]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/denali.c
Merge tag 'microblaze-4.13-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / denali.c
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/module.h>
26
27 #include "denali.h"
28
29 MODULE_LICENSE("GPL");
30
31 /*
32 * We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
34 */
35 #define NAND_DEFAULT_TIMINGS -1
36
37 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
38 module_param(onfi_timing_mode, int, S_IRUGO);
39 MODULE_PARM_DESC(onfi_timing_mode,
40 "Overrides default ONFI setting. -1 indicates use default timings");
41
42 #define DENALI_NAND_NAME "denali-nand"
43
44 /*
45 * We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience.
47 */
48 #define DENALI_IRQ_ALL (INTR__DMA_CMD_COMP | \
49 INTR__ECC_TRANSACTION_DONE | \
50 INTR__ECC_ERR | \
51 INTR__PROGRAM_FAIL | \
52 INTR__LOAD_COMP | \
53 INTR__PROGRAM_COMP | \
54 INTR__TIME_OUT | \
55 INTR__ERASE_FAIL | \
56 INTR__RST_COMP | \
57 INTR__ERASE_COMP)
58
59 /*
60 * indicates whether or not the internal value for the flash bank is
61 * valid or not
62 */
63 #define CHIP_SELECT_INVALID -1
64
65 /*
66 * This macro divides two integers and rounds fractional values up
67 * to the nearest integer value.
68 */
69 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
70
71 /*
72 * this macro allows us to convert from an MTD structure to our own
73 * device context (denali) structure.
74 */
75 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
76 {
77 return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
78 }
79
80 /*
81 * These constants are defined by the driver to enable common driver
82 * configuration options.
83 */
84 #define SPARE_ACCESS 0x41
85 #define MAIN_ACCESS 0x42
86 #define MAIN_SPARE_ACCESS 0x43
87
88 #define DENALI_READ 0
89 #define DENALI_WRITE 0x100
90
91 /*
92 * this is a helper macro that allows us to
93 * format the bank into the proper bits for the controller
94 */
95 #define BANK(x) ((x) << 24)
96
97 /* forward declarations */
98 static void clear_interrupts(struct denali_nand_info *denali);
99 static uint32_t wait_for_irq(struct denali_nand_info *denali,
100 uint32_t irq_mask);
101 static void denali_irq_enable(struct denali_nand_info *denali,
102 uint32_t int_mask);
103 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
104
105 /*
106 * Certain operations for the denali NAND controller use an indexed mode to
107 * read/write data. The operation is performed by writing the address value
108 * of the command to the device memory followed by the data. This function
109 * abstracts this common operation.
110 */
111 static void index_addr(struct denali_nand_info *denali,
112 uint32_t address, uint32_t data)
113 {
114 iowrite32(address, denali->flash_mem);
115 iowrite32(data, denali->flash_mem + 0x10);
116 }
117
118 /* Perform an indexed read of the device */
119 static void index_addr_read_data(struct denali_nand_info *denali,
120 uint32_t address, uint32_t *pdata)
121 {
122 iowrite32(address, denali->flash_mem);
123 *pdata = ioread32(denali->flash_mem + 0x10);
124 }
125
126 /*
127 * We need to buffer some data for some of the NAND core routines.
128 * The operations manage buffering that data.
129 */
130 static void reset_buf(struct denali_nand_info *denali)
131 {
132 denali->buf.head = denali->buf.tail = 0;
133 }
134
135 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
136 {
137 denali->buf.buf[denali->buf.tail++] = byte;
138 }
139
140 /* reads the status of the device */
141 static void read_status(struct denali_nand_info *denali)
142 {
143 uint32_t cmd;
144
145 /* initialize the data buffer to store status */
146 reset_buf(denali);
147
148 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
149 if (cmd)
150 write_byte_to_buf(denali, NAND_STATUS_WP);
151 else
152 write_byte_to_buf(denali, 0);
153 }
154
155 /* resets a specific device connected to the core */
156 static void reset_bank(struct denali_nand_info *denali)
157 {
158 uint32_t irq_status;
159 uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160
161 clear_interrupts(denali);
162
163 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164
165 irq_status = wait_for_irq(denali, irq_mask);
166
167 if (irq_status & INTR__TIME_OUT)
168 dev_err(denali->dev, "reset bank failed.\n");
169 }
170
171 /* Reset the flash controller */
172 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173 {
174 int i;
175
176 for (i = 0; i < denali->max_banks; i++)
177 iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178 denali->flash_reg + INTR_STATUS(i));
179
180 for (i = 0; i < denali->max_banks; i++) {
181 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183 (INTR__RST_COMP | INTR__TIME_OUT)))
184 cpu_relax();
185 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186 INTR__TIME_OUT)
187 dev_dbg(denali->dev,
188 "NAND Reset operation timed out on bank %d\n", i);
189 }
190
191 for (i = 0; i < denali->max_banks; i++)
192 iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193 denali->flash_reg + INTR_STATUS(i));
194
195 return PASS;
196 }
197
198 /*
199 * this routine calculates the ONFI timing values for a given mode and
200 * programs the clocking register accordingly. The mode is determined by
201 * the get_onfi_nand_para routine.
202 */
203 static void nand_onfi_timing_set(struct denali_nand_info *denali,
204 uint16_t mode)
205 {
206 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
207 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
208 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
209 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
210 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
211 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
212 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
213 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
214 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
215 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
216 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
217 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
218
219 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
220 uint16_t dv_window = 0;
221 uint16_t en_lo, en_hi;
222 uint16_t acc_clks;
223 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
224
225 en_lo = CEIL_DIV(Trp[mode], CLK_X);
226 en_hi = CEIL_DIV(Treh[mode], CLK_X);
227 #if ONFI_BLOOM_TIME
228 if ((en_hi * CLK_X) < (Treh[mode] + 2))
229 en_hi++;
230 #endif
231
232 if ((en_lo + en_hi) * CLK_X < Trc[mode])
233 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
234
235 if ((en_lo + en_hi) < CLK_MULTI)
236 en_lo += CLK_MULTI - en_lo - en_hi;
237
238 while (dv_window < 8) {
239 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
240
241 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
242
243 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
244 data_invalid_rhoh : data_invalid_rloh;
245
246 dv_window = data_invalid - Trea[mode];
247
248 if (dv_window < 8)
249 en_lo++;
250 }
251
252 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
253
254 while (acc_clks * CLK_X - Trea[mode] < 3)
255 acc_clks++;
256
257 if (data_invalid - acc_clks * CLK_X < 2)
258 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259 __FILE__, __LINE__);
260
261 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
262 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
263 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
264 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
265 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
266 if (cs_cnt == 0)
267 cs_cnt = 1;
268
269 if (Tcea[mode]) {
270 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 cs_cnt++;
272 }
273
274 #if MODE5_WORKAROUND
275 if (mode == 5)
276 acc_clks = 5;
277 #endif
278
279 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
281 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 acc_clks = 6;
283
284 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
285 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
286 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
287 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
288 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
289 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
290 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
291 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 }
293
294 /* queries the NAND device to see what ONFI modes it supports. */
295 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
296 {
297 int i;
298
299 /*
300 * we needn't to do a reset here because driver has already
301 * reset all the banks before
302 */
303 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
304 ONFI_TIMING_MODE__VALUE))
305 return FAIL;
306
307 for (i = 5; i > 0; i--) {
308 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
309 (0x01 << i))
310 break;
311 }
312
313 nand_onfi_timing_set(denali, i);
314
315 /*
316 * By now, all the ONFI devices we know support the page cache
317 * rw feature. So here we enable the pipeline_rw_ahead feature
318 */
319 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
320 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
321
322 return PASS;
323 }
324
325 static void get_samsung_nand_para(struct denali_nand_info *denali,
326 uint8_t device_id)
327 {
328 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329 /* Set timing register values according to datasheet */
330 iowrite32(5, denali->flash_reg + ACC_CLKS);
331 iowrite32(20, denali->flash_reg + RE_2_WE);
332 iowrite32(12, denali->flash_reg + WE_2_RE);
333 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
334 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
335 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
336 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 }
338 }
339
340 static void get_toshiba_nand_para(struct denali_nand_info *denali)
341 {
342 /*
343 * Workaround to fix a controller bug which reports a wrong
344 * spare area size for some kind of Toshiba NAND device
345 */
346 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
347 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
348 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349 }
350
351 static void get_hynix_nand_para(struct denali_nand_info *denali,
352 uint8_t device_id)
353 {
354 switch (device_id) {
355 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
356 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
357 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
358 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
359 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
360 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
361 break;
362 default:
363 dev_warn(denali->dev,
364 "Unknown Hynix NAND (Device ID: 0x%x).\n"
365 "Will use default parameter values instead.\n",
366 device_id);
367 }
368 }
369
370 /*
371 * determines how many NAND chips are connected to the controller. Note for
372 * Intel CE4100 devices we don't support more than one device.
373 */
374 static void find_valid_banks(struct denali_nand_info *denali)
375 {
376 uint32_t id[denali->max_banks];
377 int i;
378
379 denali->total_used_banks = 1;
380 for (i = 0; i < denali->max_banks; i++) {
381 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
382 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
383 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
384
385 dev_dbg(denali->dev,
386 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
387
388 if (i == 0) {
389 if (!(id[i] & 0x0ff))
390 break; /* WTF? */
391 } else {
392 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
393 denali->total_used_banks++;
394 else
395 break;
396 }
397 }
398
399 if (denali->platform == INTEL_CE4100) {
400 /*
401 * Platform limitations of the CE4100 device limit
402 * users to a single chip solution for NAND.
403 * Multichip support is not enabled.
404 */
405 if (denali->total_used_banks != 1) {
406 dev_err(denali->dev,
407 "Sorry, Intel CE4100 only supports a single NAND device.\n");
408 BUG();
409 }
410 }
411 dev_dbg(denali->dev,
412 "denali->total_used_banks: %d\n", denali->total_used_banks);
413 }
414
415 /*
416 * Use the configuration feature register to determine the maximum number of
417 * banks that the hardware supports.
418 */
419 static void detect_max_banks(struct denali_nand_info *denali)
420 {
421 uint32_t features = ioread32(denali->flash_reg + FEATURES);
422
423 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
424
425 /* the encoding changed from rev 5.0 to 5.1 */
426 if (denali->revision < 0x0501)
427 denali->max_banks <<= 1;
428 }
429
430 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
431 {
432 uint16_t status = PASS;
433 uint32_t id_bytes[8], addr;
434 uint8_t maf_id, device_id;
435 int i;
436
437 /*
438 * Use read id method to get device ID and other params.
439 * For some NAND chips, controller can't report the correct
440 * device ID by reading from DEVICE_ID register
441 */
442 addr = MODE_11 | BANK(denali->flash_bank);
443 index_addr(denali, addr | 0, 0x90);
444 index_addr(denali, addr | 1, 0);
445 for (i = 0; i < 8; i++)
446 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
447 maf_id = id_bytes[0];
448 device_id = id_bytes[1];
449
450 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
451 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
452 if (FAIL == get_onfi_nand_para(denali))
453 return FAIL;
454 } else if (maf_id == 0xEC) { /* Samsung NAND */
455 get_samsung_nand_para(denali, device_id);
456 } else if (maf_id == 0x98) { /* Toshiba NAND */
457 get_toshiba_nand_para(denali);
458 } else if (maf_id == 0xAD) { /* Hynix NAND */
459 get_hynix_nand_para(denali, device_id);
460 }
461
462 dev_info(denali->dev,
463 "Dump timing register values:\n"
464 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
465 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
466 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
467 ioread32(denali->flash_reg + ACC_CLKS),
468 ioread32(denali->flash_reg + RE_2_WE),
469 ioread32(denali->flash_reg + RE_2_RE),
470 ioread32(denali->flash_reg + WE_2_RE),
471 ioread32(denali->flash_reg + ADDR_2_DATA),
472 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
473 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
474 ioread32(denali->flash_reg + CS_SETUP_CNT));
475
476 find_valid_banks(denali);
477
478 /*
479 * If the user specified to override the default timings
480 * with a specific ONFI mode, we apply those changes here.
481 */
482 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
483 nand_onfi_timing_set(denali, onfi_timing_mode);
484
485 return status;
486 }
487
488 static void denali_set_intr_modes(struct denali_nand_info *denali,
489 uint16_t INT_ENABLE)
490 {
491 if (INT_ENABLE)
492 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
493 else
494 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
495 }
496
497 /*
498 * validation function to verify that the controlling software is making
499 * a valid request
500 */
501 static inline bool is_flash_bank_valid(int flash_bank)
502 {
503 return flash_bank >= 0 && flash_bank < 4;
504 }
505
506 static void denali_irq_init(struct denali_nand_info *denali)
507 {
508 uint32_t int_mask;
509 int i;
510
511 /* Disable global interrupts */
512 denali_set_intr_modes(denali, false);
513
514 int_mask = DENALI_IRQ_ALL;
515
516 /* Clear all status bits */
517 for (i = 0; i < denali->max_banks; ++i)
518 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
519
520 denali_irq_enable(denali, int_mask);
521 }
522
523 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
524 {
525 denali_set_intr_modes(denali, false);
526 }
527
528 static void denali_irq_enable(struct denali_nand_info *denali,
529 uint32_t int_mask)
530 {
531 int i;
532
533 for (i = 0; i < denali->max_banks; ++i)
534 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
535 }
536
537 /*
538 * This function only returns when an interrupt that this driver cares about
539 * occurs. This is to reduce the overhead of servicing interrupts
540 */
541 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
542 {
543 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
544 }
545
546 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
547 static inline void clear_interrupt(struct denali_nand_info *denali,
548 uint32_t irq_mask)
549 {
550 uint32_t intr_status_reg;
551
552 intr_status_reg = INTR_STATUS(denali->flash_bank);
553
554 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
555 }
556
557 static void clear_interrupts(struct denali_nand_info *denali)
558 {
559 uint32_t status;
560
561 spin_lock_irq(&denali->irq_lock);
562
563 status = read_interrupt_status(denali);
564 clear_interrupt(denali, status);
565
566 denali->irq_status = 0x0;
567 spin_unlock_irq(&denali->irq_lock);
568 }
569
570 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
571 {
572 uint32_t intr_status_reg;
573
574 intr_status_reg = INTR_STATUS(denali->flash_bank);
575
576 return ioread32(denali->flash_reg + intr_status_reg);
577 }
578
579 /*
580 * This is the interrupt service routine. It handles all interrupts
581 * sent to this device. Note that on CE4100, this is a shared interrupt.
582 */
583 static irqreturn_t denali_isr(int irq, void *dev_id)
584 {
585 struct denali_nand_info *denali = dev_id;
586 uint32_t irq_status;
587 irqreturn_t result = IRQ_NONE;
588
589 spin_lock(&denali->irq_lock);
590
591 /* check to see if a valid NAND chip has been selected. */
592 if (is_flash_bank_valid(denali->flash_bank)) {
593 /*
594 * check to see if controller generated the interrupt,
595 * since this is a shared interrupt
596 */
597 irq_status = denali_irq_detected(denali);
598 if (irq_status != 0) {
599 /* handle interrupt */
600 /* first acknowledge it */
601 clear_interrupt(denali, irq_status);
602 /*
603 * store the status in the device context for someone
604 * to read
605 */
606 denali->irq_status |= irq_status;
607 /* notify anyone who cares that it happened */
608 complete(&denali->complete);
609 /* tell the OS that we've handled this */
610 result = IRQ_HANDLED;
611 }
612 }
613 spin_unlock(&denali->irq_lock);
614 return result;
615 }
616
617 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
618 {
619 unsigned long comp_res;
620 uint32_t intr_status;
621 unsigned long timeout = msecs_to_jiffies(1000);
622
623 do {
624 comp_res =
625 wait_for_completion_timeout(&denali->complete, timeout);
626 spin_lock_irq(&denali->irq_lock);
627 intr_status = denali->irq_status;
628
629 if (intr_status & irq_mask) {
630 denali->irq_status &= ~irq_mask;
631 spin_unlock_irq(&denali->irq_lock);
632 /* our interrupt was detected */
633 break;
634 }
635
636 /*
637 * these are not the interrupts you are looking for -
638 * need to wait again
639 */
640 spin_unlock_irq(&denali->irq_lock);
641 } while (comp_res != 0);
642
643 if (comp_res == 0) {
644 /* timeout */
645 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
646 intr_status, irq_mask);
647
648 intr_status = 0;
649 }
650 return intr_status;
651 }
652
653 /*
654 * This helper function setups the registers for ECC and whether or not
655 * the spare area will be transferred.
656 */
657 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
658 bool transfer_spare)
659 {
660 int ecc_en_flag, transfer_spare_flag;
661
662 /* set ECC, transfer spare bits if needed */
663 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
664 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
665
666 /* Enable spare area/ECC per user's request. */
667 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
668 iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
669 }
670
671 /*
672 * sends a pipeline command operation to the controller. See the Denali NAND
673 * controller's user guide for more information (section 4.2.3.6).
674 */
675 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
676 bool ecc_en, bool transfer_spare,
677 int access_type, int op)
678 {
679 int status = PASS;
680 uint32_t addr, cmd;
681
682 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
683
684 clear_interrupts(denali);
685
686 addr = BANK(denali->flash_bank) | denali->page;
687
688 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
689 cmd = MODE_01 | addr;
690 iowrite32(cmd, denali->flash_mem);
691 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
692 /* read spare area */
693 cmd = MODE_10 | addr;
694 index_addr(denali, cmd, access_type);
695
696 cmd = MODE_01 | addr;
697 iowrite32(cmd, denali->flash_mem);
698 } else if (op == DENALI_READ) {
699 /* setup page read request for access type */
700 cmd = MODE_10 | addr;
701 index_addr(denali, cmd, access_type);
702
703 cmd = MODE_01 | addr;
704 iowrite32(cmd, denali->flash_mem);
705 }
706 return status;
707 }
708
709 /* helper function that simply writes a buffer to the flash */
710 static int write_data_to_flash_mem(struct denali_nand_info *denali,
711 const uint8_t *buf, int len)
712 {
713 uint32_t *buf32;
714 int i;
715
716 /*
717 * verify that the len is a multiple of 4.
718 * see comment in read_data_from_flash_mem()
719 */
720 BUG_ON((len % 4) != 0);
721
722 /* write the data to the flash memory */
723 buf32 = (uint32_t *)buf;
724 for (i = 0; i < len / 4; i++)
725 iowrite32(*buf32++, denali->flash_mem + 0x10);
726 return i * 4; /* intent is to return the number of bytes read */
727 }
728
729 /* helper function that simply reads a buffer from the flash */
730 static int read_data_from_flash_mem(struct denali_nand_info *denali,
731 uint8_t *buf, int len)
732 {
733 uint32_t *buf32;
734 int i;
735
736 /*
737 * we assume that len will be a multiple of 4, if not it would be nice
738 * to know about it ASAP rather than have random failures...
739 * This assumption is based on the fact that this function is designed
740 * to be used to read flash pages, which are typically multiples of 4.
741 */
742 BUG_ON((len % 4) != 0);
743
744 /* transfer the data from the flash */
745 buf32 = (uint32_t *)buf;
746 for (i = 0; i < len / 4; i++)
747 *buf32++ = ioread32(denali->flash_mem + 0x10);
748 return i * 4; /* intent is to return the number of bytes read */
749 }
750
751 /* writes OOB data to the device */
752 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
753 {
754 struct denali_nand_info *denali = mtd_to_denali(mtd);
755 uint32_t irq_status;
756 uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
757 int status = 0;
758
759 denali->page = page;
760
761 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
762 DENALI_WRITE) == PASS) {
763 write_data_to_flash_mem(denali, buf, mtd->oobsize);
764
765 /* wait for operation to complete */
766 irq_status = wait_for_irq(denali, irq_mask);
767
768 if (irq_status == 0) {
769 dev_err(denali->dev, "OOB write failed\n");
770 status = -EIO;
771 }
772 } else {
773 dev_err(denali->dev, "unable to send pipeline command\n");
774 status = -EIO;
775 }
776 return status;
777 }
778
779 /* reads OOB data from the device */
780 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
781 {
782 struct denali_nand_info *denali = mtd_to_denali(mtd);
783 uint32_t irq_mask = INTR__LOAD_COMP;
784 uint32_t irq_status, addr, cmd;
785
786 denali->page = page;
787
788 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
789 DENALI_READ) == PASS) {
790 read_data_from_flash_mem(denali, buf, mtd->oobsize);
791
792 /*
793 * wait for command to be accepted
794 * can always use status0 bit as the
795 * mask is identical for each bank.
796 */
797 irq_status = wait_for_irq(denali, irq_mask);
798
799 if (irq_status == 0)
800 dev_err(denali->dev, "page on OOB timeout %d\n",
801 denali->page);
802
803 /*
804 * We set the device back to MAIN_ACCESS here as I observed
805 * instability with the controller if you do a block erase
806 * and the last transaction was a SPARE_ACCESS. Block erase
807 * is reliable (according to the MTD test infrastructure)
808 * if you are in MAIN_ACCESS.
809 */
810 addr = BANK(denali->flash_bank) | denali->page;
811 cmd = MODE_10 | addr;
812 index_addr(denali, cmd, MAIN_ACCESS);
813 }
814 }
815
816 static int denali_check_erased_page(struct mtd_info *mtd,
817 struct nand_chip *chip, uint8_t *buf,
818 unsigned long uncor_ecc_flags,
819 unsigned int max_bitflips)
820 {
821 uint8_t *ecc_code = chip->buffers->ecccode;
822 int ecc_steps = chip->ecc.steps;
823 int ecc_size = chip->ecc.size;
824 int ecc_bytes = chip->ecc.bytes;
825 int i, ret, stat;
826
827 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
828 chip->ecc.total);
829 if (ret)
830 return ret;
831
832 for (i = 0; i < ecc_steps; i++) {
833 if (!(uncor_ecc_flags & BIT(i)))
834 continue;
835
836 stat = nand_check_erased_ecc_chunk(buf, ecc_size,
837 ecc_code, ecc_bytes,
838 NULL, 0,
839 chip->ecc.strength);
840 if (stat < 0) {
841 mtd->ecc_stats.failed++;
842 } else {
843 mtd->ecc_stats.corrected += stat;
844 max_bitflips = max_t(unsigned int, max_bitflips, stat);
845 }
846
847 buf += ecc_size;
848 ecc_code += ecc_bytes;
849 }
850
851 return max_bitflips;
852 }
853
854 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
855 struct denali_nand_info *denali,
856 unsigned long *uncor_ecc_flags)
857 {
858 struct nand_chip *chip = mtd_to_nand(mtd);
859 int bank = denali->flash_bank;
860 uint32_t ecc_cor;
861 unsigned int max_bitflips;
862
863 ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
864 ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
865
866 if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
867 /*
868 * This flag is set when uncorrectable error occurs at least in
869 * one ECC sector. We can not know "how many sectors", or
870 * "which sector(s)". We need erase-page check for all sectors.
871 */
872 *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
873 return 0;
874 }
875
876 max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
877
878 /*
879 * The register holds the maximum of per-sector corrected bitflips.
880 * This is suitable for the return value of the ->read_page() callback.
881 * Unfortunately, we can not know the total number of corrected bits in
882 * the page. Increase the stats by max_bitflips. (compromised solution)
883 */
884 mtd->ecc_stats.corrected += max_bitflips;
885
886 return max_bitflips;
887 }
888
889 #define ECC_SECTOR_SIZE 512
890
891 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
892 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
893 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
894 #define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
895 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
896 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
897
898 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
899 struct denali_nand_info *denali,
900 unsigned long *uncor_ecc_flags, uint8_t *buf)
901 {
902 unsigned int bitflips = 0;
903 unsigned int max_bitflips = 0;
904 uint32_t err_addr, err_cor_info;
905 unsigned int err_byte, err_sector, err_device;
906 uint8_t err_cor_value;
907 unsigned int prev_sector = 0;
908
909 /* read the ECC errors. we'll ignore them for now */
910 denali_set_intr_modes(denali, false);
911
912 do {
913 err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
914 err_sector = ECC_SECTOR(err_addr);
915 err_byte = ECC_BYTE(err_addr);
916
917 err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
918 err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
919 err_device = ECC_ERR_DEVICE(err_cor_info);
920
921 /* reset the bitflip counter when crossing ECC sector */
922 if (err_sector != prev_sector)
923 bitflips = 0;
924
925 if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
926 /*
927 * Check later if this is a real ECC error, or
928 * an erased sector.
929 */
930 *uncor_ecc_flags |= BIT(err_sector);
931 } else if (err_byte < ECC_SECTOR_SIZE) {
932 /*
933 * If err_byte is larger than ECC_SECTOR_SIZE, means error
934 * happened in OOB, so we ignore it. It's no need for
935 * us to correct it err_device is represented the NAND
936 * error bits are happened in if there are more than
937 * one NAND connected.
938 */
939 int offset;
940 unsigned int flips_in_byte;
941
942 offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
943 denali->devnum + err_device;
944
945 /* correct the ECC error */
946 flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
947 buf[offset] ^= err_cor_value;
948 mtd->ecc_stats.corrected += flips_in_byte;
949 bitflips += flips_in_byte;
950
951 max_bitflips = max(max_bitflips, bitflips);
952 }
953
954 prev_sector = err_sector;
955 } while (!ECC_LAST_ERR(err_cor_info));
956
957 /*
958 * Once handle all ecc errors, controller will trigger a
959 * ECC_TRANSACTION_DONE interrupt, so here just wait for
960 * a while for this interrupt
961 */
962 while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
963 cpu_relax();
964 clear_interrupts(denali);
965 denali_set_intr_modes(denali, true);
966
967 return max_bitflips;
968 }
969
970 /* programs the controller to either enable/disable DMA transfers */
971 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
972 {
973 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
974 ioread32(denali->flash_reg + DMA_ENABLE);
975 }
976
977 static void denali_setup_dma64(struct denali_nand_info *denali, int op)
978 {
979 uint32_t mode;
980 const int page_count = 1;
981 uint64_t addr = denali->buf.dma_buf;
982
983 mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
984
985 /* DMA is a three step process */
986
987 /*
988 * 1. setup transfer type, interrupt when complete,
989 * burst len = 64 bytes, the number of pages
990 */
991 index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
992
993 /* 2. set memory low address */
994 index_addr(denali, mode, addr);
995
996 /* 3. set memory high address */
997 index_addr(denali, mode, addr >> 32);
998 }
999
1000 static void denali_setup_dma32(struct denali_nand_info *denali, int op)
1001 {
1002 uint32_t mode;
1003 const int page_count = 1;
1004 uint32_t addr = denali->buf.dma_buf;
1005
1006 mode = MODE_10 | BANK(denali->flash_bank);
1007
1008 /* DMA is a four step process */
1009
1010 /* 1. setup transfer type and # of pages */
1011 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1012
1013 /* 2. set memory high address bits 23:8 */
1014 index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1015
1016 /* 3. set memory low address bits 23:8 */
1017 index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1018
1019 /* 4. interrupt when complete, burst len = 64 bytes */
1020 index_addr(denali, mode | 0x14000, 0x2400);
1021 }
1022
1023 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1024 {
1025 if (denali->caps & DENALI_CAP_DMA_64BIT)
1026 denali_setup_dma64(denali, op);
1027 else
1028 denali_setup_dma32(denali, op);
1029 }
1030
1031 /*
1032 * writes a page. user specifies type, and this function handles the
1033 * configuration details.
1034 */
1035 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1036 const uint8_t *buf, bool raw_xfer)
1037 {
1038 struct denali_nand_info *denali = mtd_to_denali(mtd);
1039 dma_addr_t addr = denali->buf.dma_buf;
1040 size_t size = mtd->writesize + mtd->oobsize;
1041 uint32_t irq_status;
1042 uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
1043
1044 /*
1045 * if it is a raw xfer, we want to disable ecc and send the spare area.
1046 * !raw_xfer - enable ecc
1047 * raw_xfer - transfer spare
1048 */
1049 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1050
1051 /* copy buffer into DMA buffer */
1052 memcpy(denali->buf.buf, buf, mtd->writesize);
1053
1054 if (raw_xfer) {
1055 /* transfer the data to the spare area */
1056 memcpy(denali->buf.buf + mtd->writesize,
1057 chip->oob_poi,
1058 mtd->oobsize);
1059 }
1060
1061 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1062
1063 clear_interrupts(denali);
1064 denali_enable_dma(denali, true);
1065
1066 denali_setup_dma(denali, DENALI_WRITE);
1067
1068 /* wait for operation to complete */
1069 irq_status = wait_for_irq(denali, irq_mask);
1070
1071 if (irq_status == 0) {
1072 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1073 raw_xfer);
1074 denali->status = NAND_STATUS_FAIL;
1075 }
1076
1077 denali_enable_dma(denali, false);
1078 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1079
1080 return 0;
1081 }
1082
1083 /* NAND core entry points */
1084
1085 /*
1086 * this is the callback that the NAND core calls to write a page. Since
1087 * writing a page with ECC or without is similar, all the work is done
1088 * by write_page above.
1089 */
1090 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1091 const uint8_t *buf, int oob_required, int page)
1092 {
1093 /*
1094 * for regular page writes, we let HW handle all the ECC
1095 * data written to the device.
1096 */
1097 return write_page(mtd, chip, buf, false);
1098 }
1099
1100 /*
1101 * This is the callback that the NAND core calls to write a page without ECC.
1102 * raw access is similar to ECC page writes, so all the work is done in the
1103 * write_page() function above.
1104 */
1105 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1106 const uint8_t *buf, int oob_required,
1107 int page)
1108 {
1109 /*
1110 * for raw page writes, we want to disable ECC and simply write
1111 * whatever data is in the buffer.
1112 */
1113 return write_page(mtd, chip, buf, true);
1114 }
1115
1116 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1117 int page)
1118 {
1119 return write_oob_data(mtd, chip->oob_poi, page);
1120 }
1121
1122 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1123 int page)
1124 {
1125 read_oob_data(mtd, chip->oob_poi, page);
1126
1127 return 0;
1128 }
1129
1130 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1131 uint8_t *buf, int oob_required, int page)
1132 {
1133 struct denali_nand_info *denali = mtd_to_denali(mtd);
1134 dma_addr_t addr = denali->buf.dma_buf;
1135 size_t size = mtd->writesize + mtd->oobsize;
1136 uint32_t irq_status;
1137 uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
1138 INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
1139 INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1140 unsigned long uncor_ecc_flags = 0;
1141 int stat = 0;
1142
1143 if (page != denali->page) {
1144 dev_err(denali->dev,
1145 "IN %s: page %d is not equal to denali->page %d",
1146 __func__, page, denali->page);
1147 BUG();
1148 }
1149
1150 setup_ecc_for_xfer(denali, true, false);
1151
1152 denali_enable_dma(denali, true);
1153 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1154
1155 clear_interrupts(denali);
1156 denali_setup_dma(denali, DENALI_READ);
1157
1158 /* wait for operation to complete */
1159 irq_status = wait_for_irq(denali, irq_mask);
1160
1161 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1162
1163 memcpy(buf, denali->buf.buf, mtd->writesize);
1164
1165 if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
1166 stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
1167 else if (irq_status & INTR__ECC_ERR)
1168 stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
1169 denali_enable_dma(denali, false);
1170
1171 if (stat < 0)
1172 return stat;
1173
1174 if (uncor_ecc_flags) {
1175 read_oob_data(mtd, chip->oob_poi, denali->page);
1176
1177 stat = denali_check_erased_page(mtd, chip, buf,
1178 uncor_ecc_flags, stat);
1179 }
1180
1181 return stat;
1182 }
1183
1184 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1185 uint8_t *buf, int oob_required, int page)
1186 {
1187 struct denali_nand_info *denali = mtd_to_denali(mtd);
1188 dma_addr_t addr = denali->buf.dma_buf;
1189 size_t size = mtd->writesize + mtd->oobsize;
1190 uint32_t irq_mask = INTR__DMA_CMD_COMP;
1191
1192 if (page != denali->page) {
1193 dev_err(denali->dev,
1194 "IN %s: page %d is not equal to denali->page %d",
1195 __func__, page, denali->page);
1196 BUG();
1197 }
1198
1199 setup_ecc_for_xfer(denali, false, true);
1200 denali_enable_dma(denali, true);
1201
1202 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1203
1204 clear_interrupts(denali);
1205 denali_setup_dma(denali, DENALI_READ);
1206
1207 /* wait for operation to complete */
1208 wait_for_irq(denali, irq_mask);
1209
1210 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1211
1212 denali_enable_dma(denali, false);
1213
1214 memcpy(buf, denali->buf.buf, mtd->writesize);
1215 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1216
1217 return 0;
1218 }
1219
1220 static uint8_t denali_read_byte(struct mtd_info *mtd)
1221 {
1222 struct denali_nand_info *denali = mtd_to_denali(mtd);
1223 uint8_t result = 0xff;
1224
1225 if (denali->buf.head < denali->buf.tail)
1226 result = denali->buf.buf[denali->buf.head++];
1227
1228 return result;
1229 }
1230
1231 static void denali_select_chip(struct mtd_info *mtd, int chip)
1232 {
1233 struct denali_nand_info *denali = mtd_to_denali(mtd);
1234
1235 spin_lock_irq(&denali->irq_lock);
1236 denali->flash_bank = chip;
1237 spin_unlock_irq(&denali->irq_lock);
1238 }
1239
1240 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1241 {
1242 struct denali_nand_info *denali = mtd_to_denali(mtd);
1243 int status = denali->status;
1244
1245 denali->status = 0;
1246
1247 return status;
1248 }
1249
1250 static int denali_erase(struct mtd_info *mtd, int page)
1251 {
1252 struct denali_nand_info *denali = mtd_to_denali(mtd);
1253
1254 uint32_t cmd, irq_status;
1255
1256 clear_interrupts(denali);
1257
1258 /* setup page read request for access type */
1259 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1260 index_addr(denali, cmd, 0x1);
1261
1262 /* wait for erase to complete or failure to occur */
1263 irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1264
1265 return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1266 }
1267
1268 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1269 int page)
1270 {
1271 struct denali_nand_info *denali = mtd_to_denali(mtd);
1272 uint32_t addr, id;
1273 int i;
1274
1275 switch (cmd) {
1276 case NAND_CMD_PAGEPROG:
1277 break;
1278 case NAND_CMD_STATUS:
1279 read_status(denali);
1280 break;
1281 case NAND_CMD_READID:
1282 case NAND_CMD_PARAM:
1283 reset_buf(denali);
1284 /*
1285 * sometimes ManufactureId read from register is not right
1286 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1287 * So here we send READID cmd to NAND insteand
1288 */
1289 addr = MODE_11 | BANK(denali->flash_bank);
1290 index_addr(denali, addr | 0, 0x90);
1291 index_addr(denali, addr | 1, col);
1292 for (i = 0; i < 8; i++) {
1293 index_addr_read_data(denali, addr | 2, &id);
1294 write_byte_to_buf(denali, id);
1295 }
1296 break;
1297 case NAND_CMD_READ0:
1298 case NAND_CMD_SEQIN:
1299 denali->page = page;
1300 break;
1301 case NAND_CMD_RESET:
1302 reset_bank(denali);
1303 break;
1304 case NAND_CMD_READOOB:
1305 /* TODO: Read OOB data */
1306 break;
1307 default:
1308 pr_err(": unsupported command received 0x%x\n", cmd);
1309 break;
1310 }
1311 }
1312 /* end NAND core entry points */
1313
1314 /* Initialization code to bring the device up to a known good state */
1315 static void denali_hw_init(struct denali_nand_info *denali)
1316 {
1317 /*
1318 * The REVISION register may not be reliable. Platforms are allowed to
1319 * override it.
1320 */
1321 if (!denali->revision)
1322 denali->revision =
1323 swab16(ioread32(denali->flash_reg + REVISION));
1324
1325 /*
1326 * tell driver how many bit controller will skip before
1327 * writing ECC code in OOB, this register may be already
1328 * set by firmware. So we read this value out.
1329 * if this value is 0, just let it be.
1330 */
1331 denali->bbtskipbytes = ioread32(denali->flash_reg +
1332 SPARE_AREA_SKIP_BYTES);
1333 detect_max_banks(denali);
1334 denali_nand_reset(denali);
1335 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1336 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1337 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1338
1339 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1340
1341 /* Should set value for these registers when init */
1342 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1343 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1344 denali_nand_timing_set(denali);
1345 denali_irq_init(denali);
1346 }
1347
1348 /*
1349 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1350 * but denali controller in MRST only support 15bit and 8bit ECC
1351 * correction
1352 */
1353 #define ECC_8BITS 14
1354 #define ECC_15BITS 26
1355
1356 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1357 struct mtd_oob_region *oobregion)
1358 {
1359 struct denali_nand_info *denali = mtd_to_denali(mtd);
1360 struct nand_chip *chip = mtd_to_nand(mtd);
1361
1362 if (section)
1363 return -ERANGE;
1364
1365 oobregion->offset = denali->bbtskipbytes;
1366 oobregion->length = chip->ecc.total;
1367
1368 return 0;
1369 }
1370
1371 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1372 struct mtd_oob_region *oobregion)
1373 {
1374 struct denali_nand_info *denali = mtd_to_denali(mtd);
1375 struct nand_chip *chip = mtd_to_nand(mtd);
1376
1377 if (section)
1378 return -ERANGE;
1379
1380 oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
1381 oobregion->length = mtd->oobsize - oobregion->offset;
1382
1383 return 0;
1384 }
1385
1386 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1387 .ecc = denali_ooblayout_ecc,
1388 .free = denali_ooblayout_free,
1389 };
1390
1391 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1392 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1393
1394 static struct nand_bbt_descr bbt_main_descr = {
1395 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1396 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1397 .offs = 8,
1398 .len = 4,
1399 .veroffs = 12,
1400 .maxblocks = 4,
1401 .pattern = bbt_pattern,
1402 };
1403
1404 static struct nand_bbt_descr bbt_mirror_descr = {
1405 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1406 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1407 .offs = 8,
1408 .len = 4,
1409 .veroffs = 12,
1410 .maxblocks = 4,
1411 .pattern = mirror_pattern,
1412 };
1413
1414 /* initialize driver data structures */
1415 static void denali_drv_init(struct denali_nand_info *denali)
1416 {
1417 /*
1418 * the completion object will be used to notify
1419 * the callee that the interrupt is done
1420 */
1421 init_completion(&denali->complete);
1422
1423 /*
1424 * the spinlock will be used to synchronize the ISR with any
1425 * element that might be access shared data (interrupt status)
1426 */
1427 spin_lock_init(&denali->irq_lock);
1428
1429 /* indicate that MTD has not selected a valid bank yet */
1430 denali->flash_bank = CHIP_SELECT_INVALID;
1431
1432 /* initialize our irq_status variable to indicate no interrupts */
1433 denali->irq_status = 0;
1434 }
1435
1436 static int denali_multidev_fixup(struct denali_nand_info *denali)
1437 {
1438 struct nand_chip *chip = &denali->nand;
1439 struct mtd_info *mtd = nand_to_mtd(chip);
1440
1441 /*
1442 * Support for multi device:
1443 * When the IP configuration is x16 capable and two x8 chips are
1444 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1445 * In this case, the core framework knows nothing about this fact,
1446 * so we should tell it the _logical_ pagesize and anything necessary.
1447 */
1448 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1449
1450 /*
1451 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1452 * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
1453 */
1454 if (denali->devnum == 0) {
1455 denali->devnum = 1;
1456 iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
1457 }
1458
1459 if (denali->devnum == 1)
1460 return 0;
1461
1462 if (denali->devnum != 2) {
1463 dev_err(denali->dev, "unsupported number of devices %d\n",
1464 denali->devnum);
1465 return -EINVAL;
1466 }
1467
1468 /* 2 chips in parallel */
1469 mtd->size <<= 1;
1470 mtd->erasesize <<= 1;
1471 mtd->writesize <<= 1;
1472 mtd->oobsize <<= 1;
1473 chip->chipsize <<= 1;
1474 chip->page_shift += 1;
1475 chip->phys_erase_shift += 1;
1476 chip->bbt_erase_shift += 1;
1477 chip->chip_shift += 1;
1478 chip->pagemask <<= 1;
1479 chip->ecc.size <<= 1;
1480 chip->ecc.bytes <<= 1;
1481 chip->ecc.strength <<= 1;
1482 denali->bbtskipbytes <<= 1;
1483
1484 return 0;
1485 }
1486
1487 int denali_init(struct denali_nand_info *denali)
1488 {
1489 struct nand_chip *chip = &denali->nand;
1490 struct mtd_info *mtd = nand_to_mtd(chip);
1491 int ret;
1492
1493 if (denali->platform == INTEL_CE4100) {
1494 /*
1495 * Due to a silicon limitation, we can only support
1496 * ONFI timing mode 1 and below.
1497 */
1498 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1499 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1500 return -EINVAL;
1501 }
1502 }
1503
1504 /* allocate a temporary buffer for nand_scan_ident() */
1505 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1506 GFP_DMA | GFP_KERNEL);
1507 if (!denali->buf.buf)
1508 return -ENOMEM;
1509
1510 mtd->dev.parent = denali->dev;
1511 denali_hw_init(denali);
1512 denali_drv_init(denali);
1513
1514 /* Request IRQ after all the hardware initialization is finished */
1515 ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1516 IRQF_SHARED, DENALI_NAND_NAME, denali);
1517 if (ret) {
1518 dev_err(denali->dev, "Unable to request IRQ\n");
1519 return ret;
1520 }
1521
1522 /* now that our ISR is registered, we can enable interrupts */
1523 denali_set_intr_modes(denali, true);
1524 nand_set_flash_node(chip, denali->dev->of_node);
1525 /* Fallback to the default name if DT did not give "label" property */
1526 if (!mtd->name)
1527 mtd->name = "denali-nand";
1528
1529 /* register the driver with the NAND core subsystem */
1530 chip->select_chip = denali_select_chip;
1531 chip->cmdfunc = denali_cmdfunc;
1532 chip->read_byte = denali_read_byte;
1533 chip->waitfunc = denali_waitfunc;
1534
1535 /*
1536 * scan for NAND devices attached to the controller
1537 * this is the first stage in a two step process to register
1538 * with the nand subsystem
1539 */
1540 ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1541 if (ret)
1542 goto failed_req_irq;
1543
1544 /* allocate the right size buffer now */
1545 devm_kfree(denali->dev, denali->buf.buf);
1546 denali->buf.buf = devm_kzalloc(denali->dev,
1547 mtd->writesize + mtd->oobsize,
1548 GFP_KERNEL);
1549 if (!denali->buf.buf) {
1550 ret = -ENOMEM;
1551 goto failed_req_irq;
1552 }
1553
1554 ret = dma_set_mask(denali->dev,
1555 DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
1556 64 : 32));
1557 if (ret) {
1558 dev_err(denali->dev, "No usable DMA configuration\n");
1559 goto failed_req_irq;
1560 }
1561
1562 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1563 mtd->writesize + mtd->oobsize,
1564 DMA_BIDIRECTIONAL);
1565 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1566 dev_err(denali->dev, "Failed to map DMA buffer\n");
1567 ret = -EIO;
1568 goto failed_req_irq;
1569 }
1570
1571 /*
1572 * second stage of the NAND scan
1573 * this stage requires information regarding ECC and
1574 * bad block management.
1575 */
1576
1577 /* Bad block management */
1578 chip->bbt_td = &bbt_main_descr;
1579 chip->bbt_md = &bbt_mirror_descr;
1580
1581 /* skip the scan for now until we have OOB read and write support */
1582 chip->bbt_options |= NAND_BBT_USE_FLASH;
1583 chip->options |= NAND_SKIP_BBTSCAN;
1584 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1585
1586 /* no subpage writes on denali */
1587 chip->options |= NAND_NO_SUBPAGE_WRITE;
1588
1589 /*
1590 * Denali Controller only support 15bit and 8bit ECC in MRST,
1591 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1592 * SLC if possible.
1593 * */
1594 if (!nand_is_slc(chip) &&
1595 (mtd->oobsize > (denali->bbtskipbytes +
1596 ECC_15BITS * (mtd->writesize /
1597 ECC_SECTOR_SIZE)))) {
1598 /* if MLC OOB size is large enough, use 15bit ECC*/
1599 chip->ecc.strength = 15;
1600 chip->ecc.bytes = ECC_15BITS;
1601 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1602 } else if (mtd->oobsize < (denali->bbtskipbytes +
1603 ECC_8BITS * (mtd->writesize /
1604 ECC_SECTOR_SIZE))) {
1605 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1606 goto failed_req_irq;
1607 } else {
1608 chip->ecc.strength = 8;
1609 chip->ecc.bytes = ECC_8BITS;
1610 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1611 }
1612
1613 mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1614
1615 /* override the default read operations */
1616 chip->ecc.size = ECC_SECTOR_SIZE;
1617 chip->ecc.read_page = denali_read_page;
1618 chip->ecc.read_page_raw = denali_read_page_raw;
1619 chip->ecc.write_page = denali_write_page;
1620 chip->ecc.write_page_raw = denali_write_page_raw;
1621 chip->ecc.read_oob = denali_read_oob;
1622 chip->ecc.write_oob = denali_write_oob;
1623 chip->erase = denali_erase;
1624
1625 ret = denali_multidev_fixup(denali);
1626 if (ret)
1627 goto failed_req_irq;
1628
1629 ret = nand_scan_tail(mtd);
1630 if (ret)
1631 goto failed_req_irq;
1632
1633 ret = mtd_device_register(mtd, NULL, 0);
1634 if (ret) {
1635 dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1636 goto failed_req_irq;
1637 }
1638 return 0;
1639
1640 failed_req_irq:
1641 denali_irq_cleanup(denali->irq, denali);
1642
1643 return ret;
1644 }
1645 EXPORT_SYMBOL(denali_init);
1646
1647 /* driver exit point */
1648 void denali_remove(struct denali_nand_info *denali)
1649 {
1650 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1651 /*
1652 * Pre-compute DMA buffer size to avoid any problems in case
1653 * nand_release() ever changes in a way that mtd->writesize and
1654 * mtd->oobsize are not reliable after this call.
1655 */
1656 int bufsize = mtd->writesize + mtd->oobsize;
1657
1658 nand_release(mtd);
1659 denali_irq_cleanup(denali->irq, denali);
1660 dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1661 DMA_BIDIRECTIONAL);
1662 }
1663 EXPORT_SYMBOL(denali_remove);