]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/mtd/nand/denali.c
cfg80211: fix proto in ieee80211_data_to_8023 for frames without LLC header
[mirror_ubuntu-focal-kernel.git] / drivers / mtd / nand / denali.c
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27
28 #include "denali.h"
29
30 MODULE_LICENSE("GPL");
31
32 /*
33 * We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
35 */
36 #define NAND_DEFAULT_TIMINGS -1
37
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode,
41 "Overrides default ONFI setting. -1 indicates use default timings");
42
43 #define DENALI_NAND_NAME "denali-nand"
44
45 /*
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
48 */
49 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
59
60 /*
61 * indicates whether or not the internal value for the flash bank is
62 * valid or not
63 */
64 #define CHIP_SELECT_INVALID -1
65
66 #define SUPPORT_8BITECC 1
67
68 /*
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
71 */
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73
74 /*
75 * this macro allows us to convert from an MTD structure to our own
76 * device context (denali) structure.
77 */
78 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
79 {
80 return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
81 }
82
83 /*
84 * These constants are defined by the driver to enable common driver
85 * configuration options.
86 */
87 #define SPARE_ACCESS 0x41
88 #define MAIN_ACCESS 0x42
89 #define MAIN_SPARE_ACCESS 0x43
90 #define PIPELINE_ACCESS 0x2000
91
92 #define DENALI_READ 0
93 #define DENALI_WRITE 0x100
94
95 /* types of device accesses. We can issue commands and get status */
96 #define COMMAND_CYCLE 0
97 #define ADDR_CYCLE 1
98 #define STATUS_CYCLE 2
99
100 /*
101 * this is a helper macro that allows us to
102 * format the bank into the proper bits for the controller
103 */
104 #define BANK(x) ((x) << 24)
105
106 /* forward declarations */
107 static void clear_interrupts(struct denali_nand_info *denali);
108 static uint32_t wait_for_irq(struct denali_nand_info *denali,
109 uint32_t irq_mask);
110 static void denali_irq_enable(struct denali_nand_info *denali,
111 uint32_t int_mask);
112 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
113
114 /*
115 * Certain operations for the denali NAND controller use an indexed mode to
116 * read/write data. The operation is performed by writing the address value
117 * of the command to the device memory followed by the data. This function
118 * abstracts this common operation.
119 */
120 static void index_addr(struct denali_nand_info *denali,
121 uint32_t address, uint32_t data)
122 {
123 iowrite32(address, denali->flash_mem);
124 iowrite32(data, denali->flash_mem + 0x10);
125 }
126
127 /* Perform an indexed read of the device */
128 static void index_addr_read_data(struct denali_nand_info *denali,
129 uint32_t address, uint32_t *pdata)
130 {
131 iowrite32(address, denali->flash_mem);
132 *pdata = ioread32(denali->flash_mem + 0x10);
133 }
134
135 /*
136 * We need to buffer some data for some of the NAND core routines.
137 * The operations manage buffering that data.
138 */
139 static void reset_buf(struct denali_nand_info *denali)
140 {
141 denali->buf.head = denali->buf.tail = 0;
142 }
143
144 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
145 {
146 denali->buf.buf[denali->buf.tail++] = byte;
147 }
148
149 /* reads the status of the device */
150 static void read_status(struct denali_nand_info *denali)
151 {
152 uint32_t cmd;
153
154 /* initialize the data buffer to store status */
155 reset_buf(denali);
156
157 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
158 if (cmd)
159 write_byte_to_buf(denali, NAND_STATUS_WP);
160 else
161 write_byte_to_buf(denali, 0);
162 }
163
164 /* resets a specific device connected to the core */
165 static void reset_bank(struct denali_nand_info *denali)
166 {
167 uint32_t irq_status;
168 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
169
170 clear_interrupts(denali);
171
172 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
173
174 irq_status = wait_for_irq(denali, irq_mask);
175
176 if (irq_status & INTR_STATUS__TIME_OUT)
177 dev_err(denali->dev, "reset bank failed.\n");
178 }
179
180 /* Reset the flash controller */
181 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
182 {
183 int i;
184
185 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
186 __FILE__, __LINE__, __func__);
187
188 for (i = 0; i < denali->max_banks; i++)
189 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
190 denali->flash_reg + INTR_STATUS(i));
191
192 for (i = 0; i < denali->max_banks; i++) {
193 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
194 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
195 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
196 cpu_relax();
197 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
198 INTR_STATUS__TIME_OUT)
199 dev_dbg(denali->dev,
200 "NAND Reset operation timed out on bank %d\n", i);
201 }
202
203 for (i = 0; i < denali->max_banks; i++)
204 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
205 denali->flash_reg + INTR_STATUS(i));
206
207 return PASS;
208 }
209
210 /*
211 * this routine calculates the ONFI timing values for a given mode and
212 * programs the clocking register accordingly. The mode is determined by
213 * the get_onfi_nand_para routine.
214 */
215 static void nand_onfi_timing_set(struct denali_nand_info *denali,
216 uint16_t mode)
217 {
218 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
219 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
220 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
221 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
222 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
223 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
224 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
225 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
226 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
227 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
228 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
229 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
230
231 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
232 uint16_t dv_window = 0;
233 uint16_t en_lo, en_hi;
234 uint16_t acc_clks;
235 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
236
237 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
238 __FILE__, __LINE__, __func__);
239
240 en_lo = CEIL_DIV(Trp[mode], CLK_X);
241 en_hi = CEIL_DIV(Treh[mode], CLK_X);
242 #if ONFI_BLOOM_TIME
243 if ((en_hi * CLK_X) < (Treh[mode] + 2))
244 en_hi++;
245 #endif
246
247 if ((en_lo + en_hi) * CLK_X < Trc[mode])
248 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
249
250 if ((en_lo + en_hi) < CLK_MULTI)
251 en_lo += CLK_MULTI - en_lo - en_hi;
252
253 while (dv_window < 8) {
254 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
255
256 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
257
258 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
259 data_invalid_rhoh : data_invalid_rloh;
260
261 dv_window = data_invalid - Trea[mode];
262
263 if (dv_window < 8)
264 en_lo++;
265 }
266
267 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
268
269 while (acc_clks * CLK_X - Trea[mode] < 3)
270 acc_clks++;
271
272 if (data_invalid - acc_clks * CLK_X < 2)
273 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
274 __FILE__, __LINE__);
275
276 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
277 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
278 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
279 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
280 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
281 if (cs_cnt == 0)
282 cs_cnt = 1;
283
284 if (Tcea[mode]) {
285 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
286 cs_cnt++;
287 }
288
289 #if MODE5_WORKAROUND
290 if (mode == 5)
291 acc_clks = 5;
292 #endif
293
294 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
295 if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
296 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
297 acc_clks = 6;
298
299 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
300 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
301 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
302 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
303 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
304 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
305 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
306 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
307 }
308
309 /* queries the NAND device to see what ONFI modes it supports. */
310 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
311 {
312 int i;
313
314 /*
315 * we needn't to do a reset here because driver has already
316 * reset all the banks before
317 */
318 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 ONFI_TIMING_MODE__VALUE))
320 return FAIL;
321
322 for (i = 5; i > 0; i--) {
323 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
324 (0x01 << i))
325 break;
326 }
327
328 nand_onfi_timing_set(denali, i);
329
330 /*
331 * By now, all the ONFI devices we know support the page cache
332 * rw feature. So here we enable the pipeline_rw_ahead feature
333 */
334 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
335 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
336
337 return PASS;
338 }
339
340 static void get_samsung_nand_para(struct denali_nand_info *denali,
341 uint8_t device_id)
342 {
343 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
344 /* Set timing register values according to datasheet */
345 iowrite32(5, denali->flash_reg + ACC_CLKS);
346 iowrite32(20, denali->flash_reg + RE_2_WE);
347 iowrite32(12, denali->flash_reg + WE_2_RE);
348 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
349 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
350 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
351 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
352 }
353 }
354
355 static void get_toshiba_nand_para(struct denali_nand_info *denali)
356 {
357 uint32_t tmp;
358
359 /*
360 * Workaround to fix a controller bug which reports a wrong
361 * spare area size for some kind of Toshiba NAND device
362 */
363 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
364 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
365 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
366 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
367 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
368 iowrite32(tmp,
369 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
370 #if SUPPORT_15BITECC
371 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
372 #elif SUPPORT_8BITECC
373 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
374 #endif
375 }
376 }
377
378 static void get_hynix_nand_para(struct denali_nand_info *denali,
379 uint8_t device_id)
380 {
381 uint32_t main_size, spare_size;
382
383 switch (device_id) {
384 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
385 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
386 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
387 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
388 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
389 main_size = 4096 *
390 ioread32(denali->flash_reg + DEVICES_CONNECTED);
391 spare_size = 224 *
392 ioread32(denali->flash_reg + DEVICES_CONNECTED);
393 iowrite32(main_size,
394 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
395 iowrite32(spare_size,
396 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
397 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
398 #if SUPPORT_15BITECC
399 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
400 #elif SUPPORT_8BITECC
401 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
402 #endif
403 break;
404 default:
405 dev_warn(denali->dev,
406 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
407 "Will use default parameter values instead.\n",
408 device_id);
409 }
410 }
411
412 /*
413 * determines how many NAND chips are connected to the controller. Note for
414 * Intel CE4100 devices we don't support more than one device.
415 */
416 static void find_valid_banks(struct denali_nand_info *denali)
417 {
418 uint32_t id[denali->max_banks];
419 int i;
420
421 denali->total_used_banks = 1;
422 for (i = 0; i < denali->max_banks; i++) {
423 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
424 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
425 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
426
427 dev_dbg(denali->dev,
428 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
429
430 if (i == 0) {
431 if (!(id[i] & 0x0ff))
432 break; /* WTF? */
433 } else {
434 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
435 denali->total_used_banks++;
436 else
437 break;
438 }
439 }
440
441 if (denali->platform == INTEL_CE4100) {
442 /*
443 * Platform limitations of the CE4100 device limit
444 * users to a single chip solution for NAND.
445 * Multichip support is not enabled.
446 */
447 if (denali->total_used_banks != 1) {
448 dev_err(denali->dev,
449 "Sorry, Intel CE4100 only supports a single NAND device.\n");
450 BUG();
451 }
452 }
453 dev_dbg(denali->dev,
454 "denali->total_used_banks: %d\n", denali->total_used_banks);
455 }
456
457 /*
458 * Use the configuration feature register to determine the maximum number of
459 * banks that the hardware supports.
460 */
461 static void detect_max_banks(struct denali_nand_info *denali)
462 {
463 uint32_t features = ioread32(denali->flash_reg + FEATURES);
464 /*
465 * Read the revision register, so we can calculate the max_banks
466 * properly: the encoding changed from rev 5.0 to 5.1
467 */
468 u32 revision = MAKE_COMPARABLE_REVISION(
469 ioread32(denali->flash_reg + REVISION));
470
471 if (revision < REVISION_5_1)
472 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
473 else
474 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
475 }
476
477 static void detect_partition_feature(struct denali_nand_info *denali)
478 {
479 /*
480 * For MRST platform, denali->fwblks represent the
481 * number of blocks firmware is taken,
482 * FW is in protect partition and MTD driver has no
483 * permission to access it. So let driver know how many
484 * blocks it can't touch.
485 */
486 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
487 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
488 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
489 denali->fwblks =
490 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
491 MIN_MAX_BANK__MIN_VALUE) *
492 denali->blksperchip)
493 +
494 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
495 MIN_BLK_ADDR__VALUE);
496 } else {
497 denali->fwblks = SPECTRA_START_BLOCK;
498 }
499 } else {
500 denali->fwblks = SPECTRA_START_BLOCK;
501 }
502 }
503
504 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
505 {
506 uint16_t status = PASS;
507 uint32_t id_bytes[8], addr;
508 uint8_t maf_id, device_id;
509 int i;
510
511 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
512 __FILE__, __LINE__, __func__);
513
514 /*
515 * Use read id method to get device ID and other params.
516 * For some NAND chips, controller can't report the correct
517 * device ID by reading from DEVICE_ID register
518 */
519 addr = MODE_11 | BANK(denali->flash_bank);
520 index_addr(denali, addr | 0, 0x90);
521 index_addr(denali, addr | 1, 0);
522 for (i = 0; i < 8; i++)
523 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
524 maf_id = id_bytes[0];
525 device_id = id_bytes[1];
526
527 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
528 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
529 if (FAIL == get_onfi_nand_para(denali))
530 return FAIL;
531 } else if (maf_id == 0xEC) { /* Samsung NAND */
532 get_samsung_nand_para(denali, device_id);
533 } else if (maf_id == 0x98) { /* Toshiba NAND */
534 get_toshiba_nand_para(denali);
535 } else if (maf_id == 0xAD) { /* Hynix NAND */
536 get_hynix_nand_para(denali, device_id);
537 }
538
539 dev_info(denali->dev,
540 "Dump timing register values:\n"
541 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
542 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
543 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
544 ioread32(denali->flash_reg + ACC_CLKS),
545 ioread32(denali->flash_reg + RE_2_WE),
546 ioread32(denali->flash_reg + RE_2_RE),
547 ioread32(denali->flash_reg + WE_2_RE),
548 ioread32(denali->flash_reg + ADDR_2_DATA),
549 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
550 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
551 ioread32(denali->flash_reg + CS_SETUP_CNT));
552
553 find_valid_banks(denali);
554
555 detect_partition_feature(denali);
556
557 /*
558 * If the user specified to override the default timings
559 * with a specific ONFI mode, we apply those changes here.
560 */
561 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
562 nand_onfi_timing_set(denali, onfi_timing_mode);
563
564 return status;
565 }
566
567 static void denali_set_intr_modes(struct denali_nand_info *denali,
568 uint16_t INT_ENABLE)
569 {
570 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
571 __FILE__, __LINE__, __func__);
572
573 if (INT_ENABLE)
574 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
575 else
576 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
577 }
578
579 /*
580 * validation function to verify that the controlling software is making
581 * a valid request
582 */
583 static inline bool is_flash_bank_valid(int flash_bank)
584 {
585 return flash_bank >= 0 && flash_bank < 4;
586 }
587
588 static void denali_irq_init(struct denali_nand_info *denali)
589 {
590 uint32_t int_mask;
591 int i;
592
593 /* Disable global interrupts */
594 denali_set_intr_modes(denali, false);
595
596 int_mask = DENALI_IRQ_ALL;
597
598 /* Clear all status bits */
599 for (i = 0; i < denali->max_banks; ++i)
600 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
601
602 denali_irq_enable(denali, int_mask);
603 }
604
605 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
606 {
607 denali_set_intr_modes(denali, false);
608 free_irq(irqnum, denali);
609 }
610
611 static void denali_irq_enable(struct denali_nand_info *denali,
612 uint32_t int_mask)
613 {
614 int i;
615
616 for (i = 0; i < denali->max_banks; ++i)
617 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
618 }
619
620 /*
621 * This function only returns when an interrupt that this driver cares about
622 * occurs. This is to reduce the overhead of servicing interrupts
623 */
624 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
625 {
626 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
627 }
628
629 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
630 static inline void clear_interrupt(struct denali_nand_info *denali,
631 uint32_t irq_mask)
632 {
633 uint32_t intr_status_reg;
634
635 intr_status_reg = INTR_STATUS(denali->flash_bank);
636
637 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
638 }
639
640 static void clear_interrupts(struct denali_nand_info *denali)
641 {
642 uint32_t status;
643
644 spin_lock_irq(&denali->irq_lock);
645
646 status = read_interrupt_status(denali);
647 clear_interrupt(denali, status);
648
649 denali->irq_status = 0x0;
650 spin_unlock_irq(&denali->irq_lock);
651 }
652
653 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
654 {
655 uint32_t intr_status_reg;
656
657 intr_status_reg = INTR_STATUS(denali->flash_bank);
658
659 return ioread32(denali->flash_reg + intr_status_reg);
660 }
661
662 /*
663 * This is the interrupt service routine. It handles all interrupts
664 * sent to this device. Note that on CE4100, this is a shared interrupt.
665 */
666 static irqreturn_t denali_isr(int irq, void *dev_id)
667 {
668 struct denali_nand_info *denali = dev_id;
669 uint32_t irq_status;
670 irqreturn_t result = IRQ_NONE;
671
672 spin_lock(&denali->irq_lock);
673
674 /* check to see if a valid NAND chip has been selected. */
675 if (is_flash_bank_valid(denali->flash_bank)) {
676 /*
677 * check to see if controller generated the interrupt,
678 * since this is a shared interrupt
679 */
680 irq_status = denali_irq_detected(denali);
681 if (irq_status != 0) {
682 /* handle interrupt */
683 /* first acknowledge it */
684 clear_interrupt(denali, irq_status);
685 /*
686 * store the status in the device context for someone
687 * to read
688 */
689 denali->irq_status |= irq_status;
690 /* notify anyone who cares that it happened */
691 complete(&denali->complete);
692 /* tell the OS that we've handled this */
693 result = IRQ_HANDLED;
694 }
695 }
696 spin_unlock(&denali->irq_lock);
697 return result;
698 }
699 #define BANK(x) ((x) << 24)
700
701 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
702 {
703 unsigned long comp_res;
704 uint32_t intr_status;
705 unsigned long timeout = msecs_to_jiffies(1000);
706
707 do {
708 comp_res =
709 wait_for_completion_timeout(&denali->complete, timeout);
710 spin_lock_irq(&denali->irq_lock);
711 intr_status = denali->irq_status;
712
713 if (intr_status & irq_mask) {
714 denali->irq_status &= ~irq_mask;
715 spin_unlock_irq(&denali->irq_lock);
716 /* our interrupt was detected */
717 break;
718 }
719
720 /*
721 * these are not the interrupts you are looking for -
722 * need to wait again
723 */
724 spin_unlock_irq(&denali->irq_lock);
725 } while (comp_res != 0);
726
727 if (comp_res == 0) {
728 /* timeout */
729 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
730 intr_status, irq_mask);
731
732 intr_status = 0;
733 }
734 return intr_status;
735 }
736
737 /*
738 * This helper function setups the registers for ECC and whether or not
739 * the spare area will be transferred.
740 */
741 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
742 bool transfer_spare)
743 {
744 int ecc_en_flag, transfer_spare_flag;
745
746 /* set ECC, transfer spare bits if needed */
747 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
748 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
749
750 /* Enable spare area/ECC per user's request. */
751 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
752 iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
753 }
754
755 /*
756 * sends a pipeline command operation to the controller. See the Denali NAND
757 * controller's user guide for more information (section 4.2.3.6).
758 */
759 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
760 bool ecc_en, bool transfer_spare,
761 int access_type, int op)
762 {
763 int status = PASS;
764 uint32_t page_count = 1;
765 uint32_t addr, cmd, irq_status, irq_mask;
766
767 if (op == DENALI_READ)
768 irq_mask = INTR_STATUS__LOAD_COMP;
769 else if (op == DENALI_WRITE)
770 irq_mask = 0;
771 else
772 BUG();
773
774 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
775
776 clear_interrupts(denali);
777
778 addr = BANK(denali->flash_bank) | denali->page;
779
780 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
781 cmd = MODE_01 | addr;
782 iowrite32(cmd, denali->flash_mem);
783 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
784 /* read spare area */
785 cmd = MODE_10 | addr;
786 index_addr(denali, cmd, access_type);
787
788 cmd = MODE_01 | addr;
789 iowrite32(cmd, denali->flash_mem);
790 } else if (op == DENALI_READ) {
791 /* setup page read request for access type */
792 cmd = MODE_10 | addr;
793 index_addr(denali, cmd, access_type);
794
795 /*
796 * page 33 of the NAND controller spec indicates we should not
797 * use the pipeline commands in Spare area only mode.
798 * So we don't.
799 */
800 if (access_type == SPARE_ACCESS) {
801 cmd = MODE_01 | addr;
802 iowrite32(cmd, denali->flash_mem);
803 } else {
804 index_addr(denali, cmd,
805 PIPELINE_ACCESS | op | page_count);
806
807 /*
808 * wait for command to be accepted
809 * can always use status0 bit as the
810 * mask is identical for each bank.
811 */
812 irq_status = wait_for_irq(denali, irq_mask);
813
814 if (irq_status == 0) {
815 dev_err(denali->dev,
816 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
817 cmd, denali->page, addr);
818 status = FAIL;
819 } else {
820 cmd = MODE_01 | addr;
821 iowrite32(cmd, denali->flash_mem);
822 }
823 }
824 }
825 return status;
826 }
827
828 /* helper function that simply writes a buffer to the flash */
829 static int write_data_to_flash_mem(struct denali_nand_info *denali,
830 const uint8_t *buf, int len)
831 {
832 uint32_t *buf32;
833 int i;
834
835 /*
836 * verify that the len is a multiple of 4.
837 * see comment in read_data_from_flash_mem()
838 */
839 BUG_ON((len % 4) != 0);
840
841 /* write the data to the flash memory */
842 buf32 = (uint32_t *)buf;
843 for (i = 0; i < len / 4; i++)
844 iowrite32(*buf32++, denali->flash_mem + 0x10);
845 return i * 4; /* intent is to return the number of bytes read */
846 }
847
848 /* helper function that simply reads a buffer from the flash */
849 static int read_data_from_flash_mem(struct denali_nand_info *denali,
850 uint8_t *buf, int len)
851 {
852 uint32_t *buf32;
853 int i;
854
855 /*
856 * we assume that len will be a multiple of 4, if not it would be nice
857 * to know about it ASAP rather than have random failures...
858 * This assumption is based on the fact that this function is designed
859 * to be used to read flash pages, which are typically multiples of 4.
860 */
861 BUG_ON((len % 4) != 0);
862
863 /* transfer the data from the flash */
864 buf32 = (uint32_t *)buf;
865 for (i = 0; i < len / 4; i++)
866 *buf32++ = ioread32(denali->flash_mem + 0x10);
867 return i * 4; /* intent is to return the number of bytes read */
868 }
869
870 /* writes OOB data to the device */
871 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
872 {
873 struct denali_nand_info *denali = mtd_to_denali(mtd);
874 uint32_t irq_status;
875 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
876 INTR_STATUS__PROGRAM_FAIL;
877 int status = 0;
878
879 denali->page = page;
880
881 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
882 DENALI_WRITE) == PASS) {
883 write_data_to_flash_mem(denali, buf, mtd->oobsize);
884
885 /* wait for operation to complete */
886 irq_status = wait_for_irq(denali, irq_mask);
887
888 if (irq_status == 0) {
889 dev_err(denali->dev, "OOB write failed\n");
890 status = -EIO;
891 }
892 } else {
893 dev_err(denali->dev, "unable to send pipeline command\n");
894 status = -EIO;
895 }
896 return status;
897 }
898
899 /* reads OOB data from the device */
900 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
901 {
902 struct denali_nand_info *denali = mtd_to_denali(mtd);
903 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
904 uint32_t irq_status, addr, cmd;
905
906 denali->page = page;
907
908 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
909 DENALI_READ) == PASS) {
910 read_data_from_flash_mem(denali, buf, mtd->oobsize);
911
912 /*
913 * wait for command to be accepted
914 * can always use status0 bit as the
915 * mask is identical for each bank.
916 */
917 irq_status = wait_for_irq(denali, irq_mask);
918
919 if (irq_status == 0)
920 dev_err(denali->dev, "page on OOB timeout %d\n",
921 denali->page);
922
923 /*
924 * We set the device back to MAIN_ACCESS here as I observed
925 * instability with the controller if you do a block erase
926 * and the last transaction was a SPARE_ACCESS. Block erase
927 * is reliable (according to the MTD test infrastructure)
928 * if you are in MAIN_ACCESS.
929 */
930 addr = BANK(denali->flash_bank) | denali->page;
931 cmd = MODE_10 | addr;
932 index_addr(denali, cmd, MAIN_ACCESS);
933 }
934 }
935
936 /*
937 * this function examines buffers to see if they contain data that
938 * indicate that the buffer is part of an erased region of flash.
939 */
940 static bool is_erased(uint8_t *buf, int len)
941 {
942 int i;
943
944 for (i = 0; i < len; i++)
945 if (buf[i] != 0xFF)
946 return false;
947 return true;
948 }
949 #define ECC_SECTOR_SIZE 512
950
951 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
952 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
953 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
954 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
955 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
956 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
957
958 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
959 uint32_t irq_status, unsigned int *max_bitflips)
960 {
961 bool check_erased_page = false;
962 unsigned int bitflips = 0;
963
964 if (irq_status & INTR_STATUS__ECC_ERR) {
965 /* read the ECC errors. we'll ignore them for now */
966 uint32_t err_address, err_correction_info, err_byte,
967 err_sector, err_device, err_correction_value;
968 denali_set_intr_modes(denali, false);
969
970 do {
971 err_address = ioread32(denali->flash_reg +
972 ECC_ERROR_ADDRESS);
973 err_sector = ECC_SECTOR(err_address);
974 err_byte = ECC_BYTE(err_address);
975
976 err_correction_info = ioread32(denali->flash_reg +
977 ERR_CORRECTION_INFO);
978 err_correction_value =
979 ECC_CORRECTION_VALUE(err_correction_info);
980 err_device = ECC_ERR_DEVICE(err_correction_info);
981
982 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
983 /*
984 * If err_byte is larger than ECC_SECTOR_SIZE,
985 * means error happened in OOB, so we ignore
986 * it. It's no need for us to correct it
987 * err_device is represented the NAND error
988 * bits are happened in if there are more
989 * than one NAND connected.
990 */
991 if (err_byte < ECC_SECTOR_SIZE) {
992 struct mtd_info *mtd =
993 nand_to_mtd(&denali->nand);
994 int offset;
995
996 offset = (err_sector *
997 ECC_SECTOR_SIZE +
998 err_byte) *
999 denali->devnum +
1000 err_device;
1001 /* correct the ECC error */
1002 buf[offset] ^= err_correction_value;
1003 mtd->ecc_stats.corrected++;
1004 bitflips++;
1005 }
1006 } else {
1007 /*
1008 * if the error is not correctable, need to
1009 * look at the page to see if it is an erased
1010 * page. if so, then it's not a real ECC error
1011 */
1012 check_erased_page = true;
1013 }
1014 } while (!ECC_LAST_ERR(err_correction_info));
1015 /*
1016 * Once handle all ecc errors, controller will triger
1017 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1018 * for a while for this interrupt
1019 */
1020 while (!(read_interrupt_status(denali) &
1021 INTR_STATUS__ECC_TRANSACTION_DONE))
1022 cpu_relax();
1023 clear_interrupts(denali);
1024 denali_set_intr_modes(denali, true);
1025 }
1026 *max_bitflips = bitflips;
1027 return check_erased_page;
1028 }
1029
1030 /* programs the controller to either enable/disable DMA transfers */
1031 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1032 {
1033 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1034 ioread32(denali->flash_reg + DMA_ENABLE);
1035 }
1036
1037 /* setups the HW to perform the data DMA */
1038 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1039 {
1040 uint32_t mode;
1041 const int page_count = 1;
1042 uint32_t addr = denali->buf.dma_buf;
1043
1044 mode = MODE_10 | BANK(denali->flash_bank);
1045
1046 /* DMA is a four step process */
1047
1048 /* 1. setup transfer type and # of pages */
1049 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1050
1051 /* 2. set memory high address bits 23:8 */
1052 index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1053
1054 /* 3. set memory low address bits 23:8 */
1055 index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1056
1057 /* 4. interrupt when complete, burst len = 64 bytes */
1058 index_addr(denali, mode | 0x14000, 0x2400);
1059 }
1060
1061 /*
1062 * writes a page. user specifies type, and this function handles the
1063 * configuration details.
1064 */
1065 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1066 const uint8_t *buf, bool raw_xfer)
1067 {
1068 struct denali_nand_info *denali = mtd_to_denali(mtd);
1069 dma_addr_t addr = denali->buf.dma_buf;
1070 size_t size = mtd->writesize + mtd->oobsize;
1071 uint32_t irq_status;
1072 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1073 INTR_STATUS__PROGRAM_FAIL;
1074
1075 /*
1076 * if it is a raw xfer, we want to disable ecc and send the spare area.
1077 * !raw_xfer - enable ecc
1078 * raw_xfer - transfer spare
1079 */
1080 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1081
1082 /* copy buffer into DMA buffer */
1083 memcpy(denali->buf.buf, buf, mtd->writesize);
1084
1085 if (raw_xfer) {
1086 /* transfer the data to the spare area */
1087 memcpy(denali->buf.buf + mtd->writesize,
1088 chip->oob_poi,
1089 mtd->oobsize);
1090 }
1091
1092 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1093
1094 clear_interrupts(denali);
1095 denali_enable_dma(denali, true);
1096
1097 denali_setup_dma(denali, DENALI_WRITE);
1098
1099 /* wait for operation to complete */
1100 irq_status = wait_for_irq(denali, irq_mask);
1101
1102 if (irq_status == 0) {
1103 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1104 raw_xfer);
1105 denali->status = NAND_STATUS_FAIL;
1106 }
1107
1108 denali_enable_dma(denali, false);
1109 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1110
1111 return 0;
1112 }
1113
1114 /* NAND core entry points */
1115
1116 /*
1117 * this is the callback that the NAND core calls to write a page. Since
1118 * writing a page with ECC or without is similar, all the work is done
1119 * by write_page above.
1120 */
1121 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1122 const uint8_t *buf, int oob_required, int page)
1123 {
1124 /*
1125 * for regular page writes, we let HW handle all the ECC
1126 * data written to the device.
1127 */
1128 return write_page(mtd, chip, buf, false);
1129 }
1130
1131 /*
1132 * This is the callback that the NAND core calls to write a page without ECC.
1133 * raw access is similar to ECC page writes, so all the work is done in the
1134 * write_page() function above.
1135 */
1136 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1137 const uint8_t *buf, int oob_required,
1138 int page)
1139 {
1140 /*
1141 * for raw page writes, we want to disable ECC and simply write
1142 * whatever data is in the buffer.
1143 */
1144 return write_page(mtd, chip, buf, true);
1145 }
1146
1147 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1148 int page)
1149 {
1150 return write_oob_data(mtd, chip->oob_poi, page);
1151 }
1152
1153 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1154 int page)
1155 {
1156 read_oob_data(mtd, chip->oob_poi, page);
1157
1158 return 0;
1159 }
1160
1161 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1162 uint8_t *buf, int oob_required, int page)
1163 {
1164 unsigned int max_bitflips;
1165 struct denali_nand_info *denali = mtd_to_denali(mtd);
1166
1167 dma_addr_t addr = denali->buf.dma_buf;
1168 size_t size = mtd->writesize + mtd->oobsize;
1169
1170 uint32_t irq_status;
1171 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1172 INTR_STATUS__ECC_ERR;
1173 bool check_erased_page = false;
1174
1175 if (page != denali->page) {
1176 dev_err(denali->dev,
1177 "IN %s: page %d is not equal to denali->page %d",
1178 __func__, page, denali->page);
1179 BUG();
1180 }
1181
1182 setup_ecc_for_xfer(denali, true, false);
1183
1184 denali_enable_dma(denali, true);
1185 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1186
1187 clear_interrupts(denali);
1188 denali_setup_dma(denali, DENALI_READ);
1189
1190 /* wait for operation to complete */
1191 irq_status = wait_for_irq(denali, irq_mask);
1192
1193 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1194
1195 memcpy(buf, denali->buf.buf, mtd->writesize);
1196
1197 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1198 denali_enable_dma(denali, false);
1199
1200 if (check_erased_page) {
1201 read_oob_data(mtd, chip->oob_poi, denali->page);
1202
1203 /* check ECC failures that may have occurred on erased pages */
1204 if (check_erased_page) {
1205 if (!is_erased(buf, mtd->writesize))
1206 mtd->ecc_stats.failed++;
1207 if (!is_erased(buf, mtd->oobsize))
1208 mtd->ecc_stats.failed++;
1209 }
1210 }
1211 return max_bitflips;
1212 }
1213
1214 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1215 uint8_t *buf, int oob_required, int page)
1216 {
1217 struct denali_nand_info *denali = mtd_to_denali(mtd);
1218 dma_addr_t addr = denali->buf.dma_buf;
1219 size_t size = mtd->writesize + mtd->oobsize;
1220 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1221
1222 if (page != denali->page) {
1223 dev_err(denali->dev,
1224 "IN %s: page %d is not equal to denali->page %d",
1225 __func__, page, denali->page);
1226 BUG();
1227 }
1228
1229 setup_ecc_for_xfer(denali, false, true);
1230 denali_enable_dma(denali, true);
1231
1232 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1233
1234 clear_interrupts(denali);
1235 denali_setup_dma(denali, DENALI_READ);
1236
1237 /* wait for operation to complete */
1238 wait_for_irq(denali, irq_mask);
1239
1240 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1241
1242 denali_enable_dma(denali, false);
1243
1244 memcpy(buf, denali->buf.buf, mtd->writesize);
1245 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1246
1247 return 0;
1248 }
1249
1250 static uint8_t denali_read_byte(struct mtd_info *mtd)
1251 {
1252 struct denali_nand_info *denali = mtd_to_denali(mtd);
1253 uint8_t result = 0xff;
1254
1255 if (denali->buf.head < denali->buf.tail)
1256 result = denali->buf.buf[denali->buf.head++];
1257
1258 return result;
1259 }
1260
1261 static void denali_select_chip(struct mtd_info *mtd, int chip)
1262 {
1263 struct denali_nand_info *denali = mtd_to_denali(mtd);
1264
1265 spin_lock_irq(&denali->irq_lock);
1266 denali->flash_bank = chip;
1267 spin_unlock_irq(&denali->irq_lock);
1268 }
1269
1270 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1271 {
1272 struct denali_nand_info *denali = mtd_to_denali(mtd);
1273 int status = denali->status;
1274
1275 denali->status = 0;
1276
1277 return status;
1278 }
1279
1280 static int denali_erase(struct mtd_info *mtd, int page)
1281 {
1282 struct denali_nand_info *denali = mtd_to_denali(mtd);
1283
1284 uint32_t cmd, irq_status;
1285
1286 clear_interrupts(denali);
1287
1288 /* setup page read request for access type */
1289 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1290 index_addr(denali, cmd, 0x1);
1291
1292 /* wait for erase to complete or failure to occur */
1293 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1294 INTR_STATUS__ERASE_FAIL);
1295
1296 return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1297 }
1298
1299 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1300 int page)
1301 {
1302 struct denali_nand_info *denali = mtd_to_denali(mtd);
1303 uint32_t addr, id;
1304 int i;
1305
1306 switch (cmd) {
1307 case NAND_CMD_PAGEPROG:
1308 break;
1309 case NAND_CMD_STATUS:
1310 read_status(denali);
1311 break;
1312 case NAND_CMD_READID:
1313 case NAND_CMD_PARAM:
1314 reset_buf(denali);
1315 /*
1316 * sometimes ManufactureId read from register is not right
1317 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1318 * So here we send READID cmd to NAND insteand
1319 */
1320 addr = MODE_11 | BANK(denali->flash_bank);
1321 index_addr(denali, addr | 0, 0x90);
1322 index_addr(denali, addr | 1, col);
1323 for (i = 0; i < 8; i++) {
1324 index_addr_read_data(denali, addr | 2, &id);
1325 write_byte_to_buf(denali, id);
1326 }
1327 break;
1328 case NAND_CMD_READ0:
1329 case NAND_CMD_SEQIN:
1330 denali->page = page;
1331 break;
1332 case NAND_CMD_RESET:
1333 reset_bank(denali);
1334 break;
1335 case NAND_CMD_READOOB:
1336 /* TODO: Read OOB data */
1337 break;
1338 default:
1339 pr_err(": unsupported command received 0x%x\n", cmd);
1340 break;
1341 }
1342 }
1343 /* end NAND core entry points */
1344
1345 /* Initialization code to bring the device up to a known good state */
1346 static void denali_hw_init(struct denali_nand_info *denali)
1347 {
1348 /*
1349 * tell driver how many bit controller will skip before
1350 * writing ECC code in OOB, this register may be already
1351 * set by firmware. So we read this value out.
1352 * if this value is 0, just let it be.
1353 */
1354 denali->bbtskipbytes = ioread32(denali->flash_reg +
1355 SPARE_AREA_SKIP_BYTES);
1356 detect_max_banks(denali);
1357 denali_nand_reset(denali);
1358 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1359 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1360 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1361
1362 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1363
1364 /* Should set value for these registers when init */
1365 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1366 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1367 denali_nand_timing_set(denali);
1368 denali_irq_init(denali);
1369 }
1370
1371 /*
1372 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1373 * but denali controller in MRST only support 15bit and 8bit ECC
1374 * correction
1375 */
1376 #define ECC_8BITS 14
1377 static struct nand_ecclayout nand_8bit_oob = {
1378 .eccbytes = 14,
1379 };
1380
1381 #define ECC_15BITS 26
1382 static struct nand_ecclayout nand_15bit_oob = {
1383 .eccbytes = 26,
1384 };
1385
1386 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1387 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1388
1389 static struct nand_bbt_descr bbt_main_descr = {
1390 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1391 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1392 .offs = 8,
1393 .len = 4,
1394 .veroffs = 12,
1395 .maxblocks = 4,
1396 .pattern = bbt_pattern,
1397 };
1398
1399 static struct nand_bbt_descr bbt_mirror_descr = {
1400 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1401 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1402 .offs = 8,
1403 .len = 4,
1404 .veroffs = 12,
1405 .maxblocks = 4,
1406 .pattern = mirror_pattern,
1407 };
1408
1409 /* initialize driver data structures */
1410 static void denali_drv_init(struct denali_nand_info *denali)
1411 {
1412 denali->idx = 0;
1413
1414 /* setup interrupt handler */
1415 /*
1416 * the completion object will be used to notify
1417 * the callee that the interrupt is done
1418 */
1419 init_completion(&denali->complete);
1420
1421 /*
1422 * the spinlock will be used to synchronize the ISR with any
1423 * element that might be access shared data (interrupt status)
1424 */
1425 spin_lock_init(&denali->irq_lock);
1426
1427 /* indicate that MTD has not selected a valid bank yet */
1428 denali->flash_bank = CHIP_SELECT_INVALID;
1429
1430 /* initialize our irq_status variable to indicate no interrupts */
1431 denali->irq_status = 0;
1432 }
1433
1434 int denali_init(struct denali_nand_info *denali)
1435 {
1436 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1437 int ret;
1438
1439 if (denali->platform == INTEL_CE4100) {
1440 /*
1441 * Due to a silicon limitation, we can only support
1442 * ONFI timing mode 1 and below.
1443 */
1444 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1445 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1446 return -EINVAL;
1447 }
1448 }
1449
1450 /* allocate a temporary buffer for nand_scan_ident() */
1451 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1452 GFP_DMA | GFP_KERNEL);
1453 if (!denali->buf.buf)
1454 return -ENOMEM;
1455
1456 mtd->dev.parent = denali->dev;
1457 denali_hw_init(denali);
1458 denali_drv_init(denali);
1459
1460 /*
1461 * denali_isr register is done after all the hardware
1462 * initilization is finished
1463 */
1464 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1465 DENALI_NAND_NAME, denali)) {
1466 pr_err("Spectra: Unable to allocate IRQ\n");
1467 return -ENODEV;
1468 }
1469
1470 /* now that our ISR is registered, we can enable interrupts */
1471 denali_set_intr_modes(denali, true);
1472 mtd->name = "denali-nand";
1473
1474 /* register the driver with the NAND core subsystem */
1475 denali->nand.select_chip = denali_select_chip;
1476 denali->nand.cmdfunc = denali_cmdfunc;
1477 denali->nand.read_byte = denali_read_byte;
1478 denali->nand.waitfunc = denali_waitfunc;
1479
1480 /*
1481 * scan for NAND devices attached to the controller
1482 * this is the first stage in a two step process to register
1483 * with the nand subsystem
1484 */
1485 if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
1486 ret = -ENXIO;
1487 goto failed_req_irq;
1488 }
1489
1490 /* allocate the right size buffer now */
1491 devm_kfree(denali->dev, denali->buf.buf);
1492 denali->buf.buf = devm_kzalloc(denali->dev,
1493 mtd->writesize + mtd->oobsize,
1494 GFP_KERNEL);
1495 if (!denali->buf.buf) {
1496 ret = -ENOMEM;
1497 goto failed_req_irq;
1498 }
1499
1500 /* Is 32-bit DMA supported? */
1501 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1502 if (ret) {
1503 pr_err("Spectra: no usable DMA configuration\n");
1504 goto failed_req_irq;
1505 }
1506
1507 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1508 mtd->writesize + mtd->oobsize,
1509 DMA_BIDIRECTIONAL);
1510 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1511 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1512 ret = -EIO;
1513 goto failed_req_irq;
1514 }
1515
1516 /*
1517 * support for multi nand
1518 * MTD known nothing about multi nand, so we should tell it
1519 * the real pagesize and anything necessery
1520 */
1521 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1522 denali->nand.chipsize <<= (denali->devnum - 1);
1523 denali->nand.page_shift += (denali->devnum - 1);
1524 denali->nand.pagemask = (denali->nand.chipsize >>
1525 denali->nand.page_shift) - 1;
1526 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1527 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1528 denali->nand.chip_shift += (denali->devnum - 1);
1529 mtd->writesize <<= (denali->devnum - 1);
1530 mtd->oobsize <<= (denali->devnum - 1);
1531 mtd->erasesize <<= (denali->devnum - 1);
1532 mtd->size = denali->nand.numchips * denali->nand.chipsize;
1533 denali->bbtskipbytes *= denali->devnum;
1534
1535 /*
1536 * second stage of the NAND scan
1537 * this stage requires information regarding ECC and
1538 * bad block management.
1539 */
1540
1541 /* Bad block management */
1542 denali->nand.bbt_td = &bbt_main_descr;
1543 denali->nand.bbt_md = &bbt_mirror_descr;
1544
1545 /* skip the scan for now until we have OOB read and write support */
1546 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1547 denali->nand.options |= NAND_SKIP_BBTSCAN;
1548 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1549
1550 /* no subpage writes on denali */
1551 denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1552
1553 /*
1554 * Denali Controller only support 15bit and 8bit ECC in MRST,
1555 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1556 * SLC if possible.
1557 * */
1558 if (!nand_is_slc(&denali->nand) &&
1559 (mtd->oobsize > (denali->bbtskipbytes +
1560 ECC_15BITS * (mtd->writesize /
1561 ECC_SECTOR_SIZE)))) {
1562 /* if MLC OOB size is large enough, use 15bit ECC*/
1563 denali->nand.ecc.strength = 15;
1564 denali->nand.ecc.layout = &nand_15bit_oob;
1565 denali->nand.ecc.bytes = ECC_15BITS;
1566 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1567 } else if (mtd->oobsize < (denali->bbtskipbytes +
1568 ECC_8BITS * (mtd->writesize /
1569 ECC_SECTOR_SIZE))) {
1570 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1571 goto failed_req_irq;
1572 } else {
1573 denali->nand.ecc.strength = 8;
1574 denali->nand.ecc.layout = &nand_8bit_oob;
1575 denali->nand.ecc.bytes = ECC_8BITS;
1576 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1577 }
1578
1579 denali->nand.ecc.bytes *= denali->devnum;
1580 denali->nand.ecc.strength *= denali->devnum;
1581 denali->nand.ecc.layout->eccbytes *=
1582 mtd->writesize / ECC_SECTOR_SIZE;
1583 denali->nand.ecc.layout->oobfree[0].offset =
1584 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1585 denali->nand.ecc.layout->oobfree[0].length =
1586 mtd->oobsize - denali->nand.ecc.layout->eccbytes -
1587 denali->bbtskipbytes;
1588
1589 /*
1590 * Let driver know the total blocks number and how many blocks
1591 * contained by each nand chip. blksperchip will help driver to
1592 * know how many blocks is taken by FW.
1593 */
1594 denali->totalblks = mtd->size >> denali->nand.phys_erase_shift;
1595 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1596
1597 /* override the default read operations */
1598 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1599 denali->nand.ecc.read_page = denali_read_page;
1600 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1601 denali->nand.ecc.write_page = denali_write_page;
1602 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1603 denali->nand.ecc.read_oob = denali_read_oob;
1604 denali->nand.ecc.write_oob = denali_write_oob;
1605 denali->nand.erase = denali_erase;
1606
1607 if (nand_scan_tail(mtd)) {
1608 ret = -ENXIO;
1609 goto failed_req_irq;
1610 }
1611
1612 ret = mtd_device_register(mtd, NULL, 0);
1613 if (ret) {
1614 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1615 ret);
1616 goto failed_req_irq;
1617 }
1618 return 0;
1619
1620 failed_req_irq:
1621 denali_irq_cleanup(denali->irq, denali);
1622
1623 return ret;
1624 }
1625 EXPORT_SYMBOL(denali_init);
1626
1627 /* driver exit point */
1628 void denali_remove(struct denali_nand_info *denali)
1629 {
1630 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1631 /*
1632 * Pre-compute DMA buffer size to avoid any problems in case
1633 * nand_release() ever changes in a way that mtd->writesize and
1634 * mtd->oobsize are not reliable after this call.
1635 */
1636 int bufsize = mtd->writesize + mtd->oobsize;
1637
1638 nand_release(mtd);
1639 denali_irq_cleanup(denali->irq, denali);
1640 dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1641 DMA_BIDIRECTIONAL);
1642 }
1643 EXPORT_SYMBOL(denali_remove);