *ecc16;
315 u32 syndrome[4];
316 u32 ecc_state;
317 unsigned num_errors, corrected;
318 unsigned long timeo;
319
320 /* All bytes 0xff? It's an erased page; ignore its ECC. */
321 for (i = 0; i < 10; i++) {
322 if (ecc_code[i] != 0xff)
323 goto compare;
324 }
325 return 0;
326
327 compare:
328 /* Unpack ten bytes into eight 10 bit values. We know we're
329 * little-endian, and use type punning for less shifting/masking.
330 */
331 if (WARN_ON(0x01 & (unsigned) ecc_code))
332 return -EINVAL;
333 ecc16 = (unsigned short *)ecc_code;
334
335 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
336 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
337 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
338 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
339 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
340 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
341 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
342 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
343
344 /* Tell ECC controller about the expected ECC codes. */
345 for (i = 7; i >= 0; i--)
346 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
347
348 /* Allow time for syndrome calculation ... then read it.
349 * A syndrome of all zeroes 0 means no detected errors.
350 */
351 davinci_nand_readl(info, NANDFSR_OFFSET);
352 nand_davinci_readecc_4bit(info, syndrome);
353 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
354 return 0;
355
356 /*
357 * Clear any previous address calculation by doing a dummy read of an
358 * error address register.
359 */
360 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
361
362 /* Start address calculation, and wait for it to complete.
363 * We _could_ start reading more data while this is working,
364 * to speed up the overall page read.
365 */
366 davinci_nand_writel(info, NANDFCR_OFFSET,
367 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
368
369 /*
370 * ECC_STATE field reads 0x3 (Error correction complete) immediately
371 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
372 * begin trying to poll for the state, you may fall right out of your
373 * loop without any of the correction calculations having taken place.
374 * The recommendation from the hardware team is to initially delay as
375 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
376 * correction state.
377 */
378 timeo = jiffies + usecs_to_jiffies(100);
379 do {
380 ecc_state = (davinci_nand_readl(info,
381 NANDFSR_OFFSET) >> 8) & 0x0f;
382 cpu_relax();
383 } while ((ecc_state < 4) && time_before(jiffies, timeo));
384
385 for (;;) {
386 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
387
388 switch ((fsr >> 8) & 0x0f) {
389 case 0: /* no error, should not happen */
390 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
391 return 0;
392 case 1: /* five or more errors detected */
393 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
394 return -EIO;
395 case 2: /* error addresses computed */
396 case 3:
397 num_errors = 1 + ((fsr >> 16) & 0x03);
398 goto correct;
399 default: /* still working on it */
400 cpu_relax();
401 continue;
402 }
403 }
404
405 correct:
406 /* correct each error */
407 for (i = 0, corrected = 0; i < num_errors; i++) {
408 int error_address, error_value;
409
410 if (i > 1) {
411 error_address = davinci_nand_readl(info,
412 NAND_ERR_ADD2_OFFSET);
413 error_value = davinci_nand_readl(info,
414 NAND_ERR_ERRVAL2_OFFSET);
415 } else {
416 error_address = davinci_nand_readl(info,
417 NAND_ERR_ADD1_OFFSET);
418 error_value = davinci_nand_readl(info,
419 NAND_ERR_ERRVAL1_OFFSET);
420 }
421
422 if (i & 1) {
423 error_address >>= 16;
424 error_value >>= 16;
425 }
426 error_address &= 0x3ff;
427 error_address = (512 + 7) - error_address;
428
429 if (error_address < 512) {
430 data[error_address] ^= error_value;
431 corrected++;
432 }
433 }
434
435 return corrected;
436 }
437
438 /*----------------------------------------------------------------------*/
439
440 /*
441 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
442 * how these chips are normally wired. This translates to both 8 and 16
443 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
444 *
445 * For now we assume that configuration, or any other one which ignores
446 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
447 * and have that transparently morphed into multiple NAND operations.
448 */
449 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
450 {
451 struct nand_chip *chip = mtd->priv;
452
453 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
454 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
455 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
456 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
457 else
458 ioread8_rep(chip->IO_ADDR_R, buf, len);
459 }
460
461 static void nand_davinci_write_buf(struct mtd_info *mtd,
462 const uint8_t *buf, int len)
463 {
464 struct nand_chip *chip = mtd->priv;
465
466 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
467 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
468 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
469 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
470 else
471 iowrite8_rep(chip->IO_ADDR_R, buf, len);
472 }
473
474 /*
475 * Check hardware register for wait status. Returns 1 if device is ready,
476 * 0 if it is still busy.
477 */
478 static int nand_davinci_dev_ready(struct mtd_info *mtd)
479 {
480 struct davinci_nand_info *info = to_davinci_nand(mtd);
481
482 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
483 }
484
485 /*----------------------------------------------------------------------*/
486
487 /* An ECC layout for using 4-bit ECC with small-page flash, storing
488 * ten ECC bytes plus the manufacturer's bad block marker byte, and
489 * and not overlapping the default BBT markers.
490 */
491 static struct nand_ecclayout hwecc4_small = {
492 .eccbytes = 10,
493 .eccpos = { 0, 1, 2, 3, 4,
494 /* offset 5 holds the badblock marker */
495 6, 7,
496 13, 14, 15, },
497 .oobfree = {
498 {.offset = 8, .length = 5, },
499 {.offset = 16, },
500 },
501 };
502
503 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
504 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
505 * and not overlapping the default BBT markers.
506 */
507 static struct nand_ecclayout hwecc4_2048 = {
508 .eccbytes = 40,
509 .eccpos = {
510 /* at the end of spare sector */
511 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
512 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
513 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
514 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
515 },
516 .oobfree = {
517 /* 2 bytes at offset 0 hold manufacturer badblock markers */
518 {.offset = 2, .length = 22, },
519 /* 5 bytes at offset 8 hold BBT markers */
520 /* 8 bytes at offset 16 hold JFFS2 clean markers */
521 },
522 };
523
524 #if defined(CONFIG_OF)
525 static const struct of_device_id davinci_nand_of_match[] = {
526 {.compatible = "ti,davinci-nand", },
527 {},
528 };
529 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
530
531 static struct davinci_nand_pdata
532 *nand_davinci_get_pdata(struct platform_device *pdev)
533 {
534 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
535 struct davinci_nand_pdata *pdata;
536 const char *mode;
537 u32 prop;
538
539 pdata = devm_kzalloc(&pdev->dev,
540 sizeof(struct davinci_nand_pdata),
541 GFP_KERNEL);
542 pdev->dev.platform_data = pdata;
543 if (!pdata)
544 return ERR_PTR(-ENOMEM);
545 if (!of_property_read_u32(pdev->dev.of_node,
546 "ti,davinci-chipselect", &prop))
547 pdev->id = prop;
548 else
549 return ERR_PTR(-EINVAL);
550
551 if (!of_property_read_u32(pdev->dev.of_node,
552 "ti,davinci-mask-ale", &prop))
553 pdata->mask_ale = prop;
554 if (!of_property_read_u32(pdev->dev.of_node,
555 "ti,davinci-mask-cle", &prop))
556 pdata->mask_cle = prop;
557 if (!of_property_read_u32(pdev->dev.of_node,
558 "ti,davinci-mask-chipsel", &prop))
559 pdata->mask_chipsel = prop;
560 if (!of_property_read_string(pdev->dev.of_node,
561 "nand-ecc-mode", &mode) ||
562 !of_property_read_string(pdev->dev.of_node,
563 "ti,davinci-ecc-mode", &mode)) {
564 if (!strncmp("none", mode, 4))
565 pdata->ecc_mode = NAND_ECC_NONE;
566 if (!strncmp("soft", mode, 4))
567 pdata->ecc_mode = NAND_ECC_SOFT;
568 if (!strncmp("hw", mode, 2))
569 pdata->ecc_mode = NAND_ECC_HW;
570 }
571 if (!of_property_read_u32(pdev->dev.of_node,
572 "ti,davinci-ecc-bits", &prop))
573 pdata->ecc_bits = prop;
574
575 prop = of_get_nand_bus_width(pdev->dev.of_node);
576 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
577 "ti,davinci-nand-buswidth", &prop))
578 if (prop == 16)
579 pdata->options |= NAND_BUSWIDTH_16;
580 if (of_property_read_bool(pdev->dev.of_node,
581 "nand-on-flash-bbt") ||
582 of_property_read_bool(pdev->dev.of_node,
583 "ti,davinci-nand-use-bbt"))
584 pdata->bbt_options = NAND_BBT_USE_FLASH;
585 }
586
587 return dev_get_platdata(&pdev->dev);
588 }
589 #else
590 static struct davinci_nand_pdata
591 *nand_davinci_get_pdata(struct platform_device *pdev)
592 {
593 return dev_get_platdata(&pdev->dev);
594 }
595 #endif
596
597 static int nand_davinci_probe(struct platform_device *pdev)
598 {
599 struct davinci_nand_pdata *pdata;
600 struct davinci_nand_info *info;
601 struct resource *res1;
602 struct resource *res2;
603 void __iomem *vaddr;
604 void __iomem *base;
605 int ret;
606 uint32_t val;
607 nand_ecc_modes_t ecc_mode;
608
609 pdata = nand_davinci_get_pdata(pdev);
610 if (IS_ERR(pdata))
611 return PTR_ERR(pdata);
612
613 /* insist on board-specific configuration */
614 if (!pdata)
615 return -ENODEV;
616
617 /* which external chipselect will we be managing? */
618 if (pdev->id < 0 || pdev->id > 3)
619 return -ENODEV;
620
621 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
622 if (!info)
623 return -ENOMEM;
624
625 platform_set_drvdata(pdev, info);
626
627 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
628 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
629 if (!res1 || !res2) {
630 dev_err(&pdev->dev, "resource missing\n");
631 return -EINVAL;
632 }
633
634 vaddr = devm_ioremap_resource(&pdev->dev, res1);
635 if (IS_ERR(vaddr))
636 return PTR_ERR(vaddr);
637
638 /*
639 * This registers range is used to setup NAND settings. In case with
640 * TI AEMIF driver, the same memory address range is requested already
641 * by AEMIF, so we cannot request it twice, just ioremap.
642 * The AEMIF and NAND drivers not use the same registers in this range.
643 */
644 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
645 if (!base) {
646 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
647 return -EADDRNOTAVAIL;
648 }
649
650 info->dev = &pdev->dev;
651 info->base = base;
652 info->vaddr = vaddr;
653
654 info->mtd.priv = &info->chip;
655 info->mtd.name = dev_name(&pdev->dev);
656 info->mtd.owner = THIS_MODULE;
657
658 info->mtd.dev.parent = &pdev->dev;
659
660 info->chip.IO_ADDR_R = vaddr;
661 info->chip.IO_ADDR_W = vaddr;
662 info->chip.chip_delay = 0;
663 info->chip.select_chip = nand_davinci_select_chip;
664
665 /* options such as NAND_BBT_USE_FLASH */
666 info->chip.bbt_options = pdata->bbt_options;
667 /* options such as 16-bit widths */
668 info->chip.options = pdata->options;
669 info->chip.bbt_td = pdata->bbt_td;
670 info->chip.bbt_md = pdata->bbt_md;
671 info->timing = pdata->timing;
672
673 info->ioaddr = (uint32_t __force) vaddr;
674
675 info->current_cs = info->ioaddr;
676 info->core_chipsel = pdev->id;
677 info->mask_chipsel = pdata->mask_chipsel;
678
679 /* use nandboot-capable ALE/CLE masks by default */
680 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
681 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
682
683 /* Set address of hardware control function */
684 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
685 info->chip.dev_ready = nand_davinci_dev_ready;
686
687 /* Speed up buffer I/O */
688 info->chip.read_buf = nand_davinci_read_buf;
689 info->chip.write_buf = nand_davinci_write_buf;
690
691 /* Use board-specific ECC config */
692 ecc_mode = pdata->ecc_mode;
693
694 ret = -EINVAL;
695 switch (ecc_mode) {
696 case NAND_ECC_NONE:
697 case NAND_ECC_SOFT:
698 pdata->ecc_bits = 0;
699 break;
700 case NAND_ECC_HW:
701 if (pdata->ecc_bits == 4) {
702 /* No sanity checks: CPUs must support this,
703 * and the chips may not use NAND_BUSWIDTH_16.
704 */
705
706 /* No sharing 4-bit hardware between chipselects yet */
707 spin_lock_irq(&davinci_nand_lock);
708 if (ecc4_busy)
709 ret = -EBUSY;
710 else
711 ecc4_busy = true;
712 spin_unlock_irq(&davinci_nand_lock);
713
714 if (ret == -EBUSY)
715 return ret;
716
717 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
718 info->chip.ecc.correct = nand_davinci_correct_4bit;
719 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
720 info->chip.ecc.bytes = 10;
721 } else {
722 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
723 info->chip.ecc.correct = nand_davinci_correct_1bit;
724 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
725 info->chip.ecc.bytes = 3;
726 }
727 info->chip.ecc.size = 512;
728 info->chip.ecc.strength = pdata->ecc_bits;
729 break;
730 default:
731 return -EINVAL;
732 }
733 info->chip.ecc.mode = ecc_mode;
734
735 info->clk = devm_clk_get(&pdev->dev, "aemif");
736 if (IS_ERR(info->clk)) {
737 ret = PTR_ERR(info->clk);
738 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
739 return ret;
740 }
741
742 ret = clk_prepare_enable(info->clk);
743 if (ret < 0) {
744 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
745 ret);
746 goto err_clk_enable;
747 }
748
749 /*
750 * Setup Async configuration register in case we did not boot from
751 * NAND and so bootloader did not bother to set it up.
752 */
753 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
754
755 /* Extended Wait is not valid and Select Strobe mode is not used */
756 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
757 if (info->chip.options & NAND_BUSWIDTH_16)
758 val |= 0x1;
759
760 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
761
762 ret = 0;
763 if (info->timing)
764 ret = davinci_aemif_setup_timing(info->timing, info->base,
765 info->core_chipsel);
766 if (ret < 0) {
767 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
768 goto err;
769 }
770
771 spin_lock_irq(&davinci_nand_lock);
772
773 /* put CSxNAND into NAND mode */
774 val = davinci_nand_readl(info, NANDFCR_OFFSET);
775 val |= BIT(info->core_chipsel);
776 davinci_nand_writel(info, NANDFCR_OFFSET, val);
777
778 spin_unlock_irq(&davinci_nand_lock);
779
780 /* Scan to find existence of the device(s) */
781 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
782 if (ret < 0) {
783 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
784 goto err;
785 }
786
787 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
788 * is OK, but it allocates 6 bytes when only 3 are needed (for
789 * each 512 bytes). For the 4-bit HW ECC, that default is not
790 * usable: 10 bytes are needed, not 6.
791 */
792 if (pdata->ecc_bits == 4) {
793 int chunks = info->mtd.writesize / 512;
794
795 if (!chunks || info->mtd.oobsize < 16) {
796 dev_dbg(&pdev->dev, "too small\n");
797 ret = -EINVAL;
798 goto err;
799 }
800
801 /* For small page chips, preserve the manufacturer's
802 * badblock marking data ... and make sure a flash BBT
803 * table marker fits in the free bytes.
804 */
805 if (chunks == 1) {
806 info->ecclayout = hwecc4_small;
807 info->ecclayout.oobfree[1].length =
808 info->mtd.oobsize - 16;
809 goto syndrome_done;
810 }
811 if (chunks == 4) {
812 info->ecclayout = hwecc4_2048;
813 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
814 goto syndrome_done;
815 }
816
817 /* 4KiB page chips are not yet supported. The eccpos from
818 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
819 * breaks userspace ioctl interface with mtd-utils. Once we
820 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
821 * for the 4KiB page chips.
822 *
823 * TODO: Note that nand_ecclayout has now been expanded and can
824 * hold plenty of OOB entries.
825 */
826 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
827 "for 4KiB-page NAND\n");
828 ret = -EIO;
829 goto err;
830
831 syndrome_done:
832 info->chip.ecc.layout = &info->ecclayout;
833 }
834
835 ret = nand_scan_tail(&info->mtd);
836 if (ret < 0)
837 goto err;
838
839 if (pdata->parts)
840 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
841 pdata->parts, pdata->nr_parts);
842 else {
843 struct mtd_part_parser_data ppdata;
844
845 ppdata.of_node = pdev->dev.of_node;
846 ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
847 NULL, 0);
848 }
849 if (ret < 0)
850 goto err;
851
852 val = davinci_nand_readl(info, NRCSR_OFFSET);
853 dev_info(&pdev->dev, "controller rev. %d.%d\n",
854 (val >> 8) & 0xff, val & 0xff);
855
856 return 0;
857
858 err:
859 clk_disable_unprepare(info->clk);
860
861 err_clk_enable:
862 spin_lock_irq(&davinci_nand_lock);
863 if (ecc_mode == NAND_ECC_HW_SYNDROME)
864 ecc4_busy = false;
865 spin_unlock_irq(&davinci_nand_lock);
866 return ret;
867 }
868
869 static int nand_davinci_remove(struct platform_device *pdev)
870 {
871 struct davinci_nand_info *info = platform_get_drvdata(pdev);
872
873 spin_lock_irq(&davinci_nand_lock);
874 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
875 ecc4_busy = false;
876 spin_unlock_irq(&davinci_nand_lock);
877
878 nand_release(&info->mtd);
879
880 clk_disable_unprepare(info->clk);
881
882 return 0;
883 }
884
885 static struct platform_driver nand_davinci_driver = {
886 .probe = nand_davinci_probe,
887 .remove = nand_davinci_remove,
888 .driver = {
889 .name = "davinci_nand",
890 .owner = THIS_MODULE,
891 .of_match_table = of_match_ptr(davinci_nand_of_match),
892 },
893 };
894 MODULE_ALIAS("platform:davinci_nand");
895
896 module_platform_driver(nand_davinci_driver);
897
898 MODULE_LICENSE("GPL");
899 MODULE_AUTHOR("Texas Instruments");
900 MODULE_DESCRIPTION("Davinci NAND flash driver");
901