]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/denali.c
Merge tag 'dma-mapping-4.14' of git://git.infradead.org/users/hch/dma-mapping
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / denali.c
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27
28 #include "denali.h"
29
30 MODULE_LICENSE("GPL");
31
32 #define DENALI_NAND_NAME "denali-nand"
33
34 /* Host Data/Command Interface */
35 #define DENALI_HOST_ADDR 0x00
36 #define DENALI_HOST_DATA 0x10
37
38 #define DENALI_MAP00 (0 << 26) /* direct access to buffer */
39 #define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
40 #define DENALI_MAP10 (2 << 26) /* high-level control plane */
41 #define DENALI_MAP11 (3 << 26) /* direct controller access */
42
43 /* MAP11 access cycle type */
44 #define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
45 #define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
46 #define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
47
48 /* MAP10 commands */
49 #define DENALI_ERASE 0x01
50
51 #define DENALI_BANK(denali) ((denali)->active_bank << 24)
52
53 #define DENALI_INVALID_BANK -1
54 #define DENALI_NR_BANKS 4
55
56 /*
57 * The bus interface clock, clk_x, is phase aligned with the core clock. The
58 * clk_x is an integral multiple N of the core clk. The value N is configured
59 * at IP delivery time, and its available value is 4, 5, or 6. We need to align
60 * to the largest value to make it work with any possible configuration.
61 */
62 #define DENALI_CLK_X_MULT 6
63
64 /*
65 * this macro allows us to convert from an MTD structure to our own
66 * device context (denali) structure.
67 */
68 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
69 {
70 return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
71 }
72
73 static void denali_host_write(struct denali_nand_info *denali,
74 uint32_t addr, uint32_t data)
75 {
76 iowrite32(addr, denali->host + DENALI_HOST_ADDR);
77 iowrite32(data, denali->host + DENALI_HOST_DATA);
78 }
79
80 /*
81 * Use the configuration feature register to determine the maximum number of
82 * banks that the hardware supports.
83 */
84 static void detect_max_banks(struct denali_nand_info *denali)
85 {
86 uint32_t features = ioread32(denali->reg + FEATURES);
87
88 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
89
90 /* the encoding changed from rev 5.0 to 5.1 */
91 if (denali->revision < 0x0501)
92 denali->max_banks <<= 1;
93 }
94
95 static void denali_enable_irq(struct denali_nand_info *denali)
96 {
97 int i;
98
99 for (i = 0; i < DENALI_NR_BANKS; i++)
100 iowrite32(U32_MAX, denali->reg + INTR_EN(i));
101 iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
102 }
103
104 static void denali_disable_irq(struct denali_nand_info *denali)
105 {
106 int i;
107
108 for (i = 0; i < DENALI_NR_BANKS; i++)
109 iowrite32(0, denali->reg + INTR_EN(i));
110 iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
111 }
112
113 static void denali_clear_irq(struct denali_nand_info *denali,
114 int bank, uint32_t irq_status)
115 {
116 /* write one to clear bits */
117 iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
118 }
119
120 static void denali_clear_irq_all(struct denali_nand_info *denali)
121 {
122 int i;
123
124 for (i = 0; i < DENALI_NR_BANKS; i++)
125 denali_clear_irq(denali, i, U32_MAX);
126 }
127
128 static irqreturn_t denali_isr(int irq, void *dev_id)
129 {
130 struct denali_nand_info *denali = dev_id;
131 irqreturn_t ret = IRQ_NONE;
132 uint32_t irq_status;
133 int i;
134
135 spin_lock(&denali->irq_lock);
136
137 for (i = 0; i < DENALI_NR_BANKS; i++) {
138 irq_status = ioread32(denali->reg + INTR_STATUS(i));
139 if (irq_status)
140 ret = IRQ_HANDLED;
141
142 denali_clear_irq(denali, i, irq_status);
143
144 if (i != denali->active_bank)
145 continue;
146
147 denali->irq_status |= irq_status;
148
149 if (denali->irq_status & denali->irq_mask)
150 complete(&denali->complete);
151 }
152
153 spin_unlock(&denali->irq_lock);
154
155 return ret;
156 }
157
158 static void denali_reset_irq(struct denali_nand_info *denali)
159 {
160 unsigned long flags;
161
162 spin_lock_irqsave(&denali->irq_lock, flags);
163 denali->irq_status = 0;
164 denali->irq_mask = 0;
165 spin_unlock_irqrestore(&denali->irq_lock, flags);
166 }
167
168 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
169 uint32_t irq_mask)
170 {
171 unsigned long time_left, flags;
172 uint32_t irq_status;
173
174 spin_lock_irqsave(&denali->irq_lock, flags);
175
176 irq_status = denali->irq_status;
177
178 if (irq_mask & irq_status) {
179 /* return immediately if the IRQ has already happened. */
180 spin_unlock_irqrestore(&denali->irq_lock, flags);
181 return irq_status;
182 }
183
184 denali->irq_mask = irq_mask;
185 reinit_completion(&denali->complete);
186 spin_unlock_irqrestore(&denali->irq_lock, flags);
187
188 time_left = wait_for_completion_timeout(&denali->complete,
189 msecs_to_jiffies(1000));
190 if (!time_left) {
191 dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
192 denali->irq_mask);
193 return 0;
194 }
195
196 return denali->irq_status;
197 }
198
199 static uint32_t denali_check_irq(struct denali_nand_info *denali)
200 {
201 unsigned long flags;
202 uint32_t irq_status;
203
204 spin_lock_irqsave(&denali->irq_lock, flags);
205 irq_status = denali->irq_status;
206 spin_unlock_irqrestore(&denali->irq_lock, flags);
207
208 return irq_status;
209 }
210
211 /*
212 * This helper function setups the registers for ECC and whether or not
213 * the spare area will be transferred.
214 */
215 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
216 bool transfer_spare)
217 {
218 int ecc_en_flag, transfer_spare_flag;
219
220 /* set ECC, transfer spare bits if needed */
221 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
222 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
223
224 /* Enable spare area/ECC per user's request. */
225 iowrite32(ecc_en_flag, denali->reg + ECC_ENABLE);
226 iowrite32(transfer_spare_flag, denali->reg + TRANSFER_SPARE_REG);
227 }
228
229 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
230 {
231 struct denali_nand_info *denali = mtd_to_denali(mtd);
232 int i;
233
234 iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
235 denali->host + DENALI_HOST_ADDR);
236
237 for (i = 0; i < len; i++)
238 buf[i] = ioread32(denali->host + DENALI_HOST_DATA);
239 }
240
241 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
242 {
243 struct denali_nand_info *denali = mtd_to_denali(mtd);
244 int i;
245
246 iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
247 denali->host + DENALI_HOST_ADDR);
248
249 for (i = 0; i < len; i++)
250 iowrite32(buf[i], denali->host + DENALI_HOST_DATA);
251 }
252
253 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
254 {
255 struct denali_nand_info *denali = mtd_to_denali(mtd);
256 uint16_t *buf16 = (uint16_t *)buf;
257 int i;
258
259 iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
260 denali->host + DENALI_HOST_ADDR);
261
262 for (i = 0; i < len / 2; i++)
263 buf16[i] = ioread32(denali->host + DENALI_HOST_DATA);
264 }
265
266 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
267 int len)
268 {
269 struct denali_nand_info *denali = mtd_to_denali(mtd);
270 const uint16_t *buf16 = (const uint16_t *)buf;
271 int i;
272
273 iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
274 denali->host + DENALI_HOST_ADDR);
275
276 for (i = 0; i < len / 2; i++)
277 iowrite32(buf16[i], denali->host + DENALI_HOST_DATA);
278 }
279
280 static uint8_t denali_read_byte(struct mtd_info *mtd)
281 {
282 uint8_t byte;
283
284 denali_read_buf(mtd, &byte, 1);
285
286 return byte;
287 }
288
289 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
290 {
291 denali_write_buf(mtd, &byte, 1);
292 }
293
294 static uint16_t denali_read_word(struct mtd_info *mtd)
295 {
296 uint16_t word;
297
298 denali_read_buf16(mtd, (uint8_t *)&word, 2);
299
300 return word;
301 }
302
303 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
304 {
305 struct denali_nand_info *denali = mtd_to_denali(mtd);
306 uint32_t type;
307
308 if (ctrl & NAND_CLE)
309 type = DENALI_MAP11_CMD;
310 else if (ctrl & NAND_ALE)
311 type = DENALI_MAP11_ADDR;
312 else
313 return;
314
315 /*
316 * Some commands are followed by chip->dev_ready or chip->waitfunc.
317 * irq_status must be cleared here to catch the R/B# interrupt later.
318 */
319 if (ctrl & NAND_CTRL_CHANGE)
320 denali_reset_irq(denali);
321
322 denali_host_write(denali, DENALI_BANK(denali) | type, dat);
323 }
324
325 static int denali_dev_ready(struct mtd_info *mtd)
326 {
327 struct denali_nand_info *denali = mtd_to_denali(mtd);
328
329 return !!(denali_check_irq(denali) & INTR__INT_ACT);
330 }
331
332 static int denali_check_erased_page(struct mtd_info *mtd,
333 struct nand_chip *chip, uint8_t *buf,
334 unsigned long uncor_ecc_flags,
335 unsigned int max_bitflips)
336 {
337 uint8_t *ecc_code = chip->buffers->ecccode;
338 int ecc_steps = chip->ecc.steps;
339 int ecc_size = chip->ecc.size;
340 int ecc_bytes = chip->ecc.bytes;
341 int i, ret, stat;
342
343 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
344 chip->ecc.total);
345 if (ret)
346 return ret;
347
348 for (i = 0; i < ecc_steps; i++) {
349 if (!(uncor_ecc_flags & BIT(i)))
350 continue;
351
352 stat = nand_check_erased_ecc_chunk(buf, ecc_size,
353 ecc_code, ecc_bytes,
354 NULL, 0,
355 chip->ecc.strength);
356 if (stat < 0) {
357 mtd->ecc_stats.failed++;
358 } else {
359 mtd->ecc_stats.corrected += stat;
360 max_bitflips = max_t(unsigned int, max_bitflips, stat);
361 }
362
363 buf += ecc_size;
364 ecc_code += ecc_bytes;
365 }
366
367 return max_bitflips;
368 }
369
370 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
371 struct denali_nand_info *denali,
372 unsigned long *uncor_ecc_flags)
373 {
374 struct nand_chip *chip = mtd_to_nand(mtd);
375 int bank = denali->active_bank;
376 uint32_t ecc_cor;
377 unsigned int max_bitflips;
378
379 ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
380 ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
381
382 if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
383 /*
384 * This flag is set when uncorrectable error occurs at least in
385 * one ECC sector. We can not know "how many sectors", or
386 * "which sector(s)". We need erase-page check for all sectors.
387 */
388 *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
389 return 0;
390 }
391
392 max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
393
394 /*
395 * The register holds the maximum of per-sector corrected bitflips.
396 * This is suitable for the return value of the ->read_page() callback.
397 * Unfortunately, we can not know the total number of corrected bits in
398 * the page. Increase the stats by max_bitflips. (compromised solution)
399 */
400 mtd->ecc_stats.corrected += max_bitflips;
401
402 return max_bitflips;
403 }
404
405 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
406 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
407 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
408 #define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
409 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
410 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
411
412 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
413 struct denali_nand_info *denali,
414 unsigned long *uncor_ecc_flags, uint8_t *buf)
415 {
416 unsigned int ecc_size = denali->nand.ecc.size;
417 unsigned int bitflips = 0;
418 unsigned int max_bitflips = 0;
419 uint32_t err_addr, err_cor_info;
420 unsigned int err_byte, err_sector, err_device;
421 uint8_t err_cor_value;
422 unsigned int prev_sector = 0;
423 uint32_t irq_status;
424
425 denali_reset_irq(denali);
426
427 do {
428 err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
429 err_sector = ECC_SECTOR(err_addr);
430 err_byte = ECC_BYTE(err_addr);
431
432 err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
433 err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
434 err_device = ECC_ERR_DEVICE(err_cor_info);
435
436 /* reset the bitflip counter when crossing ECC sector */
437 if (err_sector != prev_sector)
438 bitflips = 0;
439
440 if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
441 /*
442 * Check later if this is a real ECC error, or
443 * an erased sector.
444 */
445 *uncor_ecc_flags |= BIT(err_sector);
446 } else if (err_byte < ecc_size) {
447 /*
448 * If err_byte is larger than ecc_size, means error
449 * happened in OOB, so we ignore it. It's no need for
450 * us to correct it err_device is represented the NAND
451 * error bits are happened in if there are more than
452 * one NAND connected.
453 */
454 int offset;
455 unsigned int flips_in_byte;
456
457 offset = (err_sector * ecc_size + err_byte) *
458 denali->devs_per_cs + err_device;
459
460 /* correct the ECC error */
461 flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
462 buf[offset] ^= err_cor_value;
463 mtd->ecc_stats.corrected += flips_in_byte;
464 bitflips += flips_in_byte;
465
466 max_bitflips = max(max_bitflips, bitflips);
467 }
468
469 prev_sector = err_sector;
470 } while (!ECC_LAST_ERR(err_cor_info));
471
472 /*
473 * Once handle all ecc errors, controller will trigger a
474 * ECC_TRANSACTION_DONE interrupt, so here just wait for
475 * a while for this interrupt
476 */
477 irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
478 if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
479 return -EIO;
480
481 return max_bitflips;
482 }
483
484 /* programs the controller to either enable/disable DMA transfers */
485 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
486 {
487 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->reg + DMA_ENABLE);
488 ioread32(denali->reg + DMA_ENABLE);
489 }
490
491 static void denali_setup_dma64(struct denali_nand_info *denali,
492 dma_addr_t dma_addr, int page, int write)
493 {
494 uint32_t mode;
495 const int page_count = 1;
496
497 mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
498
499 /* DMA is a three step process */
500
501 /*
502 * 1. setup transfer type, interrupt when complete,
503 * burst len = 64 bytes, the number of pages
504 */
505 denali_host_write(denali, mode,
506 0x01002000 | (64 << 16) | (write << 8) | page_count);
507
508 /* 2. set memory low address */
509 denali_host_write(denali, mode, dma_addr);
510
511 /* 3. set memory high address */
512 denali_host_write(denali, mode, (uint64_t)dma_addr >> 32);
513 }
514
515 static void denali_setup_dma32(struct denali_nand_info *denali,
516 dma_addr_t dma_addr, int page, int write)
517 {
518 uint32_t mode;
519 const int page_count = 1;
520
521 mode = DENALI_MAP10 | DENALI_BANK(denali);
522
523 /* DMA is a four step process */
524
525 /* 1. setup transfer type and # of pages */
526 denali_host_write(denali, mode | page,
527 0x2000 | (write << 8) | page_count);
528
529 /* 2. set memory high address bits 23:8 */
530 denali_host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
531
532 /* 3. set memory low address bits 23:8 */
533 denali_host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
534
535 /* 4. interrupt when complete, burst len = 64 bytes */
536 denali_host_write(denali, mode | 0x14000, 0x2400);
537 }
538
539 static void denali_setup_dma(struct denali_nand_info *denali,
540 dma_addr_t dma_addr, int page, int write)
541 {
542 if (denali->caps & DENALI_CAP_DMA_64BIT)
543 denali_setup_dma64(denali, dma_addr, page, write);
544 else
545 denali_setup_dma32(denali, dma_addr, page, write);
546 }
547
548 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
549 size_t size, int page, int raw)
550 {
551 uint32_t addr = DENALI_BANK(denali) | page;
552 uint32_t *buf32 = (uint32_t *)buf;
553 uint32_t irq_status, ecc_err_mask;
554 int i;
555
556 if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
557 ecc_err_mask = INTR__ECC_UNCOR_ERR;
558 else
559 ecc_err_mask = INTR__ECC_ERR;
560
561 denali_reset_irq(denali);
562
563 iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
564 for (i = 0; i < size / 4; i++)
565 *buf32++ = ioread32(denali->host + DENALI_HOST_DATA);
566
567 irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
568 if (!(irq_status & INTR__PAGE_XFER_INC))
569 return -EIO;
570
571 if (irq_status & INTR__ERASED_PAGE)
572 memset(buf, 0xff, size);
573
574 return irq_status & ecc_err_mask ? -EBADMSG : 0;
575 }
576
577 static int denali_pio_write(struct denali_nand_info *denali,
578 const void *buf, size_t size, int page, int raw)
579 {
580 uint32_t addr = DENALI_BANK(denali) | page;
581 const uint32_t *buf32 = (uint32_t *)buf;
582 uint32_t irq_status;
583 int i;
584
585 denali_reset_irq(denali);
586
587 iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
588 for (i = 0; i < size / 4; i++)
589 iowrite32(*buf32++, denali->host + DENALI_HOST_DATA);
590
591 irq_status = denali_wait_for_irq(denali,
592 INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
593 if (!(irq_status & INTR__PROGRAM_COMP))
594 return -EIO;
595
596 return 0;
597 }
598
599 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
600 size_t size, int page, int raw, int write)
601 {
602 if (write)
603 return denali_pio_write(denali, buf, size, page, raw);
604 else
605 return denali_pio_read(denali, buf, size, page, raw);
606 }
607
608 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
609 size_t size, int page, int raw, int write)
610 {
611 dma_addr_t dma_addr;
612 uint32_t irq_mask, irq_status, ecc_err_mask;
613 enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
614 int ret = 0;
615
616 dma_addr = dma_map_single(denali->dev, buf, size, dir);
617 if (dma_mapping_error(denali->dev, dma_addr)) {
618 dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
619 return denali_pio_xfer(denali, buf, size, page, raw, write);
620 }
621
622 if (write) {
623 /*
624 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
625 * We can use INTR__DMA_CMD_COMP instead. This flag is asserted
626 * when the page program is completed.
627 */
628 irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
629 ecc_err_mask = 0;
630 } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
631 irq_mask = INTR__DMA_CMD_COMP;
632 ecc_err_mask = INTR__ECC_UNCOR_ERR;
633 } else {
634 irq_mask = INTR__DMA_CMD_COMP;
635 ecc_err_mask = INTR__ECC_ERR;
636 }
637
638 denali_enable_dma(denali, true);
639
640 denali_reset_irq(denali);
641 denali_setup_dma(denali, dma_addr, page, write);
642
643 /* wait for operation to complete */
644 irq_status = denali_wait_for_irq(denali, irq_mask);
645 if (!(irq_status & INTR__DMA_CMD_COMP))
646 ret = -EIO;
647 else if (irq_status & ecc_err_mask)
648 ret = -EBADMSG;
649
650 denali_enable_dma(denali, false);
651 dma_unmap_single(denali->dev, dma_addr, size, dir);
652
653 if (irq_status & INTR__ERASED_PAGE)
654 memset(buf, 0xff, size);
655
656 return ret;
657 }
658
659 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
660 size_t size, int page, int raw, int write)
661 {
662 setup_ecc_for_xfer(denali, !raw, raw);
663
664 if (denali->dma_avail)
665 return denali_dma_xfer(denali, buf, size, page, raw, write);
666 else
667 return denali_pio_xfer(denali, buf, size, page, raw, write);
668 }
669
670 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
671 int page, int write)
672 {
673 struct denali_nand_info *denali = mtd_to_denali(mtd);
674 unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
675 unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
676 int writesize = mtd->writesize;
677 int oobsize = mtd->oobsize;
678 uint8_t *bufpoi = chip->oob_poi;
679 int ecc_steps = chip->ecc.steps;
680 int ecc_size = chip->ecc.size;
681 int ecc_bytes = chip->ecc.bytes;
682 int oob_skip = denali->oob_skip_bytes;
683 size_t size = writesize + oobsize;
684 int i, pos, len;
685
686 /* BBM at the beginning of the OOB area */
687 chip->cmdfunc(mtd, start_cmd, writesize, page);
688 if (write)
689 chip->write_buf(mtd, bufpoi, oob_skip);
690 else
691 chip->read_buf(mtd, bufpoi, oob_skip);
692 bufpoi += oob_skip;
693
694 /* OOB ECC */
695 for (i = 0; i < ecc_steps; i++) {
696 pos = ecc_size + i * (ecc_size + ecc_bytes);
697 len = ecc_bytes;
698
699 if (pos >= writesize)
700 pos += oob_skip;
701 else if (pos + len > writesize)
702 len = writesize - pos;
703
704 chip->cmdfunc(mtd, rnd_cmd, pos, -1);
705 if (write)
706 chip->write_buf(mtd, bufpoi, len);
707 else
708 chip->read_buf(mtd, bufpoi, len);
709 bufpoi += len;
710 if (len < ecc_bytes) {
711 len = ecc_bytes - len;
712 chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
713 if (write)
714 chip->write_buf(mtd, bufpoi, len);
715 else
716 chip->read_buf(mtd, bufpoi, len);
717 bufpoi += len;
718 }
719 }
720
721 /* OOB free */
722 len = oobsize - (bufpoi - chip->oob_poi);
723 chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
724 if (write)
725 chip->write_buf(mtd, bufpoi, len);
726 else
727 chip->read_buf(mtd, bufpoi, len);
728 }
729
730 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
731 uint8_t *buf, int oob_required, int page)
732 {
733 struct denali_nand_info *denali = mtd_to_denali(mtd);
734 int writesize = mtd->writesize;
735 int oobsize = mtd->oobsize;
736 int ecc_steps = chip->ecc.steps;
737 int ecc_size = chip->ecc.size;
738 int ecc_bytes = chip->ecc.bytes;
739 void *dma_buf = denali->buf;
740 int oob_skip = denali->oob_skip_bytes;
741 size_t size = writesize + oobsize;
742 int ret, i, pos, len;
743
744 ret = denali_data_xfer(denali, dma_buf, size, page, 1, 0);
745 if (ret)
746 return ret;
747
748 /* Arrange the buffer for syndrome payload/ecc layout */
749 if (buf) {
750 for (i = 0; i < ecc_steps; i++) {
751 pos = i * (ecc_size + ecc_bytes);
752 len = ecc_size;
753
754 if (pos >= writesize)
755 pos += oob_skip;
756 else if (pos + len > writesize)
757 len = writesize - pos;
758
759 memcpy(buf, dma_buf + pos, len);
760 buf += len;
761 if (len < ecc_size) {
762 len = ecc_size - len;
763 memcpy(buf, dma_buf + writesize + oob_skip,
764 len);
765 buf += len;
766 }
767 }
768 }
769
770 if (oob_required) {
771 uint8_t *oob = chip->oob_poi;
772
773 /* BBM at the beginning of the OOB area */
774 memcpy(oob, dma_buf + writesize, oob_skip);
775 oob += oob_skip;
776
777 /* OOB ECC */
778 for (i = 0; i < ecc_steps; i++) {
779 pos = ecc_size + i * (ecc_size + ecc_bytes);
780 len = ecc_bytes;
781
782 if (pos >= writesize)
783 pos += oob_skip;
784 else if (pos + len > writesize)
785 len = writesize - pos;
786
787 memcpy(oob, dma_buf + pos, len);
788 oob += len;
789 if (len < ecc_bytes) {
790 len = ecc_bytes - len;
791 memcpy(oob, dma_buf + writesize + oob_skip,
792 len);
793 oob += len;
794 }
795 }
796
797 /* OOB free */
798 len = oobsize - (oob - chip->oob_poi);
799 memcpy(oob, dma_buf + size - len, len);
800 }
801
802 return 0;
803 }
804
805 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
806 int page)
807 {
808 denali_oob_xfer(mtd, chip, page, 0);
809
810 return 0;
811 }
812
813 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
814 int page)
815 {
816 struct denali_nand_info *denali = mtd_to_denali(mtd);
817 int status;
818
819 denali_reset_irq(denali);
820
821 denali_oob_xfer(mtd, chip, page, 1);
822
823 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
824 status = chip->waitfunc(mtd, chip);
825
826 return status & NAND_STATUS_FAIL ? -EIO : 0;
827 }
828
829 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
830 uint8_t *buf, int oob_required, int page)
831 {
832 struct denali_nand_info *denali = mtd_to_denali(mtd);
833 unsigned long uncor_ecc_flags = 0;
834 int stat = 0;
835 int ret;
836
837 ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
838 if (ret && ret != -EBADMSG)
839 return ret;
840
841 if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
842 stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
843 else if (ret == -EBADMSG)
844 stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
845
846 if (stat < 0)
847 return stat;
848
849 if (uncor_ecc_flags) {
850 ret = denali_read_oob(mtd, chip, page);
851 if (ret)
852 return ret;
853
854 stat = denali_check_erased_page(mtd, chip, buf,
855 uncor_ecc_flags, stat);
856 }
857
858 return stat;
859 }
860
861 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
862 const uint8_t *buf, int oob_required, int page)
863 {
864 struct denali_nand_info *denali = mtd_to_denali(mtd);
865 int writesize = mtd->writesize;
866 int oobsize = mtd->oobsize;
867 int ecc_steps = chip->ecc.steps;
868 int ecc_size = chip->ecc.size;
869 int ecc_bytes = chip->ecc.bytes;
870 void *dma_buf = denali->buf;
871 int oob_skip = denali->oob_skip_bytes;
872 size_t size = writesize + oobsize;
873 int i, pos, len;
874
875 /*
876 * Fill the buffer with 0xff first except the full page transfer.
877 * This simplifies the logic.
878 */
879 if (!buf || !oob_required)
880 memset(dma_buf, 0xff, size);
881
882 /* Arrange the buffer for syndrome payload/ecc layout */
883 if (buf) {
884 for (i = 0; i < ecc_steps; i++) {
885 pos = i * (ecc_size + ecc_bytes);
886 len = ecc_size;
887
888 if (pos >= writesize)
889 pos += oob_skip;
890 else if (pos + len > writesize)
891 len = writesize - pos;
892
893 memcpy(dma_buf + pos, buf, len);
894 buf += len;
895 if (len < ecc_size) {
896 len = ecc_size - len;
897 memcpy(dma_buf + writesize + oob_skip, buf,
898 len);
899 buf += len;
900 }
901 }
902 }
903
904 if (oob_required) {
905 const uint8_t *oob = chip->oob_poi;
906
907 /* BBM at the beginning of the OOB area */
908 memcpy(dma_buf + writesize, oob, oob_skip);
909 oob += oob_skip;
910
911 /* OOB ECC */
912 for (i = 0; i < ecc_steps; i++) {
913 pos = ecc_size + i * (ecc_size + ecc_bytes);
914 len = ecc_bytes;
915
916 if (pos >= writesize)
917 pos += oob_skip;
918 else if (pos + len > writesize)
919 len = writesize - pos;
920
921 memcpy(dma_buf + pos, oob, len);
922 oob += len;
923 if (len < ecc_bytes) {
924 len = ecc_bytes - len;
925 memcpy(dma_buf + writesize + oob_skip, oob,
926 len);
927 oob += len;
928 }
929 }
930
931 /* OOB free */
932 len = oobsize - (oob - chip->oob_poi);
933 memcpy(dma_buf + size - len, oob, len);
934 }
935
936 return denali_data_xfer(denali, dma_buf, size, page, 1, 1);
937 }
938
939 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
940 const uint8_t *buf, int oob_required, int page)
941 {
942 struct denali_nand_info *denali = mtd_to_denali(mtd);
943
944 return denali_data_xfer(denali, (void *)buf, mtd->writesize,
945 page, 0, 1);
946 }
947
948 static void denali_select_chip(struct mtd_info *mtd, int chip)
949 {
950 struct denali_nand_info *denali = mtd_to_denali(mtd);
951
952 denali->active_bank = chip;
953 }
954
955 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
956 {
957 struct denali_nand_info *denali = mtd_to_denali(mtd);
958 uint32_t irq_status;
959
960 /* R/B# pin transitioned from low to high? */
961 irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
962
963 return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
964 }
965
966 static int denali_erase(struct mtd_info *mtd, int page)
967 {
968 struct denali_nand_info *denali = mtd_to_denali(mtd);
969 uint32_t irq_status;
970
971 denali_reset_irq(denali);
972
973 denali_host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
974 DENALI_ERASE);
975
976 /* wait for erase to complete or failure to occur */
977 irq_status = denali_wait_for_irq(denali,
978 INTR__ERASE_COMP | INTR__ERASE_FAIL);
979
980 return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
981 }
982
983 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
984 const struct nand_data_interface *conf)
985 {
986 struct denali_nand_info *denali = mtd_to_denali(mtd);
987 const struct nand_sdr_timings *timings;
988 unsigned long t_clk;
989 int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
990 int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
991 int addr_2_data_mask;
992 uint32_t tmp;
993
994 timings = nand_get_sdr_timings(conf);
995 if (IS_ERR(timings))
996 return PTR_ERR(timings);
997
998 /* clk_x period in picoseconds */
999 t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
1000 if (!t_clk)
1001 return -EINVAL;
1002
1003 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1004 return 0;
1005
1006 /* tREA -> ACC_CLKS */
1007 acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
1008 acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
1009
1010 tmp = ioread32(denali->reg + ACC_CLKS);
1011 tmp &= ~ACC_CLKS__VALUE;
1012 tmp |= acc_clks;
1013 iowrite32(tmp, denali->reg + ACC_CLKS);
1014
1015 /* tRWH -> RE_2_WE */
1016 re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
1017 re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
1018
1019 tmp = ioread32(denali->reg + RE_2_WE);
1020 tmp &= ~RE_2_WE__VALUE;
1021 tmp |= re_2_we;
1022 iowrite32(tmp, denali->reg + RE_2_WE);
1023
1024 /* tRHZ -> RE_2_RE */
1025 re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
1026 re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
1027
1028 tmp = ioread32(denali->reg + RE_2_RE);
1029 tmp &= ~RE_2_RE__VALUE;
1030 tmp |= re_2_re;
1031 iowrite32(tmp, denali->reg + RE_2_RE);
1032
1033 /* tWHR -> WE_2_RE */
1034 we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
1035 we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
1036
1037 tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
1038 tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
1039 tmp |= we_2_re;
1040 iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
1041
1042 /* tADL -> ADDR_2_DATA */
1043
1044 /* for older versions, ADDR_2_DATA is only 6 bit wide */
1045 addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1046 if (denali->revision < 0x0501)
1047 addr_2_data_mask >>= 1;
1048
1049 addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
1050 addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1051
1052 tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1053 tmp &= ~addr_2_data_mask;
1054 tmp |= addr_2_data;
1055 iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1056
1057 /* tREH, tWH -> RDWR_EN_HI_CNT */
1058 rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1059 t_clk);
1060 rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1061
1062 tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1063 tmp &= ~RDWR_EN_HI_CNT__VALUE;
1064 tmp |= rdwr_en_hi;
1065 iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1066
1067 /* tRP, tWP -> RDWR_EN_LO_CNT */
1068 rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
1069 t_clk);
1070 rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1071 t_clk);
1072 rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
1073 rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1074 rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1075
1076 tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1077 tmp &= ~RDWR_EN_LO_CNT__VALUE;
1078 tmp |= rdwr_en_lo;
1079 iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1080
1081 /* tCS, tCEA -> CS_SETUP_CNT */
1082 cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
1083 (int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
1084 0);
1085 cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1086
1087 tmp = ioread32(denali->reg + CS_SETUP_CNT);
1088 tmp &= ~CS_SETUP_CNT__VALUE;
1089 tmp |= cs_setup;
1090 iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1091
1092 return 0;
1093 }
1094
1095 static void denali_reset_banks(struct denali_nand_info *denali)
1096 {
1097 u32 irq_status;
1098 int i;
1099
1100 for (i = 0; i < denali->max_banks; i++) {
1101 denali->active_bank = i;
1102
1103 denali_reset_irq(denali);
1104
1105 iowrite32(DEVICE_RESET__BANK(i),
1106 denali->reg + DEVICE_RESET);
1107
1108 irq_status = denali_wait_for_irq(denali,
1109 INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1110 if (!(irq_status & INTR__INT_ACT))
1111 break;
1112 }
1113
1114 dev_dbg(denali->dev, "%d chips connected\n", i);
1115 denali->max_banks = i;
1116 }
1117
1118 static void denali_hw_init(struct denali_nand_info *denali)
1119 {
1120 /*
1121 * The REVISION register may not be reliable. Platforms are allowed to
1122 * override it.
1123 */
1124 if (!denali->revision)
1125 denali->revision = swab16(ioread32(denali->reg + REVISION));
1126
1127 /*
1128 * tell driver how many bit controller will skip before
1129 * writing ECC code in OOB, this register may be already
1130 * set by firmware. So we read this value out.
1131 * if this value is 0, just let it be.
1132 */
1133 denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1134 detect_max_banks(denali);
1135 iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1136 iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1137
1138 iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1139
1140 /* Should set value for these registers when init */
1141 iowrite32(0, denali->reg + TWO_ROW_ADDR_CYCLES);
1142 iowrite32(1, denali->reg + ECC_ENABLE);
1143 }
1144
1145 int denali_calc_ecc_bytes(int step_size, int strength)
1146 {
1147 /* BCH code. Denali requires ecc.bytes to be multiple of 2 */
1148 return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1149 }
1150 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1151
1152 static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
1153 struct denali_nand_info *denali)
1154 {
1155 int oobavail = mtd->oobsize - denali->oob_skip_bytes;
1156 int ret;
1157
1158 /*
1159 * If .size and .strength are already set (usually by DT),
1160 * check if they are supported by this controller.
1161 */
1162 if (chip->ecc.size && chip->ecc.strength)
1163 return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
1164
1165 /*
1166 * We want .size and .strength closest to the chip's requirement
1167 * unless NAND_ECC_MAXIMIZE is requested.
1168 */
1169 if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
1170 ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
1171 if (!ret)
1172 return 0;
1173 }
1174
1175 /* Max ECC strength is the last thing we can do */
1176 return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
1177 }
1178
1179 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1180 struct mtd_oob_region *oobregion)
1181 {
1182 struct denali_nand_info *denali = mtd_to_denali(mtd);
1183 struct nand_chip *chip = mtd_to_nand(mtd);
1184
1185 if (section)
1186 return -ERANGE;
1187
1188 oobregion->offset = denali->oob_skip_bytes;
1189 oobregion->length = chip->ecc.total;
1190
1191 return 0;
1192 }
1193
1194 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1195 struct mtd_oob_region *oobregion)
1196 {
1197 struct denali_nand_info *denali = mtd_to_denali(mtd);
1198 struct nand_chip *chip = mtd_to_nand(mtd);
1199
1200 if (section)
1201 return -ERANGE;
1202
1203 oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1204 oobregion->length = mtd->oobsize - oobregion->offset;
1205
1206 return 0;
1207 }
1208
1209 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1210 .ecc = denali_ooblayout_ecc,
1211 .free = denali_ooblayout_free,
1212 };
1213
1214 /* initialize driver data structures */
1215 static void denali_drv_init(struct denali_nand_info *denali)
1216 {
1217 /*
1218 * the completion object will be used to notify
1219 * the callee that the interrupt is done
1220 */
1221 init_completion(&denali->complete);
1222
1223 /*
1224 * the spinlock will be used to synchronize the ISR with any
1225 * element that might be access shared data (interrupt status)
1226 */
1227 spin_lock_init(&denali->irq_lock);
1228 }
1229
1230 static int denali_multidev_fixup(struct denali_nand_info *denali)
1231 {
1232 struct nand_chip *chip = &denali->nand;
1233 struct mtd_info *mtd = nand_to_mtd(chip);
1234
1235 /*
1236 * Support for multi device:
1237 * When the IP configuration is x16 capable and two x8 chips are
1238 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1239 * In this case, the core framework knows nothing about this fact,
1240 * so we should tell it the _logical_ pagesize and anything necessary.
1241 */
1242 denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1243
1244 /*
1245 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1246 * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
1247 */
1248 if (denali->devs_per_cs == 0) {
1249 denali->devs_per_cs = 1;
1250 iowrite32(1, denali->reg + DEVICES_CONNECTED);
1251 }
1252
1253 if (denali->devs_per_cs == 1)
1254 return 0;
1255
1256 if (denali->devs_per_cs != 2) {
1257 dev_err(denali->dev, "unsupported number of devices %d\n",
1258 denali->devs_per_cs);
1259 return -EINVAL;
1260 }
1261
1262 /* 2 chips in parallel */
1263 mtd->size <<= 1;
1264 mtd->erasesize <<= 1;
1265 mtd->writesize <<= 1;
1266 mtd->oobsize <<= 1;
1267 chip->chipsize <<= 1;
1268 chip->page_shift += 1;
1269 chip->phys_erase_shift += 1;
1270 chip->bbt_erase_shift += 1;
1271 chip->chip_shift += 1;
1272 chip->pagemask <<= 1;
1273 chip->ecc.size <<= 1;
1274 chip->ecc.bytes <<= 1;
1275 chip->ecc.strength <<= 1;
1276 denali->oob_skip_bytes <<= 1;
1277
1278 return 0;
1279 }
1280
1281 int denali_init(struct denali_nand_info *denali)
1282 {
1283 struct nand_chip *chip = &denali->nand;
1284 struct mtd_info *mtd = nand_to_mtd(chip);
1285 int ret;
1286
1287 mtd->dev.parent = denali->dev;
1288 denali_hw_init(denali);
1289 denali_drv_init(denali);
1290
1291 denali_clear_irq_all(denali);
1292
1293 /* Request IRQ after all the hardware initialization is finished */
1294 ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1295 IRQF_SHARED, DENALI_NAND_NAME, denali);
1296 if (ret) {
1297 dev_err(denali->dev, "Unable to request IRQ\n");
1298 return ret;
1299 }
1300
1301 denali_enable_irq(denali);
1302 denali_reset_banks(denali);
1303
1304 denali->active_bank = DENALI_INVALID_BANK;
1305
1306 nand_set_flash_node(chip, denali->dev->of_node);
1307 /* Fallback to the default name if DT did not give "label" property */
1308 if (!mtd->name)
1309 mtd->name = "denali-nand";
1310
1311 /* register the driver with the NAND core subsystem */
1312 chip->select_chip = denali_select_chip;
1313 chip->read_byte = denali_read_byte;
1314 chip->write_byte = denali_write_byte;
1315 chip->read_word = denali_read_word;
1316 chip->cmd_ctrl = denali_cmd_ctrl;
1317 chip->dev_ready = denali_dev_ready;
1318 chip->waitfunc = denali_waitfunc;
1319
1320 /* clk rate info is needed for setup_data_interface */
1321 if (denali->clk_x_rate)
1322 chip->setup_data_interface = denali_setup_data_interface;
1323
1324 /*
1325 * scan for NAND devices attached to the controller
1326 * this is the first stage in a two step process to register
1327 * with the nand subsystem
1328 */
1329 ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1330 if (ret)
1331 goto disable_irq;
1332
1333 if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1334 denali->dma_avail = 1;
1335
1336 if (denali->dma_avail) {
1337 int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1338
1339 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1340 if (ret) {
1341 dev_info(denali->dev,
1342 "Failed to set DMA mask. Disabling DMA.\n");
1343 denali->dma_avail = 0;
1344 }
1345 }
1346
1347 if (denali->dma_avail) {
1348 chip->options |= NAND_USE_BOUNCE_BUFFER;
1349 chip->buf_align = 16;
1350 }
1351
1352 /*
1353 * second stage of the NAND scan
1354 * this stage requires information regarding ECC and
1355 * bad block management.
1356 */
1357
1358 chip->bbt_options |= NAND_BBT_USE_FLASH;
1359 chip->bbt_options |= NAND_BBT_NO_OOB;
1360
1361 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1362
1363 /* no subpage writes on denali */
1364 chip->options |= NAND_NO_SUBPAGE_WRITE;
1365
1366 ret = denali_ecc_setup(mtd, chip, denali);
1367 if (ret) {
1368 dev_err(denali->dev, "Failed to setup ECC settings.\n");
1369 goto disable_irq;
1370 }
1371
1372 dev_dbg(denali->dev,
1373 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1374 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1375
1376 iowrite32(MAKE_ECC_CORRECTION(chip->ecc.strength, 1),
1377 denali->reg + ECC_CORRECTION);
1378 iowrite32(mtd->erasesize / mtd->writesize,
1379 denali->reg + PAGES_PER_BLOCK);
1380 iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1381 denali->reg + DEVICE_WIDTH);
1382 iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1383 iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1384
1385 iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1386 iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1387 /* chip->ecc.steps is set by nand_scan_tail(); not available here */
1388 iowrite32(mtd->writesize / chip->ecc.size,
1389 denali->reg + CFG_NUM_DATA_BLOCKS);
1390
1391 mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1392
1393 if (chip->options & NAND_BUSWIDTH_16) {
1394 chip->read_buf = denali_read_buf16;
1395 chip->write_buf = denali_write_buf16;
1396 } else {
1397 chip->read_buf = denali_read_buf;
1398 chip->write_buf = denali_write_buf;
1399 }
1400 chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1401 chip->ecc.read_page = denali_read_page;
1402 chip->ecc.read_page_raw = denali_read_page_raw;
1403 chip->ecc.write_page = denali_write_page;
1404 chip->ecc.write_page_raw = denali_write_page_raw;
1405 chip->ecc.read_oob = denali_read_oob;
1406 chip->ecc.write_oob = denali_write_oob;
1407 chip->erase = denali_erase;
1408
1409 ret = denali_multidev_fixup(denali);
1410 if (ret)
1411 goto disable_irq;
1412
1413 /*
1414 * This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not
1415 * use devm_kmalloc() because the memory allocated by devm_ does not
1416 * guarantee DMA-safe alignment.
1417 */
1418 denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1419 if (!denali->buf) {
1420 ret = -ENOMEM;
1421 goto disable_irq;
1422 }
1423
1424 ret = nand_scan_tail(mtd);
1425 if (ret)
1426 goto free_buf;
1427
1428 ret = mtd_device_register(mtd, NULL, 0);
1429 if (ret) {
1430 dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1431 goto free_buf;
1432 }
1433 return 0;
1434
1435 free_buf:
1436 kfree(denali->buf);
1437 disable_irq:
1438 denali_disable_irq(denali);
1439
1440 return ret;
1441 }
1442 EXPORT_SYMBOL(denali_init);
1443
1444 /* driver exit point */
1445 void denali_remove(struct denali_nand_info *denali)
1446 {
1447 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1448
1449 nand_release(mtd);
1450 kfree(denali->buf);
1451 denali_disable_irq(denali);
1452 }
1453 EXPORT_SYMBOL(denali_remove);