]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/diskonchip.c
mtd: Add module.h to drivers users that were implicitly using it.
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <asm/io.h>
28
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40
41 static unsigned long __initdata doc_locations[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
56 #else
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
58 #endif
59 0xffffffff };
60
61 static struct mtd_info *doclist = NULL;
62
63 struct doc_priv {
64 void __iomem *virtadr;
65 unsigned long physadr;
66 u_char ChipID;
67 u_char CDSNControl;
68 int chips_per_floor; /* The number of chips detected on each floor */
69 int curfloor;
70 int curchip;
71 int mh0_page;
72 int mh1_page;
73 struct mtd_info *nextdoc;
74 };
75
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77 page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
79
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81 page, one with all 0xff for data. */
82 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
83
84 #define INFTL_BBT_RESERVED_BLOCKS 4
85
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
89
90 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
91 unsigned int bitmask);
92 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
93
94 static int debug = 0;
95 module_param(debug, int, 0);
96
97 static int try_dword = 1;
98 module_param(try_dword, int, 0);
99
100 static int no_ecc_failures = 0;
101 module_param(no_ecc_failures, int, 0);
102
103 static int no_autopart = 0;
104 module_param(no_autopart, int, 0);
105
106 static int show_firmware_partition = 0;
107 module_param(show_firmware_partition, int, 0);
108
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write = 1;
111 #else
112 static int inftl_bbt_write = 0;
113 #endif
114 module_param(inftl_bbt_write, int, 0);
115
116 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
117 module_param(doc_config_location, ulong, 0);
118 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
119
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
125 #define NROOTS 4
126 /* First consective root */
127 #define FCR 510
128 /* Number of symbols */
129 #define NN 1023
130
131 /* the Reed Solomon control structure */
132 static struct rs_control *rs_decoder;
133
134 /*
135 * The HW decoder in the DoC ASIC's provides us a error syndrome,
136 * which we must convert to a standard syndrom usable by the generic
137 * Reed-Solomon library code.
138 *
139 * Fabrice Bellard figured this out in the old docecc code. I added
140 * some comments, improved a minor bit and converted it to make use
141 * of the generic Reed-Solomon library. tglx
142 */
143 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
144 {
145 int i, j, nerr, errpos[8];
146 uint8_t parity;
147 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
148
149 memset(syn, 0, sizeof(syn));
150 /* Convert the ecc bytes into words */
151 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
152 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
153 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
154 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
155 parity = ecc[1];
156
157 /* Initialize the syndrom buffer */
158 for (i = 0; i < NROOTS; i++)
159 s[i] = ds[0];
160 /*
161 * Evaluate
162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163 * where x = alpha^(FCR + i)
164 */
165 for (j = 1; j < NROOTS; j++) {
166 if (ds[j] == 0)
167 continue;
168 tmp = rs->index_of[ds[j]];
169 for (i = 0; i < NROOTS; i++)
170 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
171 }
172
173 /* Calc syn[i] = s[i] / alpha^(v + i) */
174 for (i = 0; i < NROOTS; i++) {
175 if (s[i])
176 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
177 }
178 /* Call the decoder library */
179 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
180
181 /* Incorrectable errors ? */
182 if (nerr < 0)
183 return nerr;
184
185 /*
186 * Correct the errors. The bitpositions are a bit of magic,
187 * but they are given by the design of the de/encoder circuit
188 * in the DoC ASIC's.
189 */
190 for (i = 0; i < nerr; i++) {
191 int index, bitpos, pos = 1015 - errpos[i];
192 uint8_t val;
193 if (pos >= NB_DATA && pos < 1019)
194 continue;
195 if (pos < NB_DATA) {
196 /* extract bit position (MSB first) */
197 pos = 10 * (NB_DATA - 1 - pos) - 6;
198 /* now correct the following 10 bits. At most two bytes
199 can be modified since pos is even */
200 index = (pos >> 3) ^ 1;
201 bitpos = pos & 7;
202 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
203 val = (uint8_t) (errval[i] >> (2 + bitpos));
204 parity ^= val;
205 if (index < SECTOR_SIZE)
206 data[index] ^= val;
207 }
208 index = ((pos >> 3) + 1) ^ 1;
209 bitpos = (bitpos + 10) & 7;
210 if (bitpos == 0)
211 bitpos = 8;
212 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
213 val = (uint8_t) (errval[i] << (8 - bitpos));
214 parity ^= val;
215 if (index < SECTOR_SIZE)
216 data[index] ^= val;
217 }
218 }
219 }
220 /* If the parity is wrong, no rescue possible */
221 return parity ? -EBADMSG : nerr;
222 }
223
224 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
225 {
226 volatile char dummy;
227 int i;
228
229 for (i = 0; i < cycles; i++) {
230 if (DoC_is_Millennium(doc))
231 dummy = ReadDOC(doc->virtadr, NOP);
232 else if (DoC_is_MillenniumPlus(doc))
233 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
234 else
235 dummy = ReadDOC(doc->virtadr, DOCStatus);
236 }
237
238 }
239
240 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
243 static int _DoC_WaitReady(struct doc_priv *doc)
244 {
245 void __iomem *docptr = doc->virtadr;
246 unsigned long timeo = jiffies + (HZ * 10);
247
248 if (debug)
249 printk("_DoC_WaitReady...\n");
250 /* Out-of-line routine to wait for chip response */
251 if (DoC_is_MillenniumPlus(doc)) {
252 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
253 if (time_after(jiffies, timeo)) {
254 printk("_DoC_WaitReady timed out.\n");
255 return -EIO;
256 }
257 udelay(1);
258 cond_resched();
259 }
260 } else {
261 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
262 if (time_after(jiffies, timeo)) {
263 printk("_DoC_WaitReady timed out.\n");
264 return -EIO;
265 }
266 udelay(1);
267 cond_resched();
268 }
269 }
270
271 return 0;
272 }
273
274 static inline int DoC_WaitReady(struct doc_priv *doc)
275 {
276 void __iomem *docptr = doc->virtadr;
277 int ret = 0;
278
279 if (DoC_is_MillenniumPlus(doc)) {
280 DoC_Delay(doc, 4);
281
282 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
283 /* Call the out-of-line routine to wait */
284 ret = _DoC_WaitReady(doc);
285 } else {
286 DoC_Delay(doc, 4);
287
288 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
289 /* Call the out-of-line routine to wait */
290 ret = _DoC_WaitReady(doc);
291 DoC_Delay(doc, 2);
292 }
293
294 if (debug)
295 printk("DoC_WaitReady OK\n");
296 return ret;
297 }
298
299 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
300 {
301 struct nand_chip *this = mtd->priv;
302 struct doc_priv *doc = this->priv;
303 void __iomem *docptr = doc->virtadr;
304
305 if (debug)
306 printk("write_byte %02x\n", datum);
307 WriteDOC(datum, docptr, CDSNSlowIO);
308 WriteDOC(datum, docptr, 2k_CDSN_IO);
309 }
310
311 static u_char doc2000_read_byte(struct mtd_info *mtd)
312 {
313 struct nand_chip *this = mtd->priv;
314 struct doc_priv *doc = this->priv;
315 void __iomem *docptr = doc->virtadr;
316 u_char ret;
317
318 ReadDOC(docptr, CDSNSlowIO);
319 DoC_Delay(doc, 2);
320 ret = ReadDOC(docptr, 2k_CDSN_IO);
321 if (debug)
322 printk("read_byte returns %02x\n", ret);
323 return ret;
324 }
325
326 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
327 {
328 struct nand_chip *this = mtd->priv;
329 struct doc_priv *doc = this->priv;
330 void __iomem *docptr = doc->virtadr;
331 int i;
332 if (debug)
333 printk("writebuf of %d bytes: ", len);
334 for (i = 0; i < len; i++) {
335 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
336 if (debug && i < 16)
337 printk("%02x ", buf[i]);
338 }
339 if (debug)
340 printk("\n");
341 }
342
343 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
344 {
345 struct nand_chip *this = mtd->priv;
346 struct doc_priv *doc = this->priv;
347 void __iomem *docptr = doc->virtadr;
348 int i;
349
350 if (debug)
351 printk("readbuf of %d bytes: ", len);
352
353 for (i = 0; i < len; i++) {
354 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
355 }
356 }
357
358 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
359 {
360 struct nand_chip *this = mtd->priv;
361 struct doc_priv *doc = this->priv;
362 void __iomem *docptr = doc->virtadr;
363 int i;
364
365 if (debug)
366 printk("readbuf_dword of %d bytes: ", len);
367
368 if (unlikely((((unsigned long)buf) | len) & 3)) {
369 for (i = 0; i < len; i++) {
370 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
371 }
372 } else {
373 for (i = 0; i < len; i += 4) {
374 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
375 }
376 }
377 }
378
379 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
380 {
381 struct nand_chip *this = mtd->priv;
382 struct doc_priv *doc = this->priv;
383 void __iomem *docptr = doc->virtadr;
384 int i;
385
386 for (i = 0; i < len; i++)
387 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
388 return -EFAULT;
389 return 0;
390 }
391
392 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
393 {
394 struct nand_chip *this = mtd->priv;
395 struct doc_priv *doc = this->priv;
396 uint16_t ret;
397
398 doc200x_select_chip(mtd, nr);
399 doc200x_hwcontrol(mtd, NAND_CMD_READID,
400 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
401 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
402 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
403
404 /* We can't use dev_ready here, but at least we wait for the
405 * command to complete
406 */
407 udelay(50);
408
409 ret = this->read_byte(mtd) << 8;
410 ret |= this->read_byte(mtd);
411
412 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
413 /* First chip probe. See if we get same results by 32-bit access */
414 union {
415 uint32_t dword;
416 uint8_t byte[4];
417 } ident;
418 void __iomem *docptr = doc->virtadr;
419
420 doc200x_hwcontrol(mtd, NAND_CMD_READID,
421 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
422 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
423 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
424 NAND_NCE | NAND_CTRL_CHANGE);
425
426 udelay(50);
427
428 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
429 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
430 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
431 this->read_buf = &doc2000_readbuf_dword;
432 }
433 }
434
435 return ret;
436 }
437
438 static void __init doc2000_count_chips(struct mtd_info *mtd)
439 {
440 struct nand_chip *this = mtd->priv;
441 struct doc_priv *doc = this->priv;
442 uint16_t mfrid;
443 int i;
444
445 /* Max 4 chips per floor on DiskOnChip 2000 */
446 doc->chips_per_floor = 4;
447
448 /* Find out what the first chip is */
449 mfrid = doc200x_ident_chip(mtd, 0);
450
451 /* Find how many chips in each floor. */
452 for (i = 1; i < 4; i++) {
453 if (doc200x_ident_chip(mtd, i) != mfrid)
454 break;
455 }
456 doc->chips_per_floor = i;
457 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
458 }
459
460 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
461 {
462 struct doc_priv *doc = this->priv;
463
464 int status;
465
466 DoC_WaitReady(doc);
467 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
468 DoC_WaitReady(doc);
469 status = (int)this->read_byte(mtd);
470
471 return status;
472 }
473
474 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
475 {
476 struct nand_chip *this = mtd->priv;
477 struct doc_priv *doc = this->priv;
478 void __iomem *docptr = doc->virtadr;
479
480 WriteDOC(datum, docptr, CDSNSlowIO);
481 WriteDOC(datum, docptr, Mil_CDSN_IO);
482 WriteDOC(datum, docptr, WritePipeTerm);
483 }
484
485 static u_char doc2001_read_byte(struct mtd_info *mtd)
486 {
487 struct nand_chip *this = mtd->priv;
488 struct doc_priv *doc = this->priv;
489 void __iomem *docptr = doc->virtadr;
490
491 //ReadDOC(docptr, CDSNSlowIO);
492 /* 11.4.5 -- delay twice to allow extended length cycle */
493 DoC_Delay(doc, 2);
494 ReadDOC(docptr, ReadPipeInit);
495 //return ReadDOC(docptr, Mil_CDSN_IO);
496 return ReadDOC(docptr, LastDataRead);
497 }
498
499 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
500 {
501 struct nand_chip *this = mtd->priv;
502 struct doc_priv *doc = this->priv;
503 void __iomem *docptr = doc->virtadr;
504 int i;
505
506 for (i = 0; i < len; i++)
507 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
508 /* Terminate write pipeline */
509 WriteDOC(0x00, docptr, WritePipeTerm);
510 }
511
512 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
513 {
514 struct nand_chip *this = mtd->priv;
515 struct doc_priv *doc = this->priv;
516 void __iomem *docptr = doc->virtadr;
517 int i;
518
519 /* Start read pipeline */
520 ReadDOC(docptr, ReadPipeInit);
521
522 for (i = 0; i < len - 1; i++)
523 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
524
525 /* Terminate read pipeline */
526 buf[i] = ReadDOC(docptr, LastDataRead);
527 }
528
529 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
530 {
531 struct nand_chip *this = mtd->priv;
532 struct doc_priv *doc = this->priv;
533 void __iomem *docptr = doc->virtadr;
534 int i;
535
536 /* Start read pipeline */
537 ReadDOC(docptr, ReadPipeInit);
538
539 for (i = 0; i < len - 1; i++)
540 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
541 ReadDOC(docptr, LastDataRead);
542 return i;
543 }
544 if (buf[i] != ReadDOC(docptr, LastDataRead))
545 return i;
546 return 0;
547 }
548
549 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
550 {
551 struct nand_chip *this = mtd->priv;
552 struct doc_priv *doc = this->priv;
553 void __iomem *docptr = doc->virtadr;
554 u_char ret;
555
556 ReadDOC(docptr, Mplus_ReadPipeInit);
557 ReadDOC(docptr, Mplus_ReadPipeInit);
558 ret = ReadDOC(docptr, Mplus_LastDataRead);
559 if (debug)
560 printk("read_byte returns %02x\n", ret);
561 return ret;
562 }
563
564 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
565 {
566 struct nand_chip *this = mtd->priv;
567 struct doc_priv *doc = this->priv;
568 void __iomem *docptr = doc->virtadr;
569 int i;
570
571 if (debug)
572 printk("writebuf of %d bytes: ", len);
573 for (i = 0; i < len; i++) {
574 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
575 if (debug && i < 16)
576 printk("%02x ", buf[i]);
577 }
578 if (debug)
579 printk("\n");
580 }
581
582 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
583 {
584 struct nand_chip *this = mtd->priv;
585 struct doc_priv *doc = this->priv;
586 void __iomem *docptr = doc->virtadr;
587 int i;
588
589 if (debug)
590 printk("readbuf of %d bytes: ", len);
591
592 /* Start read pipeline */
593 ReadDOC(docptr, Mplus_ReadPipeInit);
594 ReadDOC(docptr, Mplus_ReadPipeInit);
595
596 for (i = 0; i < len - 2; i++) {
597 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
598 if (debug && i < 16)
599 printk("%02x ", buf[i]);
600 }
601
602 /* Terminate read pipeline */
603 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
604 if (debug && i < 16)
605 printk("%02x ", buf[len - 2]);
606 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
607 if (debug && i < 16)
608 printk("%02x ", buf[len - 1]);
609 if (debug)
610 printk("\n");
611 }
612
613 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
614 {
615 struct nand_chip *this = mtd->priv;
616 struct doc_priv *doc = this->priv;
617 void __iomem *docptr = doc->virtadr;
618 int i;
619
620 if (debug)
621 printk("verifybuf of %d bytes: ", len);
622
623 /* Start read pipeline */
624 ReadDOC(docptr, Mplus_ReadPipeInit);
625 ReadDOC(docptr, Mplus_ReadPipeInit);
626
627 for (i = 0; i < len - 2; i++)
628 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
629 ReadDOC(docptr, Mplus_LastDataRead);
630 ReadDOC(docptr, Mplus_LastDataRead);
631 return i;
632 }
633 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
634 return len - 2;
635 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
636 return len - 1;
637 return 0;
638 }
639
640 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
641 {
642 struct nand_chip *this = mtd->priv;
643 struct doc_priv *doc = this->priv;
644 void __iomem *docptr = doc->virtadr;
645 int floor = 0;
646
647 if (debug)
648 printk("select chip (%d)\n", chip);
649
650 if (chip == -1) {
651 /* Disable flash internally */
652 WriteDOC(0, docptr, Mplus_FlashSelect);
653 return;
654 }
655
656 floor = chip / doc->chips_per_floor;
657 chip -= (floor * doc->chips_per_floor);
658
659 /* Assert ChipEnable and deassert WriteProtect */
660 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
661 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
662
663 doc->curchip = chip;
664 doc->curfloor = floor;
665 }
666
667 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
668 {
669 struct nand_chip *this = mtd->priv;
670 struct doc_priv *doc = this->priv;
671 void __iomem *docptr = doc->virtadr;
672 int floor = 0;
673
674 if (debug)
675 printk("select chip (%d)\n", chip);
676
677 if (chip == -1)
678 return;
679
680 floor = chip / doc->chips_per_floor;
681 chip -= (floor * doc->chips_per_floor);
682
683 /* 11.4.4 -- deassert CE before changing chip */
684 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
685
686 WriteDOC(floor, docptr, FloorSelect);
687 WriteDOC(chip, docptr, CDSNDeviceSelect);
688
689 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
690
691 doc->curchip = chip;
692 doc->curfloor = floor;
693 }
694
695 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
696
697 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
698 unsigned int ctrl)
699 {
700 struct nand_chip *this = mtd->priv;
701 struct doc_priv *doc = this->priv;
702 void __iomem *docptr = doc->virtadr;
703
704 if (ctrl & NAND_CTRL_CHANGE) {
705 doc->CDSNControl &= ~CDSN_CTRL_MSK;
706 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
707 if (debug)
708 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
709 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
710 /* 11.4.3 -- 4 NOPs after CSDNControl write */
711 DoC_Delay(doc, 4);
712 }
713 if (cmd != NAND_CMD_NONE) {
714 if (DoC_is_2000(doc))
715 doc2000_write_byte(mtd, cmd);
716 else
717 doc2001_write_byte(mtd, cmd);
718 }
719 }
720
721 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
722 {
723 struct nand_chip *this = mtd->priv;
724 struct doc_priv *doc = this->priv;
725 void __iomem *docptr = doc->virtadr;
726
727 /*
728 * Must terminate write pipeline before sending any commands
729 * to the device.
730 */
731 if (command == NAND_CMD_PAGEPROG) {
732 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
733 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
734 }
735
736 /*
737 * Write out the command to the device.
738 */
739 if (command == NAND_CMD_SEQIN) {
740 int readcmd;
741
742 if (column >= mtd->writesize) {
743 /* OOB area */
744 column -= mtd->writesize;
745 readcmd = NAND_CMD_READOOB;
746 } else if (column < 256) {
747 /* First 256 bytes --> READ0 */
748 readcmd = NAND_CMD_READ0;
749 } else {
750 column -= 256;
751 readcmd = NAND_CMD_READ1;
752 }
753 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
754 }
755 WriteDOC(command, docptr, Mplus_FlashCmd);
756 WriteDOC(0, docptr, Mplus_WritePipeTerm);
757 WriteDOC(0, docptr, Mplus_WritePipeTerm);
758
759 if (column != -1 || page_addr != -1) {
760 /* Serially input address */
761 if (column != -1) {
762 /* Adjust columns for 16 bit buswidth */
763 if (this->options & NAND_BUSWIDTH_16)
764 column >>= 1;
765 WriteDOC(column, docptr, Mplus_FlashAddress);
766 }
767 if (page_addr != -1) {
768 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
769 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
770 /* One more address cycle for higher density devices */
771 if (this->chipsize & 0x0c000000) {
772 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
773 printk("high density\n");
774 }
775 }
776 WriteDOC(0, docptr, Mplus_WritePipeTerm);
777 WriteDOC(0, docptr, Mplus_WritePipeTerm);
778 /* deassert ALE */
779 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
780 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
781 WriteDOC(0, docptr, Mplus_FlashControl);
782 }
783
784 /*
785 * program and erase have their own busy handlers
786 * status and sequential in needs no delay
787 */
788 switch (command) {
789
790 case NAND_CMD_PAGEPROG:
791 case NAND_CMD_ERASE1:
792 case NAND_CMD_ERASE2:
793 case NAND_CMD_SEQIN:
794 case NAND_CMD_STATUS:
795 return;
796
797 case NAND_CMD_RESET:
798 if (this->dev_ready)
799 break;
800 udelay(this->chip_delay);
801 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
802 WriteDOC(0, docptr, Mplus_WritePipeTerm);
803 WriteDOC(0, docptr, Mplus_WritePipeTerm);
804 while (!(this->read_byte(mtd) & 0x40)) ;
805 return;
806
807 /* This applies to read commands */
808 default:
809 /*
810 * If we don't have access to the busy pin, we apply the given
811 * command delay
812 */
813 if (!this->dev_ready) {
814 udelay(this->chip_delay);
815 return;
816 }
817 }
818
819 /* Apply this short delay always to ensure that we do wait tWB in
820 * any case on any machine. */
821 ndelay(100);
822 /* wait until command is processed */
823 while (!this->dev_ready(mtd)) ;
824 }
825
826 static int doc200x_dev_ready(struct mtd_info *mtd)
827 {
828 struct nand_chip *this = mtd->priv;
829 struct doc_priv *doc = this->priv;
830 void __iomem *docptr = doc->virtadr;
831
832 if (DoC_is_MillenniumPlus(doc)) {
833 /* 11.4.2 -- must NOP four times before checking FR/B# */
834 DoC_Delay(doc, 4);
835 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
836 if (debug)
837 printk("not ready\n");
838 return 0;
839 }
840 if (debug)
841 printk("was ready\n");
842 return 1;
843 } else {
844 /* 11.4.2 -- must NOP four times before checking FR/B# */
845 DoC_Delay(doc, 4);
846 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
847 if (debug)
848 printk("not ready\n");
849 return 0;
850 }
851 /* 11.4.2 -- Must NOP twice if it's ready */
852 DoC_Delay(doc, 2);
853 if (debug)
854 printk("was ready\n");
855 return 1;
856 }
857 }
858
859 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
860 {
861 /* This is our last resort if we couldn't find or create a BBT. Just
862 pretend all blocks are good. */
863 return 0;
864 }
865
866 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
867 {
868 struct nand_chip *this = mtd->priv;
869 struct doc_priv *doc = this->priv;
870 void __iomem *docptr = doc->virtadr;
871
872 /* Prime the ECC engine */
873 switch (mode) {
874 case NAND_ECC_READ:
875 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
876 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
877 break;
878 case NAND_ECC_WRITE:
879 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
880 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
881 break;
882 }
883 }
884
885 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
886 {
887 struct nand_chip *this = mtd->priv;
888 struct doc_priv *doc = this->priv;
889 void __iomem *docptr = doc->virtadr;
890
891 /* Prime the ECC engine */
892 switch (mode) {
893 case NAND_ECC_READ:
894 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
895 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
896 break;
897 case NAND_ECC_WRITE:
898 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
899 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
900 break;
901 }
902 }
903
904 /* This code is only called on write */
905 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
906 {
907 struct nand_chip *this = mtd->priv;
908 struct doc_priv *doc = this->priv;
909 void __iomem *docptr = doc->virtadr;
910 int i;
911 int emptymatch = 1;
912
913 /* flush the pipeline */
914 if (DoC_is_2000(doc)) {
915 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
916 WriteDOC(0, docptr, 2k_CDSN_IO);
917 WriteDOC(0, docptr, 2k_CDSN_IO);
918 WriteDOC(0, docptr, 2k_CDSN_IO);
919 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
920 } else if (DoC_is_MillenniumPlus(doc)) {
921 WriteDOC(0, docptr, Mplus_NOP);
922 WriteDOC(0, docptr, Mplus_NOP);
923 WriteDOC(0, docptr, Mplus_NOP);
924 } else {
925 WriteDOC(0, docptr, NOP);
926 WriteDOC(0, docptr, NOP);
927 WriteDOC(0, docptr, NOP);
928 }
929
930 for (i = 0; i < 6; i++) {
931 if (DoC_is_MillenniumPlus(doc))
932 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
933 else
934 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
935 if (ecc_code[i] != empty_write_ecc[i])
936 emptymatch = 0;
937 }
938 if (DoC_is_MillenniumPlus(doc))
939 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
940 else
941 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
942 #if 0
943 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
944 if (emptymatch) {
945 /* Note: this somewhat expensive test should not be triggered
946 often. It could be optimized away by examining the data in
947 the writebuf routine, and remembering the result. */
948 for (i = 0; i < 512; i++) {
949 if (dat[i] == 0xff)
950 continue;
951 emptymatch = 0;
952 break;
953 }
954 }
955 /* If emptymatch still =1, we do have an all-0xff data buffer.
956 Return all-0xff ecc value instead of the computed one, so
957 it'll look just like a freshly-erased page. */
958 if (emptymatch)
959 memset(ecc_code, 0xff, 6);
960 #endif
961 return 0;
962 }
963
964 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
965 u_char *read_ecc, u_char *isnull)
966 {
967 int i, ret = 0;
968 struct nand_chip *this = mtd->priv;
969 struct doc_priv *doc = this->priv;
970 void __iomem *docptr = doc->virtadr;
971 uint8_t calc_ecc[6];
972 volatile u_char dummy;
973 int emptymatch = 1;
974
975 /* flush the pipeline */
976 if (DoC_is_2000(doc)) {
977 dummy = ReadDOC(docptr, 2k_ECCStatus);
978 dummy = ReadDOC(docptr, 2k_ECCStatus);
979 dummy = ReadDOC(docptr, 2k_ECCStatus);
980 } else if (DoC_is_MillenniumPlus(doc)) {
981 dummy = ReadDOC(docptr, Mplus_ECCConf);
982 dummy = ReadDOC(docptr, Mplus_ECCConf);
983 dummy = ReadDOC(docptr, Mplus_ECCConf);
984 } else {
985 dummy = ReadDOC(docptr, ECCConf);
986 dummy = ReadDOC(docptr, ECCConf);
987 dummy = ReadDOC(docptr, ECCConf);
988 }
989
990 /* Error occurred ? */
991 if (dummy & 0x80) {
992 for (i = 0; i < 6; i++) {
993 if (DoC_is_MillenniumPlus(doc))
994 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
995 else
996 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
997 if (calc_ecc[i] != empty_read_syndrome[i])
998 emptymatch = 0;
999 }
1000 /* If emptymatch=1, the read syndrome is consistent with an
1001 all-0xff data and stored ecc block. Check the stored ecc. */
1002 if (emptymatch) {
1003 for (i = 0; i < 6; i++) {
1004 if (read_ecc[i] == 0xff)
1005 continue;
1006 emptymatch = 0;
1007 break;
1008 }
1009 }
1010 /* If emptymatch still =1, check the data block. */
1011 if (emptymatch) {
1012 /* Note: this somewhat expensive test should not be triggered
1013 often. It could be optimized away by examining the data in
1014 the readbuf routine, and remembering the result. */
1015 for (i = 0; i < 512; i++) {
1016 if (dat[i] == 0xff)
1017 continue;
1018 emptymatch = 0;
1019 break;
1020 }
1021 }
1022 /* If emptymatch still =1, this is almost certainly a freshly-
1023 erased block, in which case the ECC will not come out right.
1024 We'll suppress the error and tell the caller everything's
1025 OK. Because it is. */
1026 if (!emptymatch)
1027 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1028 if (ret > 0)
1029 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1030 }
1031 if (DoC_is_MillenniumPlus(doc))
1032 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1033 else
1034 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1035 if (no_ecc_failures && (ret == -EBADMSG)) {
1036 printk(KERN_ERR "suppressing ECC failure\n");
1037 ret = 0;
1038 }
1039 return ret;
1040 }
1041
1042 //u_char mydatabuf[528];
1043
1044 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1045 * attempt to retain compatibility. It used to read:
1046 * .oobfree = { {8, 8} }
1047 * Since that leaves two bytes unusable, it was changed. But the following
1048 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1049 * .oobfree = { {6, 10} }
1050 * jffs2 seems to handle the above gracefully, but the current scheme seems
1051 * safer. The only problem with it is that any code that parses oobfree must
1052 * be able to handle out-of-order segments.
1053 */
1054 static struct nand_ecclayout doc200x_oobinfo = {
1055 .eccbytes = 6,
1056 .eccpos = {0, 1, 2, 3, 4, 5},
1057 .oobfree = {{8, 8}, {6, 2}}
1058 };
1059
1060 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1061 On successful return, buf will contain a copy of the media header for
1062 further processing. id is the string to scan for, and will presumably be
1063 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1064 header. The page #s of the found media headers are placed in mh0_page and
1065 mh1_page in the DOC private structure. */
1066 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1067 {
1068 struct nand_chip *this = mtd->priv;
1069 struct doc_priv *doc = this->priv;
1070 unsigned offs;
1071 int ret;
1072 size_t retlen;
1073
1074 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1075 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1076 if (retlen != mtd->writesize)
1077 continue;
1078 if (ret) {
1079 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1080 }
1081 if (memcmp(buf, id, 6))
1082 continue;
1083 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1084 if (doc->mh0_page == -1) {
1085 doc->mh0_page = offs >> this->page_shift;
1086 if (!findmirror)
1087 return 1;
1088 continue;
1089 }
1090 doc->mh1_page = offs >> this->page_shift;
1091 return 2;
1092 }
1093 if (doc->mh0_page == -1) {
1094 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1095 return 0;
1096 }
1097 /* Only one mediaheader was found. We want buf to contain a
1098 mediaheader on return, so we'll have to re-read the one we found. */
1099 offs = doc->mh0_page << this->page_shift;
1100 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1101 if (retlen != mtd->writesize) {
1102 /* Insanity. Give up. */
1103 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1104 return 0;
1105 }
1106 return 1;
1107 }
1108
1109 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1110 {
1111 struct nand_chip *this = mtd->priv;
1112 struct doc_priv *doc = this->priv;
1113 int ret = 0;
1114 u_char *buf;
1115 struct NFTLMediaHeader *mh;
1116 const unsigned psize = 1 << this->page_shift;
1117 int numparts = 0;
1118 unsigned blocks, maxblocks;
1119 int offs, numheaders;
1120
1121 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1122 if (!buf) {
1123 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1124 return 0;
1125 }
1126 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1127 goto out;
1128 mh = (struct NFTLMediaHeader *)buf;
1129
1130 le16_to_cpus(&mh->NumEraseUnits);
1131 le16_to_cpus(&mh->FirstPhysicalEUN);
1132 le32_to_cpus(&mh->FormattedSize);
1133
1134 printk(KERN_INFO " DataOrgID = %s\n"
1135 " NumEraseUnits = %d\n"
1136 " FirstPhysicalEUN = %d\n"
1137 " FormattedSize = %d\n"
1138 " UnitSizeFactor = %d\n",
1139 mh->DataOrgID, mh->NumEraseUnits,
1140 mh->FirstPhysicalEUN, mh->FormattedSize,
1141 mh->UnitSizeFactor);
1142
1143 blocks = mtd->size >> this->phys_erase_shift;
1144 maxblocks = min(32768U, mtd->erasesize - psize);
1145
1146 if (mh->UnitSizeFactor == 0x00) {
1147 /* Auto-determine UnitSizeFactor. The constraints are:
1148 - There can be at most 32768 virtual blocks.
1149 - There can be at most (virtual block size - page size)
1150 virtual blocks (because MediaHeader+BBT must fit in 1).
1151 */
1152 mh->UnitSizeFactor = 0xff;
1153 while (blocks > maxblocks) {
1154 blocks >>= 1;
1155 maxblocks = min(32768U, (maxblocks << 1) + psize);
1156 mh->UnitSizeFactor--;
1157 }
1158 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1159 }
1160
1161 /* NOTE: The lines below modify internal variables of the NAND and MTD
1162 layers; variables with have already been configured by nand_scan.
1163 Unfortunately, we didn't know before this point what these values
1164 should be. Thus, this code is somewhat dependent on the exact
1165 implementation of the NAND layer. */
1166 if (mh->UnitSizeFactor != 0xff) {
1167 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1168 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1169 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1170 blocks = mtd->size >> this->bbt_erase_shift;
1171 maxblocks = min(32768U, mtd->erasesize - psize);
1172 }
1173
1174 if (blocks > maxblocks) {
1175 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1176 goto out;
1177 }
1178
1179 /* Skip past the media headers. */
1180 offs = max(doc->mh0_page, doc->mh1_page);
1181 offs <<= this->page_shift;
1182 offs += mtd->erasesize;
1183
1184 if (show_firmware_partition == 1) {
1185 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1186 parts[0].offset = 0;
1187 parts[0].size = offs;
1188 numparts = 1;
1189 }
1190
1191 parts[numparts].name = " DiskOnChip BDTL partition";
1192 parts[numparts].offset = offs;
1193 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1194
1195 offs += parts[numparts].size;
1196 numparts++;
1197
1198 if (offs < mtd->size) {
1199 parts[numparts].name = " DiskOnChip Remainder partition";
1200 parts[numparts].offset = offs;
1201 parts[numparts].size = mtd->size - offs;
1202 numparts++;
1203 }
1204
1205 ret = numparts;
1206 out:
1207 kfree(buf);
1208 return ret;
1209 }
1210
1211 /* This is a stripped-down copy of the code in inftlmount.c */
1212 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1213 {
1214 struct nand_chip *this = mtd->priv;
1215 struct doc_priv *doc = this->priv;
1216 int ret = 0;
1217 u_char *buf;
1218 struct INFTLMediaHeader *mh;
1219 struct INFTLPartition *ip;
1220 int numparts = 0;
1221 int blocks;
1222 int vshift, lastvunit = 0;
1223 int i;
1224 int end = mtd->size;
1225
1226 if (inftl_bbt_write)
1227 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1228
1229 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1230 if (!buf) {
1231 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1232 return 0;
1233 }
1234
1235 if (!find_media_headers(mtd, buf, "BNAND", 0))
1236 goto out;
1237 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1238 mh = (struct INFTLMediaHeader *)buf;
1239
1240 le32_to_cpus(&mh->NoOfBootImageBlocks);
1241 le32_to_cpus(&mh->NoOfBinaryPartitions);
1242 le32_to_cpus(&mh->NoOfBDTLPartitions);
1243 le32_to_cpus(&mh->BlockMultiplierBits);
1244 le32_to_cpus(&mh->FormatFlags);
1245 le32_to_cpus(&mh->PercentUsed);
1246
1247 printk(KERN_INFO " bootRecordID = %s\n"
1248 " NoOfBootImageBlocks = %d\n"
1249 " NoOfBinaryPartitions = %d\n"
1250 " NoOfBDTLPartitions = %d\n"
1251 " BlockMultiplerBits = %d\n"
1252 " FormatFlgs = %d\n"
1253 " OsakVersion = %d.%d.%d.%d\n"
1254 " PercentUsed = %d\n",
1255 mh->bootRecordID, mh->NoOfBootImageBlocks,
1256 mh->NoOfBinaryPartitions,
1257 mh->NoOfBDTLPartitions,
1258 mh->BlockMultiplierBits, mh->FormatFlags,
1259 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1260 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1261 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1262 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1263 mh->PercentUsed);
1264
1265 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1266
1267 blocks = mtd->size >> vshift;
1268 if (blocks > 32768) {
1269 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1270 goto out;
1271 }
1272
1273 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1274 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1275 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1276 goto out;
1277 }
1278
1279 /* Scan the partitions */
1280 for (i = 0; (i < 4); i++) {
1281 ip = &(mh->Partitions[i]);
1282 le32_to_cpus(&ip->virtualUnits);
1283 le32_to_cpus(&ip->firstUnit);
1284 le32_to_cpus(&ip->lastUnit);
1285 le32_to_cpus(&ip->flags);
1286 le32_to_cpus(&ip->spareUnits);
1287 le32_to_cpus(&ip->Reserved0);
1288
1289 printk(KERN_INFO " PARTITION[%d] ->\n"
1290 " virtualUnits = %d\n"
1291 " firstUnit = %d\n"
1292 " lastUnit = %d\n"
1293 " flags = 0x%x\n"
1294 " spareUnits = %d\n",
1295 i, ip->virtualUnits, ip->firstUnit,
1296 ip->lastUnit, ip->flags,
1297 ip->spareUnits);
1298
1299 if ((show_firmware_partition == 1) &&
1300 (i == 0) && (ip->firstUnit > 0)) {
1301 parts[0].name = " DiskOnChip IPL / Media Header partition";
1302 parts[0].offset = 0;
1303 parts[0].size = mtd->erasesize * ip->firstUnit;
1304 numparts = 1;
1305 }
1306
1307 if (ip->flags & INFTL_BINARY)
1308 parts[numparts].name = " DiskOnChip BDK partition";
1309 else
1310 parts[numparts].name = " DiskOnChip BDTL partition";
1311 parts[numparts].offset = ip->firstUnit << vshift;
1312 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1313 numparts++;
1314 if (ip->lastUnit > lastvunit)
1315 lastvunit = ip->lastUnit;
1316 if (ip->flags & INFTL_LAST)
1317 break;
1318 }
1319 lastvunit++;
1320 if ((lastvunit << vshift) < end) {
1321 parts[numparts].name = " DiskOnChip Remainder partition";
1322 parts[numparts].offset = lastvunit << vshift;
1323 parts[numparts].size = end - parts[numparts].offset;
1324 numparts++;
1325 }
1326 ret = numparts;
1327 out:
1328 kfree(buf);
1329 return ret;
1330 }
1331
1332 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1333 {
1334 int ret, numparts;
1335 struct nand_chip *this = mtd->priv;
1336 struct doc_priv *doc = this->priv;
1337 struct mtd_partition parts[2];
1338
1339 memset((char *)parts, 0, sizeof(parts));
1340 /* On NFTL, we have to find the media headers before we can read the
1341 BBTs, since they're stored in the media header eraseblocks. */
1342 numparts = nftl_partscan(mtd, parts);
1343 if (!numparts)
1344 return -EIO;
1345 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1346 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1347 NAND_BBT_VERSION;
1348 this->bbt_td->veroffs = 7;
1349 this->bbt_td->pages[0] = doc->mh0_page + 1;
1350 if (doc->mh1_page != -1) {
1351 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1352 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1353 NAND_BBT_VERSION;
1354 this->bbt_md->veroffs = 7;
1355 this->bbt_md->pages[0] = doc->mh1_page + 1;
1356 } else {
1357 this->bbt_md = NULL;
1358 }
1359
1360 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1361 At least as nand_bbt.c is currently written. */
1362 if ((ret = nand_scan_bbt(mtd, NULL)))
1363 return ret;
1364 mtd_device_register(mtd, NULL, 0);
1365 if (!no_autopart)
1366 mtd_device_register(mtd, parts, numparts);
1367 return 0;
1368 }
1369
1370 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1371 {
1372 int ret, numparts;
1373 struct nand_chip *this = mtd->priv;
1374 struct doc_priv *doc = this->priv;
1375 struct mtd_partition parts[5];
1376
1377 if (this->numchips > doc->chips_per_floor) {
1378 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1379 return -EIO;
1380 }
1381
1382 if (DoC_is_MillenniumPlus(doc)) {
1383 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1384 if (inftl_bbt_write)
1385 this->bbt_td->options |= NAND_BBT_WRITE;
1386 this->bbt_td->pages[0] = 2;
1387 this->bbt_md = NULL;
1388 } else {
1389 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1390 if (inftl_bbt_write)
1391 this->bbt_td->options |= NAND_BBT_WRITE;
1392 this->bbt_td->offs = 8;
1393 this->bbt_td->len = 8;
1394 this->bbt_td->veroffs = 7;
1395 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396 this->bbt_td->reserved_block_code = 0x01;
1397 this->bbt_td->pattern = "MSYS_BBT";
1398
1399 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1400 if (inftl_bbt_write)
1401 this->bbt_md->options |= NAND_BBT_WRITE;
1402 this->bbt_md->offs = 8;
1403 this->bbt_md->len = 8;
1404 this->bbt_md->veroffs = 7;
1405 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1406 this->bbt_md->reserved_block_code = 0x01;
1407 this->bbt_md->pattern = "TBB_SYSM";
1408 }
1409
1410 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411 At least as nand_bbt.c is currently written. */
1412 if ((ret = nand_scan_bbt(mtd, NULL)))
1413 return ret;
1414 memset((char *)parts, 0, sizeof(parts));
1415 numparts = inftl_partscan(mtd, parts);
1416 /* At least for now, require the INFTL Media Header. We could probably
1417 do without it for non-INFTL use, since all it gives us is
1418 autopartitioning, but I want to give it more thought. */
1419 if (!numparts)
1420 return -EIO;
1421 mtd_device_register(mtd, NULL, 0);
1422 if (!no_autopart)
1423 mtd_device_register(mtd, parts, numparts);
1424 return 0;
1425 }
1426
1427 static inline int __init doc2000_init(struct mtd_info *mtd)
1428 {
1429 struct nand_chip *this = mtd->priv;
1430 struct doc_priv *doc = this->priv;
1431
1432 this->read_byte = doc2000_read_byte;
1433 this->write_buf = doc2000_writebuf;
1434 this->read_buf = doc2000_readbuf;
1435 this->verify_buf = doc2000_verifybuf;
1436 this->scan_bbt = nftl_scan_bbt;
1437
1438 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1439 doc2000_count_chips(mtd);
1440 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1441 return (4 * doc->chips_per_floor);
1442 }
1443
1444 static inline int __init doc2001_init(struct mtd_info *mtd)
1445 {
1446 struct nand_chip *this = mtd->priv;
1447 struct doc_priv *doc = this->priv;
1448
1449 this->read_byte = doc2001_read_byte;
1450 this->write_buf = doc2001_writebuf;
1451 this->read_buf = doc2001_readbuf;
1452 this->verify_buf = doc2001_verifybuf;
1453
1454 ReadDOC(doc->virtadr, ChipID);
1455 ReadDOC(doc->virtadr, ChipID);
1456 ReadDOC(doc->virtadr, ChipID);
1457 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1458 /* It's not a Millennium; it's one of the newer
1459 DiskOnChip 2000 units with a similar ASIC.
1460 Treat it like a Millennium, except that it
1461 can have multiple chips. */
1462 doc2000_count_chips(mtd);
1463 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1464 this->scan_bbt = inftl_scan_bbt;
1465 return (4 * doc->chips_per_floor);
1466 } else {
1467 /* Bog-standard Millennium */
1468 doc->chips_per_floor = 1;
1469 mtd->name = "DiskOnChip Millennium";
1470 this->scan_bbt = nftl_scan_bbt;
1471 return 1;
1472 }
1473 }
1474
1475 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1476 {
1477 struct nand_chip *this = mtd->priv;
1478 struct doc_priv *doc = this->priv;
1479
1480 this->read_byte = doc2001plus_read_byte;
1481 this->write_buf = doc2001plus_writebuf;
1482 this->read_buf = doc2001plus_readbuf;
1483 this->verify_buf = doc2001plus_verifybuf;
1484 this->scan_bbt = inftl_scan_bbt;
1485 this->cmd_ctrl = NULL;
1486 this->select_chip = doc2001plus_select_chip;
1487 this->cmdfunc = doc2001plus_command;
1488 this->ecc.hwctl = doc2001plus_enable_hwecc;
1489
1490 doc->chips_per_floor = 1;
1491 mtd->name = "DiskOnChip Millennium Plus";
1492
1493 return 1;
1494 }
1495
1496 static int __init doc_probe(unsigned long physadr)
1497 {
1498 unsigned char ChipID;
1499 struct mtd_info *mtd;
1500 struct nand_chip *nand;
1501 struct doc_priv *doc;
1502 void __iomem *virtadr;
1503 unsigned char save_control;
1504 unsigned char tmp, tmpb, tmpc;
1505 int reg, len, numchips;
1506 int ret = 0;
1507
1508 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1509 if (!virtadr) {
1510 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1511 return -EIO;
1512 }
1513
1514 /* It's not possible to cleanly detect the DiskOnChip - the
1515 * bootup procedure will put the device into reset mode, and
1516 * it's not possible to talk to it without actually writing
1517 * to the DOCControl register. So we store the current contents
1518 * of the DOCControl register's location, in case we later decide
1519 * that it's not a DiskOnChip, and want to put it back how we
1520 * found it.
1521 */
1522 save_control = ReadDOC(virtadr, DOCControl);
1523
1524 /* Reset the DiskOnChip ASIC */
1525 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1526 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1527
1528 /* Enable the DiskOnChip ASIC */
1529 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1531
1532 ChipID = ReadDOC(virtadr, ChipID);
1533
1534 switch (ChipID) {
1535 case DOC_ChipID_Doc2k:
1536 reg = DoC_2k_ECCStatus;
1537 break;
1538 case DOC_ChipID_DocMil:
1539 reg = DoC_ECCConf;
1540 break;
1541 case DOC_ChipID_DocMilPlus16:
1542 case DOC_ChipID_DocMilPlus32:
1543 case 0:
1544 /* Possible Millennium Plus, need to do more checks */
1545 /* Possibly release from power down mode */
1546 for (tmp = 0; (tmp < 4); tmp++)
1547 ReadDOC(virtadr, Mplus_Power);
1548
1549 /* Reset the Millennium Plus ASIC */
1550 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1551 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1552 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1553
1554 mdelay(1);
1555 /* Enable the Millennium Plus ASIC */
1556 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1557 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1558 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1559 mdelay(1);
1560
1561 ChipID = ReadDOC(virtadr, ChipID);
1562
1563 switch (ChipID) {
1564 case DOC_ChipID_DocMilPlus16:
1565 reg = DoC_Mplus_Toggle;
1566 break;
1567 case DOC_ChipID_DocMilPlus32:
1568 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1569 default:
1570 ret = -ENODEV;
1571 goto notfound;
1572 }
1573 break;
1574
1575 default:
1576 ret = -ENODEV;
1577 goto notfound;
1578 }
1579 /* Check the TOGGLE bit in the ECC register */
1580 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1581 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1582 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1583 if ((tmp == tmpb) || (tmp != tmpc)) {
1584 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1585 ret = -ENODEV;
1586 goto notfound;
1587 }
1588
1589 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1590 unsigned char oldval;
1591 unsigned char newval;
1592 nand = mtd->priv;
1593 doc = nand->priv;
1594 /* Use the alias resolution register to determine if this is
1595 in fact the same DOC aliased to a new address. If writes
1596 to one chip's alias resolution register change the value on
1597 the other chip, they're the same chip. */
1598 if (ChipID == DOC_ChipID_DocMilPlus16) {
1599 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1600 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1601 } else {
1602 oldval = ReadDOC(doc->virtadr, AliasResolution);
1603 newval = ReadDOC(virtadr, AliasResolution);
1604 }
1605 if (oldval != newval)
1606 continue;
1607 if (ChipID == DOC_ChipID_DocMilPlus16) {
1608 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1609 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1610 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1611 } else {
1612 WriteDOC(~newval, virtadr, AliasResolution);
1613 oldval = ReadDOC(doc->virtadr, AliasResolution);
1614 WriteDOC(newval, virtadr, AliasResolution); // restore it
1615 }
1616 newval = ~newval;
1617 if (oldval == newval) {
1618 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1619 goto notfound;
1620 }
1621 }
1622
1623 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1624
1625 len = sizeof(struct mtd_info) +
1626 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1627 mtd = kzalloc(len, GFP_KERNEL);
1628 if (!mtd) {
1629 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1630 ret = -ENOMEM;
1631 goto fail;
1632 }
1633
1634 nand = (struct nand_chip *) (mtd + 1);
1635 doc = (struct doc_priv *) (nand + 1);
1636 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1637 nand->bbt_md = nand->bbt_td + 1;
1638
1639 mtd->priv = nand;
1640 mtd->owner = THIS_MODULE;
1641
1642 nand->priv = doc;
1643 nand->select_chip = doc200x_select_chip;
1644 nand->cmd_ctrl = doc200x_hwcontrol;
1645 nand->dev_ready = doc200x_dev_ready;
1646 nand->waitfunc = doc200x_wait;
1647 nand->block_bad = doc200x_block_bad;
1648 nand->ecc.hwctl = doc200x_enable_hwecc;
1649 nand->ecc.calculate = doc200x_calculate_ecc;
1650 nand->ecc.correct = doc200x_correct_data;
1651
1652 nand->ecc.layout = &doc200x_oobinfo;
1653 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1654 nand->ecc.size = 512;
1655 nand->ecc.bytes = 6;
1656 nand->options = NAND_USE_FLASH_BBT;
1657
1658 doc->physadr = physadr;
1659 doc->virtadr = virtadr;
1660 doc->ChipID = ChipID;
1661 doc->curfloor = -1;
1662 doc->curchip = -1;
1663 doc->mh0_page = -1;
1664 doc->mh1_page = -1;
1665 doc->nextdoc = doclist;
1666
1667 if (ChipID == DOC_ChipID_Doc2k)
1668 numchips = doc2000_init(mtd);
1669 else if (ChipID == DOC_ChipID_DocMilPlus16)
1670 numchips = doc2001plus_init(mtd);
1671 else
1672 numchips = doc2001_init(mtd);
1673
1674 if ((ret = nand_scan(mtd, numchips))) {
1675 /* DBB note: i believe nand_release is necessary here, as
1676 buffers may have been allocated in nand_base. Check with
1677 Thomas. FIX ME! */
1678 /* nand_release will call mtd_device_unregister, but we
1679 haven't yet added it. This is handled without incident by
1680 mtd_device_unregister, as far as I can tell. */
1681 nand_release(mtd);
1682 kfree(mtd);
1683 goto fail;
1684 }
1685
1686 /* Success! */
1687 doclist = mtd;
1688 return 0;
1689
1690 notfound:
1691 /* Put back the contents of the DOCControl register, in case it's not
1692 actually a DiskOnChip. */
1693 WriteDOC(save_control, virtadr, DOCControl);
1694 fail:
1695 iounmap(virtadr);
1696 return ret;
1697 }
1698
1699 static void release_nanddoc(void)
1700 {
1701 struct mtd_info *mtd, *nextmtd;
1702 struct nand_chip *nand;
1703 struct doc_priv *doc;
1704
1705 for (mtd = doclist; mtd; mtd = nextmtd) {
1706 nand = mtd->priv;
1707 doc = nand->priv;
1708
1709 nextmtd = doc->nextdoc;
1710 nand_release(mtd);
1711 iounmap(doc->virtadr);
1712 kfree(mtd);
1713 }
1714 }
1715
1716 static int __init init_nanddoc(void)
1717 {
1718 int i, ret = 0;
1719
1720 /* We could create the decoder on demand, if memory is a concern.
1721 * This way we have it handy, if an error happens
1722 *
1723 * Symbolsize is 10 (bits)
1724 * Primitve polynomial is x^10+x^3+1
1725 * first consecutive root is 510
1726 * primitve element to generate roots = 1
1727 * generator polinomial degree = 4
1728 */
1729 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1730 if (!rs_decoder) {
1731 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1732 return -ENOMEM;
1733 }
1734
1735 if (doc_config_location) {
1736 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1737 ret = doc_probe(doc_config_location);
1738 if (ret < 0)
1739 goto outerr;
1740 } else {
1741 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1742 doc_probe(doc_locations[i]);
1743 }
1744 }
1745 /* No banner message any more. Print a message if no DiskOnChip
1746 found, so the user knows we at least tried. */
1747 if (!doclist) {
1748 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1749 ret = -ENODEV;
1750 goto outerr;
1751 }
1752 return 0;
1753 outerr:
1754 free_rs(rs_decoder);
1755 return ret;
1756 }
1757
1758 static void __exit cleanup_nanddoc(void)
1759 {
1760 /* Cleanup the nand/DoC resources */
1761 release_nanddoc();
1762
1763 /* Free the reed solomon resources */
1764 if (rs_decoder) {
1765 free_rs(rs_decoder);
1766 }
1767 }
1768
1769 module_init(init_nanddoc);
1770 module_exit(cleanup_nanddoc);
1771
1772 MODULE_LICENSE("GPL");
1773 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1774 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");