]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/diskonchip.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <asm/io.h>
27
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/doc2000.h>
31 #include <linux/mtd/compatmac.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34
35 /* Where to look for the devices? */
36 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
37 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
38 #endif
39
40 static unsigned long __initdata doc_locations[] = {
41 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
42 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
43 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
44 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
45 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
46 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
47 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
48 #else /* CONFIG_MTD_DOCPROBE_HIGH */
49 0xc8000, 0xca000, 0xcc000, 0xce000,
50 0xd0000, 0xd2000, 0xd4000, 0xd6000,
51 0xd8000, 0xda000, 0xdc000, 0xde000,
52 0xe0000, 0xe2000, 0xe4000, 0xe6000,
53 0xe8000, 0xea000, 0xec000, 0xee000,
54 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
55 #else
56 #warning Unknown architecture for DiskOnChip. No default probe locations defined
57 #endif
58 0xffffffff };
59
60 static struct mtd_info *doclist = NULL;
61
62 struct doc_priv {
63 void __iomem *virtadr;
64 unsigned long physadr;
65 u_char ChipID;
66 u_char CDSNControl;
67 int chips_per_floor; /* The number of chips detected on each floor */
68 int curfloor;
69 int curchip;
70 int mh0_page;
71 int mh1_page;
72 struct mtd_info *nextdoc;
73 };
74
75 /* This is the syndrome computed by the HW ecc generator upon reading an empty
76 page, one with all 0xff for data and stored ecc code. */
77 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
78
79 /* This is the ecc value computed by the HW ecc generator upon writing an empty
80 page, one with all 0xff for data. */
81 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
82
83 #define INFTL_BBT_RESERVED_BLOCKS 4
84
85 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
86 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
87 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
88
89 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
90 unsigned int bitmask);
91 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
92
93 static int debug = 0;
94 module_param(debug, int, 0);
95
96 static int try_dword = 1;
97 module_param(try_dword, int, 0);
98
99 static int no_ecc_failures = 0;
100 module_param(no_ecc_failures, int, 0);
101
102 static int no_autopart = 0;
103 module_param(no_autopart, int, 0);
104
105 static int show_firmware_partition = 0;
106 module_param(show_firmware_partition, int, 0);
107
108 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
109 static int inftl_bbt_write = 1;
110 #else
111 static int inftl_bbt_write = 0;
112 #endif
113 module_param(inftl_bbt_write, int, 0);
114
115 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
116 module_param(doc_config_location, ulong, 0);
117 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
118
119 /* Sector size for HW ECC */
120 #define SECTOR_SIZE 512
121 /* The sector bytes are packed into NB_DATA 10 bit words */
122 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
123 /* Number of roots */
124 #define NROOTS 4
125 /* First consective root */
126 #define FCR 510
127 /* Number of symbols */
128 #define NN 1023
129
130 /* the Reed Solomon control structure */
131 static struct rs_control *rs_decoder;
132
133 /*
134 * The HW decoder in the DoC ASIC's provides us a error syndrome,
135 * which we must convert to a standard syndrom usable by the generic
136 * Reed-Solomon library code.
137 *
138 * Fabrice Bellard figured this out in the old docecc code. I added
139 * some comments, improved a minor bit and converted it to make use
140 * of the generic Reed-Solomon libary. tglx
141 */
142 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
143 {
144 int i, j, nerr, errpos[8];
145 uint8_t parity;
146 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
147
148 /* Convert the ecc bytes into words */
149 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
150 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
151 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
152 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
153 parity = ecc[1];
154
155 /* Initialize the syndrom buffer */
156 for (i = 0; i < NROOTS; i++)
157 s[i] = ds[0];
158 /*
159 * Evaluate
160 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
161 * where x = alpha^(FCR + i)
162 */
163 for (j = 1; j < NROOTS; j++) {
164 if (ds[j] == 0)
165 continue;
166 tmp = rs->index_of[ds[j]];
167 for (i = 0; i < NROOTS; i++)
168 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
169 }
170
171 /* Calc s[i] = s[i] / alpha^(v + i) */
172 for (i = 0; i < NROOTS; i++) {
173 if (syn[i])
174 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
175 }
176 /* Call the decoder library */
177 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
178
179 /* Incorrectable errors ? */
180 if (nerr < 0)
181 return nerr;
182
183 /*
184 * Correct the errors. The bitpositions are a bit of magic,
185 * but they are given by the design of the de/encoder circuit
186 * in the DoC ASIC's.
187 */
188 for (i = 0; i < nerr; i++) {
189 int index, bitpos, pos = 1015 - errpos[i];
190 uint8_t val;
191 if (pos >= NB_DATA && pos < 1019)
192 continue;
193 if (pos < NB_DATA) {
194 /* extract bit position (MSB first) */
195 pos = 10 * (NB_DATA - 1 - pos) - 6;
196 /* now correct the following 10 bits. At most two bytes
197 can be modified since pos is even */
198 index = (pos >> 3) ^ 1;
199 bitpos = pos & 7;
200 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
201 val = (uint8_t) (errval[i] >> (2 + bitpos));
202 parity ^= val;
203 if (index < SECTOR_SIZE)
204 data[index] ^= val;
205 }
206 index = ((pos >> 3) + 1) ^ 1;
207 bitpos = (bitpos + 10) & 7;
208 if (bitpos == 0)
209 bitpos = 8;
210 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
211 val = (uint8_t) (errval[i] << (8 - bitpos));
212 parity ^= val;
213 if (index < SECTOR_SIZE)
214 data[index] ^= val;
215 }
216 }
217 }
218 /* If the parity is wrong, no rescue possible */
219 return parity ? -EBADMSG : nerr;
220 }
221
222 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
223 {
224 volatile char dummy;
225 int i;
226
227 for (i = 0; i < cycles; i++) {
228 if (DoC_is_Millennium(doc))
229 dummy = ReadDOC(doc->virtadr, NOP);
230 else if (DoC_is_MillenniumPlus(doc))
231 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
232 else
233 dummy = ReadDOC(doc->virtadr, DOCStatus);
234 }
235
236 }
237
238 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
239
240 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
241 static int _DoC_WaitReady(struct doc_priv *doc)
242 {
243 void __iomem *docptr = doc->virtadr;
244 unsigned long timeo = jiffies + (HZ * 10);
245
246 if (debug)
247 printk("_DoC_WaitReady...\n");
248 /* Out-of-line routine to wait for chip response */
249 if (DoC_is_MillenniumPlus(doc)) {
250 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
251 if (time_after(jiffies, timeo)) {
252 printk("_DoC_WaitReady timed out.\n");
253 return -EIO;
254 }
255 udelay(1);
256 cond_resched();
257 }
258 } else {
259 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
260 if (time_after(jiffies, timeo)) {
261 printk("_DoC_WaitReady timed out.\n");
262 return -EIO;
263 }
264 udelay(1);
265 cond_resched();
266 }
267 }
268
269 return 0;
270 }
271
272 static inline int DoC_WaitReady(struct doc_priv *doc)
273 {
274 void __iomem *docptr = doc->virtadr;
275 int ret = 0;
276
277 if (DoC_is_MillenniumPlus(doc)) {
278 DoC_Delay(doc, 4);
279
280 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
281 /* Call the out-of-line routine to wait */
282 ret = _DoC_WaitReady(doc);
283 } else {
284 DoC_Delay(doc, 4);
285
286 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
287 /* Call the out-of-line routine to wait */
288 ret = _DoC_WaitReady(doc);
289 DoC_Delay(doc, 2);
290 }
291
292 if (debug)
293 printk("DoC_WaitReady OK\n");
294 return ret;
295 }
296
297 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
298 {
299 struct nand_chip *this = mtd->priv;
300 struct doc_priv *doc = this->priv;
301 void __iomem *docptr = doc->virtadr;
302
303 if (debug)
304 printk("write_byte %02x\n", datum);
305 WriteDOC(datum, docptr, CDSNSlowIO);
306 WriteDOC(datum, docptr, 2k_CDSN_IO);
307 }
308
309 static u_char doc2000_read_byte(struct mtd_info *mtd)
310 {
311 struct nand_chip *this = mtd->priv;
312 struct doc_priv *doc = this->priv;
313 void __iomem *docptr = doc->virtadr;
314 u_char ret;
315
316 ReadDOC(docptr, CDSNSlowIO);
317 DoC_Delay(doc, 2);
318 ret = ReadDOC(docptr, 2k_CDSN_IO);
319 if (debug)
320 printk("read_byte returns %02x\n", ret);
321 return ret;
322 }
323
324 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
325 {
326 struct nand_chip *this = mtd->priv;
327 struct doc_priv *doc = this->priv;
328 void __iomem *docptr = doc->virtadr;
329 int i;
330 if (debug)
331 printk("writebuf of %d bytes: ", len);
332 for (i = 0; i < len; i++) {
333 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
334 if (debug && i < 16)
335 printk("%02x ", buf[i]);
336 }
337 if (debug)
338 printk("\n");
339 }
340
341 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
342 {
343 struct nand_chip *this = mtd->priv;
344 struct doc_priv *doc = this->priv;
345 void __iomem *docptr = doc->virtadr;
346 int i;
347
348 if (debug)
349 printk("readbuf of %d bytes: ", len);
350
351 for (i = 0; i < len; i++) {
352 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
353 }
354 }
355
356 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
357 {
358 struct nand_chip *this = mtd->priv;
359 struct doc_priv *doc = this->priv;
360 void __iomem *docptr = doc->virtadr;
361 int i;
362
363 if (debug)
364 printk("readbuf_dword of %d bytes: ", len);
365
366 if (unlikely((((unsigned long)buf) | len) & 3)) {
367 for (i = 0; i < len; i++) {
368 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
369 }
370 } else {
371 for (i = 0; i < len; i += 4) {
372 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
373 }
374 }
375 }
376
377 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
378 {
379 struct nand_chip *this = mtd->priv;
380 struct doc_priv *doc = this->priv;
381 void __iomem *docptr = doc->virtadr;
382 int i;
383
384 for (i = 0; i < len; i++)
385 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
386 return -EFAULT;
387 return 0;
388 }
389
390 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
391 {
392 struct nand_chip *this = mtd->priv;
393 struct doc_priv *doc = this->priv;
394 uint16_t ret;
395
396 doc200x_select_chip(mtd, nr);
397 doc200x_hwcontrol(mtd, NAND_CMD_READID,
398 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
399 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
400 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
401
402 /* We cant' use dev_ready here, but at least we wait for the
403 * command to complete
404 */
405 udelay(50);
406
407 ret = this->read_byte(mtd) << 8;
408 ret |= this->read_byte(mtd);
409
410 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
411 /* First chip probe. See if we get same results by 32-bit access */
412 union {
413 uint32_t dword;
414 uint8_t byte[4];
415 } ident;
416 void __iomem *docptr = doc->virtadr;
417
418 doc200x_hwcontrol(mtd, NAND_CMD_READID,
419 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
420 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
421 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
422 NAND_NCE | NAND_CTRL_CHANGE);
423
424 udelay(50);
425
426 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
427 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
428 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
429 this->read_buf = &doc2000_readbuf_dword;
430 }
431 }
432
433 return ret;
434 }
435
436 static void __init doc2000_count_chips(struct mtd_info *mtd)
437 {
438 struct nand_chip *this = mtd->priv;
439 struct doc_priv *doc = this->priv;
440 uint16_t mfrid;
441 int i;
442
443 /* Max 4 chips per floor on DiskOnChip 2000 */
444 doc->chips_per_floor = 4;
445
446 /* Find out what the first chip is */
447 mfrid = doc200x_ident_chip(mtd, 0);
448
449 /* Find how many chips in each floor. */
450 for (i = 1; i < 4; i++) {
451 if (doc200x_ident_chip(mtd, i) != mfrid)
452 break;
453 }
454 doc->chips_per_floor = i;
455 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
456 }
457
458 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
459 {
460 struct doc_priv *doc = this->priv;
461
462 int status;
463
464 DoC_WaitReady(doc);
465 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
466 DoC_WaitReady(doc);
467 status = (int)this->read_byte(mtd);
468
469 return status;
470 }
471
472 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
473 {
474 struct nand_chip *this = mtd->priv;
475 struct doc_priv *doc = this->priv;
476 void __iomem *docptr = doc->virtadr;
477
478 WriteDOC(datum, docptr, CDSNSlowIO);
479 WriteDOC(datum, docptr, Mil_CDSN_IO);
480 WriteDOC(datum, docptr, WritePipeTerm);
481 }
482
483 static u_char doc2001_read_byte(struct mtd_info *mtd)
484 {
485 struct nand_chip *this = mtd->priv;
486 struct doc_priv *doc = this->priv;
487 void __iomem *docptr = doc->virtadr;
488
489 //ReadDOC(docptr, CDSNSlowIO);
490 /* 11.4.5 -- delay twice to allow extended length cycle */
491 DoC_Delay(doc, 2);
492 ReadDOC(docptr, ReadPipeInit);
493 //return ReadDOC(docptr, Mil_CDSN_IO);
494 return ReadDOC(docptr, LastDataRead);
495 }
496
497 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
498 {
499 struct nand_chip *this = mtd->priv;
500 struct doc_priv *doc = this->priv;
501 void __iomem *docptr = doc->virtadr;
502 int i;
503
504 for (i = 0; i < len; i++)
505 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
506 /* Terminate write pipeline */
507 WriteDOC(0x00, docptr, WritePipeTerm);
508 }
509
510 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
511 {
512 struct nand_chip *this = mtd->priv;
513 struct doc_priv *doc = this->priv;
514 void __iomem *docptr = doc->virtadr;
515 int i;
516
517 /* Start read pipeline */
518 ReadDOC(docptr, ReadPipeInit);
519
520 for (i = 0; i < len - 1; i++)
521 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
522
523 /* Terminate read pipeline */
524 buf[i] = ReadDOC(docptr, LastDataRead);
525 }
526
527 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
528 {
529 struct nand_chip *this = mtd->priv;
530 struct doc_priv *doc = this->priv;
531 void __iomem *docptr = doc->virtadr;
532 int i;
533
534 /* Start read pipeline */
535 ReadDOC(docptr, ReadPipeInit);
536
537 for (i = 0; i < len - 1; i++)
538 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
539 ReadDOC(docptr, LastDataRead);
540 return i;
541 }
542 if (buf[i] != ReadDOC(docptr, LastDataRead))
543 return i;
544 return 0;
545 }
546
547 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
548 {
549 struct nand_chip *this = mtd->priv;
550 struct doc_priv *doc = this->priv;
551 void __iomem *docptr = doc->virtadr;
552 u_char ret;
553
554 ReadDOC(docptr, Mplus_ReadPipeInit);
555 ReadDOC(docptr, Mplus_ReadPipeInit);
556 ret = ReadDOC(docptr, Mplus_LastDataRead);
557 if (debug)
558 printk("read_byte returns %02x\n", ret);
559 return ret;
560 }
561
562 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
563 {
564 struct nand_chip *this = mtd->priv;
565 struct doc_priv *doc = this->priv;
566 void __iomem *docptr = doc->virtadr;
567 int i;
568
569 if (debug)
570 printk("writebuf of %d bytes: ", len);
571 for (i = 0; i < len; i++) {
572 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
573 if (debug && i < 16)
574 printk("%02x ", buf[i]);
575 }
576 if (debug)
577 printk("\n");
578 }
579
580 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
581 {
582 struct nand_chip *this = mtd->priv;
583 struct doc_priv *doc = this->priv;
584 void __iomem *docptr = doc->virtadr;
585 int i;
586
587 if (debug)
588 printk("readbuf of %d bytes: ", len);
589
590 /* Start read pipeline */
591 ReadDOC(docptr, Mplus_ReadPipeInit);
592 ReadDOC(docptr, Mplus_ReadPipeInit);
593
594 for (i = 0; i < len - 2; i++) {
595 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
596 if (debug && i < 16)
597 printk("%02x ", buf[i]);
598 }
599
600 /* Terminate read pipeline */
601 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
602 if (debug && i < 16)
603 printk("%02x ", buf[len - 2]);
604 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
605 if (debug && i < 16)
606 printk("%02x ", buf[len - 1]);
607 if (debug)
608 printk("\n");
609 }
610
611 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
612 {
613 struct nand_chip *this = mtd->priv;
614 struct doc_priv *doc = this->priv;
615 void __iomem *docptr = doc->virtadr;
616 int i;
617
618 if (debug)
619 printk("verifybuf of %d bytes: ", len);
620
621 /* Start read pipeline */
622 ReadDOC(docptr, Mplus_ReadPipeInit);
623 ReadDOC(docptr, Mplus_ReadPipeInit);
624
625 for (i = 0; i < len - 2; i++)
626 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
627 ReadDOC(docptr, Mplus_LastDataRead);
628 ReadDOC(docptr, Mplus_LastDataRead);
629 return i;
630 }
631 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
632 return len - 2;
633 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
634 return len - 1;
635 return 0;
636 }
637
638 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
639 {
640 struct nand_chip *this = mtd->priv;
641 struct doc_priv *doc = this->priv;
642 void __iomem *docptr = doc->virtadr;
643 int floor = 0;
644
645 if (debug)
646 printk("select chip (%d)\n", chip);
647
648 if (chip == -1) {
649 /* Disable flash internally */
650 WriteDOC(0, docptr, Mplus_FlashSelect);
651 return;
652 }
653
654 floor = chip / doc->chips_per_floor;
655 chip -= (floor * doc->chips_per_floor);
656
657 /* Assert ChipEnable and deassert WriteProtect */
658 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
659 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
660
661 doc->curchip = chip;
662 doc->curfloor = floor;
663 }
664
665 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
666 {
667 struct nand_chip *this = mtd->priv;
668 struct doc_priv *doc = this->priv;
669 void __iomem *docptr = doc->virtadr;
670 int floor = 0;
671
672 if (debug)
673 printk("select chip (%d)\n", chip);
674
675 if (chip == -1)
676 return;
677
678 floor = chip / doc->chips_per_floor;
679 chip -= (floor * doc->chips_per_floor);
680
681 /* 11.4.4 -- deassert CE before changing chip */
682 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
683
684 WriteDOC(floor, docptr, FloorSelect);
685 WriteDOC(chip, docptr, CDSNDeviceSelect);
686
687 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688
689 doc->curchip = chip;
690 doc->curfloor = floor;
691 }
692
693 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
694
695 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
696 unsigned int ctrl)
697 {
698 struct nand_chip *this = mtd->priv;
699 struct doc_priv *doc = this->priv;
700 void __iomem *docptr = doc->virtadr;
701
702 if (ctrl & NAND_CTRL_CHANGE) {
703 doc->CDSNControl &= ~CDSN_CTRL_MSK;
704 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
705 if (debug)
706 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
707 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
708 /* 11.4.3 -- 4 NOPs after CSDNControl write */
709 DoC_Delay(doc, 4);
710 }
711 if (cmd != NAND_CMD_NONE) {
712 if (DoC_is_2000(doc))
713 doc2000_write_byte(mtd, cmd);
714 else
715 doc2001_write_byte(mtd, cmd);
716 }
717 }
718
719 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
720 {
721 struct nand_chip *this = mtd->priv;
722 struct doc_priv *doc = this->priv;
723 void __iomem *docptr = doc->virtadr;
724
725 /*
726 * Must terminate write pipeline before sending any commands
727 * to the device.
728 */
729 if (command == NAND_CMD_PAGEPROG) {
730 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
731 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
732 }
733
734 /*
735 * Write out the command to the device.
736 */
737 if (command == NAND_CMD_SEQIN) {
738 int readcmd;
739
740 if (column >= mtd->writesize) {
741 /* OOB area */
742 column -= mtd->writesize;
743 readcmd = NAND_CMD_READOOB;
744 } else if (column < 256) {
745 /* First 256 bytes --> READ0 */
746 readcmd = NAND_CMD_READ0;
747 } else {
748 column -= 256;
749 readcmd = NAND_CMD_READ1;
750 }
751 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
752 }
753 WriteDOC(command, docptr, Mplus_FlashCmd);
754 WriteDOC(0, docptr, Mplus_WritePipeTerm);
755 WriteDOC(0, docptr, Mplus_WritePipeTerm);
756
757 if (column != -1 || page_addr != -1) {
758 /* Serially input address */
759 if (column != -1) {
760 /* Adjust columns for 16 bit buswidth */
761 if (this->options & NAND_BUSWIDTH_16)
762 column >>= 1;
763 WriteDOC(column, docptr, Mplus_FlashAddress);
764 }
765 if (page_addr != -1) {
766 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
767 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
768 /* One more address cycle for higher density devices */
769 if (this->chipsize & 0x0c000000) {
770 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
771 printk("high density\n");
772 }
773 }
774 WriteDOC(0, docptr, Mplus_WritePipeTerm);
775 WriteDOC(0, docptr, Mplus_WritePipeTerm);
776 /* deassert ALE */
777 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
778 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
779 WriteDOC(0, docptr, Mplus_FlashControl);
780 }
781
782 /*
783 * program and erase have their own busy handlers
784 * status and sequential in needs no delay
785 */
786 switch (command) {
787
788 case NAND_CMD_PAGEPROG:
789 case NAND_CMD_ERASE1:
790 case NAND_CMD_ERASE2:
791 case NAND_CMD_SEQIN:
792 case NAND_CMD_STATUS:
793 return;
794
795 case NAND_CMD_RESET:
796 if (this->dev_ready)
797 break;
798 udelay(this->chip_delay);
799 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
800 WriteDOC(0, docptr, Mplus_WritePipeTerm);
801 WriteDOC(0, docptr, Mplus_WritePipeTerm);
802 while (!(this->read_byte(mtd) & 0x40)) ;
803 return;
804
805 /* This applies to read commands */
806 default:
807 /*
808 * If we don't have access to the busy pin, we apply the given
809 * command delay
810 */
811 if (!this->dev_ready) {
812 udelay(this->chip_delay);
813 return;
814 }
815 }
816
817 /* Apply this short delay always to ensure that we do wait tWB in
818 * any case on any machine. */
819 ndelay(100);
820 /* wait until command is processed */
821 while (!this->dev_ready(mtd)) ;
822 }
823
824 static int doc200x_dev_ready(struct mtd_info *mtd)
825 {
826 struct nand_chip *this = mtd->priv;
827 struct doc_priv *doc = this->priv;
828 void __iomem *docptr = doc->virtadr;
829
830 if (DoC_is_MillenniumPlus(doc)) {
831 /* 11.4.2 -- must NOP four times before checking FR/B# */
832 DoC_Delay(doc, 4);
833 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
834 if (debug)
835 printk("not ready\n");
836 return 0;
837 }
838 if (debug)
839 printk("was ready\n");
840 return 1;
841 } else {
842 /* 11.4.2 -- must NOP four times before checking FR/B# */
843 DoC_Delay(doc, 4);
844 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
845 if (debug)
846 printk("not ready\n");
847 return 0;
848 }
849 /* 11.4.2 -- Must NOP twice if it's ready */
850 DoC_Delay(doc, 2);
851 if (debug)
852 printk("was ready\n");
853 return 1;
854 }
855 }
856
857 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
858 {
859 /* This is our last resort if we couldn't find or create a BBT. Just
860 pretend all blocks are good. */
861 return 0;
862 }
863
864 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
865 {
866 struct nand_chip *this = mtd->priv;
867 struct doc_priv *doc = this->priv;
868 void __iomem *docptr = doc->virtadr;
869
870 /* Prime the ECC engine */
871 switch (mode) {
872 case NAND_ECC_READ:
873 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
874 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
875 break;
876 case NAND_ECC_WRITE:
877 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
878 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
879 break;
880 }
881 }
882
883 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
884 {
885 struct nand_chip *this = mtd->priv;
886 struct doc_priv *doc = this->priv;
887 void __iomem *docptr = doc->virtadr;
888
889 /* Prime the ECC engine */
890 switch (mode) {
891 case NAND_ECC_READ:
892 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
893 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
894 break;
895 case NAND_ECC_WRITE:
896 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
897 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
898 break;
899 }
900 }
901
902 /* This code is only called on write */
903 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
904 {
905 struct nand_chip *this = mtd->priv;
906 struct doc_priv *doc = this->priv;
907 void __iomem *docptr = doc->virtadr;
908 int i;
909 int emptymatch = 1;
910
911 /* flush the pipeline */
912 if (DoC_is_2000(doc)) {
913 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
914 WriteDOC(0, docptr, 2k_CDSN_IO);
915 WriteDOC(0, docptr, 2k_CDSN_IO);
916 WriteDOC(0, docptr, 2k_CDSN_IO);
917 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
918 } else if (DoC_is_MillenniumPlus(doc)) {
919 WriteDOC(0, docptr, Mplus_NOP);
920 WriteDOC(0, docptr, Mplus_NOP);
921 WriteDOC(0, docptr, Mplus_NOP);
922 } else {
923 WriteDOC(0, docptr, NOP);
924 WriteDOC(0, docptr, NOP);
925 WriteDOC(0, docptr, NOP);
926 }
927
928 for (i = 0; i < 6; i++) {
929 if (DoC_is_MillenniumPlus(doc))
930 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
931 else
932 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
933 if (ecc_code[i] != empty_write_ecc[i])
934 emptymatch = 0;
935 }
936 if (DoC_is_MillenniumPlus(doc))
937 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
938 else
939 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
940 #if 0
941 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
942 if (emptymatch) {
943 /* Note: this somewhat expensive test should not be triggered
944 often. It could be optimized away by examining the data in
945 the writebuf routine, and remembering the result. */
946 for (i = 0; i < 512; i++) {
947 if (dat[i] == 0xff)
948 continue;
949 emptymatch = 0;
950 break;
951 }
952 }
953 /* If emptymatch still =1, we do have an all-0xff data buffer.
954 Return all-0xff ecc value instead of the computed one, so
955 it'll look just like a freshly-erased page. */
956 if (emptymatch)
957 memset(ecc_code, 0xff, 6);
958 #endif
959 return 0;
960 }
961
962 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
963 u_char *read_ecc, u_char *isnull)
964 {
965 int i, ret = 0;
966 struct nand_chip *this = mtd->priv;
967 struct doc_priv *doc = this->priv;
968 void __iomem *docptr = doc->virtadr;
969 uint8_t calc_ecc[6];
970 volatile u_char dummy;
971 int emptymatch = 1;
972
973 /* flush the pipeline */
974 if (DoC_is_2000(doc)) {
975 dummy = ReadDOC(docptr, 2k_ECCStatus);
976 dummy = ReadDOC(docptr, 2k_ECCStatus);
977 dummy = ReadDOC(docptr, 2k_ECCStatus);
978 } else if (DoC_is_MillenniumPlus(doc)) {
979 dummy = ReadDOC(docptr, Mplus_ECCConf);
980 dummy = ReadDOC(docptr, Mplus_ECCConf);
981 dummy = ReadDOC(docptr, Mplus_ECCConf);
982 } else {
983 dummy = ReadDOC(docptr, ECCConf);
984 dummy = ReadDOC(docptr, ECCConf);
985 dummy = ReadDOC(docptr, ECCConf);
986 }
987
988 /* Error occured ? */
989 if (dummy & 0x80) {
990 for (i = 0; i < 6; i++) {
991 if (DoC_is_MillenniumPlus(doc))
992 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
993 else
994 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
995 if (calc_ecc[i] != empty_read_syndrome[i])
996 emptymatch = 0;
997 }
998 /* If emptymatch=1, the read syndrome is consistent with an
999 all-0xff data and stored ecc block. Check the stored ecc. */
1000 if (emptymatch) {
1001 for (i = 0; i < 6; i++) {
1002 if (read_ecc[i] == 0xff)
1003 continue;
1004 emptymatch = 0;
1005 break;
1006 }
1007 }
1008 /* If emptymatch still =1, check the data block. */
1009 if (emptymatch) {
1010 /* Note: this somewhat expensive test should not be triggered
1011 often. It could be optimized away by examining the data in
1012 the readbuf routine, and remembering the result. */
1013 for (i = 0; i < 512; i++) {
1014 if (dat[i] == 0xff)
1015 continue;
1016 emptymatch = 0;
1017 break;
1018 }
1019 }
1020 /* If emptymatch still =1, this is almost certainly a freshly-
1021 erased block, in which case the ECC will not come out right.
1022 We'll suppress the error and tell the caller everything's
1023 OK. Because it is. */
1024 if (!emptymatch)
1025 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1026 if (ret > 0)
1027 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1028 }
1029 if (DoC_is_MillenniumPlus(doc))
1030 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1031 else
1032 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1033 if (no_ecc_failures && (ret == -EBADMSG)) {
1034 printk(KERN_ERR "suppressing ECC failure\n");
1035 ret = 0;
1036 }
1037 return ret;
1038 }
1039
1040 //u_char mydatabuf[528];
1041
1042 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1043 * attempt to retain compatibility. It used to read:
1044 * .oobfree = { {8, 8} }
1045 * Since that leaves two bytes unusable, it was changed. But the following
1046 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1047 * .oobfree = { {6, 10} }
1048 * jffs2 seems to handle the above gracefully, but the current scheme seems
1049 * safer. The only problem with it is that any code that parses oobfree must
1050 * be able to handle out-of-order segments.
1051 */
1052 static struct nand_ecclayout doc200x_oobinfo = {
1053 .eccbytes = 6,
1054 .eccpos = {0, 1, 2, 3, 4, 5},
1055 .oobfree = {{8, 8}, {6, 2}}
1056 };
1057
1058 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1059 On sucessful return, buf will contain a copy of the media header for
1060 further processing. id is the string to scan for, and will presumably be
1061 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1062 header. The page #s of the found media headers are placed in mh0_page and
1063 mh1_page in the DOC private structure. */
1064 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1065 {
1066 struct nand_chip *this = mtd->priv;
1067 struct doc_priv *doc = this->priv;
1068 unsigned offs;
1069 int ret;
1070 size_t retlen;
1071
1072 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1073 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1074 if (retlen != mtd->writesize)
1075 continue;
1076 if (ret) {
1077 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1078 }
1079 if (memcmp(buf, id, 6))
1080 continue;
1081 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1082 if (doc->mh0_page == -1) {
1083 doc->mh0_page = offs >> this->page_shift;
1084 if (!findmirror)
1085 return 1;
1086 continue;
1087 }
1088 doc->mh1_page = offs >> this->page_shift;
1089 return 2;
1090 }
1091 if (doc->mh0_page == -1) {
1092 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1093 return 0;
1094 }
1095 /* Only one mediaheader was found. We want buf to contain a
1096 mediaheader on return, so we'll have to re-read the one we found. */
1097 offs = doc->mh0_page << this->page_shift;
1098 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1099 if (retlen != mtd->writesize) {
1100 /* Insanity. Give up. */
1101 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1102 return 0;
1103 }
1104 return 1;
1105 }
1106
1107 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1108 {
1109 struct nand_chip *this = mtd->priv;
1110 struct doc_priv *doc = this->priv;
1111 int ret = 0;
1112 u_char *buf;
1113 struct NFTLMediaHeader *mh;
1114 const unsigned psize = 1 << this->page_shift;
1115 int numparts = 0;
1116 unsigned blocks, maxblocks;
1117 int offs, numheaders;
1118
1119 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1120 if (!buf) {
1121 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1122 return 0;
1123 }
1124 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1125 goto out;
1126 mh = (struct NFTLMediaHeader *)buf;
1127
1128 le16_to_cpus(&mh->NumEraseUnits);
1129 le16_to_cpus(&mh->FirstPhysicalEUN);
1130 le32_to_cpus(&mh->FormattedSize);
1131
1132 printk(KERN_INFO " DataOrgID = %s\n"
1133 " NumEraseUnits = %d\n"
1134 " FirstPhysicalEUN = %d\n"
1135 " FormattedSize = %d\n"
1136 " UnitSizeFactor = %d\n",
1137 mh->DataOrgID, mh->NumEraseUnits,
1138 mh->FirstPhysicalEUN, mh->FormattedSize,
1139 mh->UnitSizeFactor);
1140
1141 blocks = mtd->size >> this->phys_erase_shift;
1142 maxblocks = min(32768U, mtd->erasesize - psize);
1143
1144 if (mh->UnitSizeFactor == 0x00) {
1145 /* Auto-determine UnitSizeFactor. The constraints are:
1146 - There can be at most 32768 virtual blocks.
1147 - There can be at most (virtual block size - page size)
1148 virtual blocks (because MediaHeader+BBT must fit in 1).
1149 */
1150 mh->UnitSizeFactor = 0xff;
1151 while (blocks > maxblocks) {
1152 blocks >>= 1;
1153 maxblocks = min(32768U, (maxblocks << 1) + psize);
1154 mh->UnitSizeFactor--;
1155 }
1156 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1157 }
1158
1159 /* NOTE: The lines below modify internal variables of the NAND and MTD
1160 layers; variables with have already been configured by nand_scan.
1161 Unfortunately, we didn't know before this point what these values
1162 should be. Thus, this code is somewhat dependant on the exact
1163 implementation of the NAND layer. */
1164 if (mh->UnitSizeFactor != 0xff) {
1165 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1166 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1167 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1168 blocks = mtd->size >> this->bbt_erase_shift;
1169 maxblocks = min(32768U, mtd->erasesize - psize);
1170 }
1171
1172 if (blocks > maxblocks) {
1173 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1174 goto out;
1175 }
1176
1177 /* Skip past the media headers. */
1178 offs = max(doc->mh0_page, doc->mh1_page);
1179 offs <<= this->page_shift;
1180 offs += mtd->erasesize;
1181
1182 if (show_firmware_partition == 1) {
1183 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1184 parts[0].offset = 0;
1185 parts[0].size = offs;
1186 numparts = 1;
1187 }
1188
1189 parts[numparts].name = " DiskOnChip BDTL partition";
1190 parts[numparts].offset = offs;
1191 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1192
1193 offs += parts[numparts].size;
1194 numparts++;
1195
1196 if (offs < mtd->size) {
1197 parts[numparts].name = " DiskOnChip Remainder partition";
1198 parts[numparts].offset = offs;
1199 parts[numparts].size = mtd->size - offs;
1200 numparts++;
1201 }
1202
1203 ret = numparts;
1204 out:
1205 kfree(buf);
1206 return ret;
1207 }
1208
1209 /* This is a stripped-down copy of the code in inftlmount.c */
1210 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1211 {
1212 struct nand_chip *this = mtd->priv;
1213 struct doc_priv *doc = this->priv;
1214 int ret = 0;
1215 u_char *buf;
1216 struct INFTLMediaHeader *mh;
1217 struct INFTLPartition *ip;
1218 int numparts = 0;
1219 int blocks;
1220 int vshift, lastvunit = 0;
1221 int i;
1222 int end = mtd->size;
1223
1224 if (inftl_bbt_write)
1225 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1226
1227 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1228 if (!buf) {
1229 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1230 return 0;
1231 }
1232
1233 if (!find_media_headers(mtd, buf, "BNAND", 0))
1234 goto out;
1235 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1236 mh = (struct INFTLMediaHeader *)buf;
1237
1238 le32_to_cpus(&mh->NoOfBootImageBlocks);
1239 le32_to_cpus(&mh->NoOfBinaryPartitions);
1240 le32_to_cpus(&mh->NoOfBDTLPartitions);
1241 le32_to_cpus(&mh->BlockMultiplierBits);
1242 le32_to_cpus(&mh->FormatFlags);
1243 le32_to_cpus(&mh->PercentUsed);
1244
1245 printk(KERN_INFO " bootRecordID = %s\n"
1246 " NoOfBootImageBlocks = %d\n"
1247 " NoOfBinaryPartitions = %d\n"
1248 " NoOfBDTLPartitions = %d\n"
1249 " BlockMultiplerBits = %d\n"
1250 " FormatFlgs = %d\n"
1251 " OsakVersion = %d.%d.%d.%d\n"
1252 " PercentUsed = %d\n",
1253 mh->bootRecordID, mh->NoOfBootImageBlocks,
1254 mh->NoOfBinaryPartitions,
1255 mh->NoOfBDTLPartitions,
1256 mh->BlockMultiplierBits, mh->FormatFlags,
1257 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1258 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1259 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1260 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1261 mh->PercentUsed);
1262
1263 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1264
1265 blocks = mtd->size >> vshift;
1266 if (blocks > 32768) {
1267 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1268 goto out;
1269 }
1270
1271 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1272 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1273 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1274 goto out;
1275 }
1276
1277 /* Scan the partitions */
1278 for (i = 0; (i < 4); i++) {
1279 ip = &(mh->Partitions[i]);
1280 le32_to_cpus(&ip->virtualUnits);
1281 le32_to_cpus(&ip->firstUnit);
1282 le32_to_cpus(&ip->lastUnit);
1283 le32_to_cpus(&ip->flags);
1284 le32_to_cpus(&ip->spareUnits);
1285 le32_to_cpus(&ip->Reserved0);
1286
1287 printk(KERN_INFO " PARTITION[%d] ->\n"
1288 " virtualUnits = %d\n"
1289 " firstUnit = %d\n"
1290 " lastUnit = %d\n"
1291 " flags = 0x%x\n"
1292 " spareUnits = %d\n",
1293 i, ip->virtualUnits, ip->firstUnit,
1294 ip->lastUnit, ip->flags,
1295 ip->spareUnits);
1296
1297 if ((show_firmware_partition == 1) &&
1298 (i == 0) && (ip->firstUnit > 0)) {
1299 parts[0].name = " DiskOnChip IPL / Media Header partition";
1300 parts[0].offset = 0;
1301 parts[0].size = mtd->erasesize * ip->firstUnit;
1302 numparts = 1;
1303 }
1304
1305 if (ip->flags & INFTL_BINARY)
1306 parts[numparts].name = " DiskOnChip BDK partition";
1307 else
1308 parts[numparts].name = " DiskOnChip BDTL partition";
1309 parts[numparts].offset = ip->firstUnit << vshift;
1310 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1311 numparts++;
1312 if (ip->lastUnit > lastvunit)
1313 lastvunit = ip->lastUnit;
1314 if (ip->flags & INFTL_LAST)
1315 break;
1316 }
1317 lastvunit++;
1318 if ((lastvunit << vshift) < end) {
1319 parts[numparts].name = " DiskOnChip Remainder partition";
1320 parts[numparts].offset = lastvunit << vshift;
1321 parts[numparts].size = end - parts[numparts].offset;
1322 numparts++;
1323 }
1324 ret = numparts;
1325 out:
1326 kfree(buf);
1327 return ret;
1328 }
1329
1330 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1331 {
1332 int ret, numparts;
1333 struct nand_chip *this = mtd->priv;
1334 struct doc_priv *doc = this->priv;
1335 struct mtd_partition parts[2];
1336
1337 memset((char *)parts, 0, sizeof(parts));
1338 /* On NFTL, we have to find the media headers before we can read the
1339 BBTs, since they're stored in the media header eraseblocks. */
1340 numparts = nftl_partscan(mtd, parts);
1341 if (!numparts)
1342 return -EIO;
1343 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1344 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1345 NAND_BBT_VERSION;
1346 this->bbt_td->veroffs = 7;
1347 this->bbt_td->pages[0] = doc->mh0_page + 1;
1348 if (doc->mh1_page != -1) {
1349 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1350 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1351 NAND_BBT_VERSION;
1352 this->bbt_md->veroffs = 7;
1353 this->bbt_md->pages[0] = doc->mh1_page + 1;
1354 } else {
1355 this->bbt_md = NULL;
1356 }
1357
1358 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1359 At least as nand_bbt.c is currently written. */
1360 if ((ret = nand_scan_bbt(mtd, NULL)))
1361 return ret;
1362 add_mtd_device(mtd);
1363 #ifdef CONFIG_MTD_PARTITIONS
1364 if (!no_autopart)
1365 add_mtd_partitions(mtd, parts, numparts);
1366 #endif
1367 return 0;
1368 }
1369
1370 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1371 {
1372 int ret, numparts;
1373 struct nand_chip *this = mtd->priv;
1374 struct doc_priv *doc = this->priv;
1375 struct mtd_partition parts[5];
1376
1377 if (this->numchips > doc->chips_per_floor) {
1378 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1379 return -EIO;
1380 }
1381
1382 if (DoC_is_MillenniumPlus(doc)) {
1383 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1384 if (inftl_bbt_write)
1385 this->bbt_td->options |= NAND_BBT_WRITE;
1386 this->bbt_td->pages[0] = 2;
1387 this->bbt_md = NULL;
1388 } else {
1389 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1390 if (inftl_bbt_write)
1391 this->bbt_td->options |= NAND_BBT_WRITE;
1392 this->bbt_td->offs = 8;
1393 this->bbt_td->len = 8;
1394 this->bbt_td->veroffs = 7;
1395 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396 this->bbt_td->reserved_block_code = 0x01;
1397 this->bbt_td->pattern = "MSYS_BBT";
1398
1399 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1400 if (inftl_bbt_write)
1401 this->bbt_md->options |= NAND_BBT_WRITE;
1402 this->bbt_md->offs = 8;
1403 this->bbt_md->len = 8;
1404 this->bbt_md->veroffs = 7;
1405 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1406 this->bbt_md->reserved_block_code = 0x01;
1407 this->bbt_md->pattern = "TBB_SYSM";
1408 }
1409
1410 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411 At least as nand_bbt.c is currently written. */
1412 if ((ret = nand_scan_bbt(mtd, NULL)))
1413 return ret;
1414 memset((char *)parts, 0, sizeof(parts));
1415 numparts = inftl_partscan(mtd, parts);
1416 /* At least for now, require the INFTL Media Header. We could probably
1417 do without it for non-INFTL use, since all it gives us is
1418 autopartitioning, but I want to give it more thought. */
1419 if (!numparts)
1420 return -EIO;
1421 add_mtd_device(mtd);
1422 #ifdef CONFIG_MTD_PARTITIONS
1423 if (!no_autopart)
1424 add_mtd_partitions(mtd, parts, numparts);
1425 #endif
1426 return 0;
1427 }
1428
1429 static inline int __init doc2000_init(struct mtd_info *mtd)
1430 {
1431 struct nand_chip *this = mtd->priv;
1432 struct doc_priv *doc = this->priv;
1433
1434 this->read_byte = doc2000_read_byte;
1435 this->write_buf = doc2000_writebuf;
1436 this->read_buf = doc2000_readbuf;
1437 this->verify_buf = doc2000_verifybuf;
1438 this->scan_bbt = nftl_scan_bbt;
1439
1440 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1441 doc2000_count_chips(mtd);
1442 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1443 return (4 * doc->chips_per_floor);
1444 }
1445
1446 static inline int __init doc2001_init(struct mtd_info *mtd)
1447 {
1448 struct nand_chip *this = mtd->priv;
1449 struct doc_priv *doc = this->priv;
1450
1451 this->read_byte = doc2001_read_byte;
1452 this->write_buf = doc2001_writebuf;
1453 this->read_buf = doc2001_readbuf;
1454 this->verify_buf = doc2001_verifybuf;
1455
1456 ReadDOC(doc->virtadr, ChipID);
1457 ReadDOC(doc->virtadr, ChipID);
1458 ReadDOC(doc->virtadr, ChipID);
1459 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1460 /* It's not a Millennium; it's one of the newer
1461 DiskOnChip 2000 units with a similar ASIC.
1462 Treat it like a Millennium, except that it
1463 can have multiple chips. */
1464 doc2000_count_chips(mtd);
1465 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1466 this->scan_bbt = inftl_scan_bbt;
1467 return (4 * doc->chips_per_floor);
1468 } else {
1469 /* Bog-standard Millennium */
1470 doc->chips_per_floor = 1;
1471 mtd->name = "DiskOnChip Millennium";
1472 this->scan_bbt = nftl_scan_bbt;
1473 return 1;
1474 }
1475 }
1476
1477 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1478 {
1479 struct nand_chip *this = mtd->priv;
1480 struct doc_priv *doc = this->priv;
1481
1482 this->read_byte = doc2001plus_read_byte;
1483 this->write_buf = doc2001plus_writebuf;
1484 this->read_buf = doc2001plus_readbuf;
1485 this->verify_buf = doc2001plus_verifybuf;
1486 this->scan_bbt = inftl_scan_bbt;
1487 this->cmd_ctrl = NULL;
1488 this->select_chip = doc2001plus_select_chip;
1489 this->cmdfunc = doc2001plus_command;
1490 this->ecc.hwctl = doc2001plus_enable_hwecc;
1491
1492 doc->chips_per_floor = 1;
1493 mtd->name = "DiskOnChip Millennium Plus";
1494
1495 return 1;
1496 }
1497
1498 static int __init doc_probe(unsigned long physadr)
1499 {
1500 unsigned char ChipID;
1501 struct mtd_info *mtd;
1502 struct nand_chip *nand;
1503 struct doc_priv *doc;
1504 void __iomem *virtadr;
1505 unsigned char save_control;
1506 unsigned char tmp, tmpb, tmpc;
1507 int reg, len, numchips;
1508 int ret = 0;
1509
1510 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1511 if (!virtadr) {
1512 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1513 return -EIO;
1514 }
1515
1516 /* It's not possible to cleanly detect the DiskOnChip - the
1517 * bootup procedure will put the device into reset mode, and
1518 * it's not possible to talk to it without actually writing
1519 * to the DOCControl register. So we store the current contents
1520 * of the DOCControl register's location, in case we later decide
1521 * that it's not a DiskOnChip, and want to put it back how we
1522 * found it.
1523 */
1524 save_control = ReadDOC(virtadr, DOCControl);
1525
1526 /* Reset the DiskOnChip ASIC */
1527 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1528 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1529
1530 /* Enable the DiskOnChip ASIC */
1531 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1532 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1533
1534 ChipID = ReadDOC(virtadr, ChipID);
1535
1536 switch (ChipID) {
1537 case DOC_ChipID_Doc2k:
1538 reg = DoC_2k_ECCStatus;
1539 break;
1540 case DOC_ChipID_DocMil:
1541 reg = DoC_ECCConf;
1542 break;
1543 case DOC_ChipID_DocMilPlus16:
1544 case DOC_ChipID_DocMilPlus32:
1545 case 0:
1546 /* Possible Millennium Plus, need to do more checks */
1547 /* Possibly release from power down mode */
1548 for (tmp = 0; (tmp < 4); tmp++)
1549 ReadDOC(virtadr, Mplus_Power);
1550
1551 /* Reset the Millennium Plus ASIC */
1552 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1553 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1554 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1555
1556 mdelay(1);
1557 /* Enable the Millennium Plus ASIC */
1558 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1559 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1560 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1561 mdelay(1);
1562
1563 ChipID = ReadDOC(virtadr, ChipID);
1564
1565 switch (ChipID) {
1566 case DOC_ChipID_DocMilPlus16:
1567 reg = DoC_Mplus_Toggle;
1568 break;
1569 case DOC_ChipID_DocMilPlus32:
1570 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1571 default:
1572 ret = -ENODEV;
1573 goto notfound;
1574 }
1575 break;
1576
1577 default:
1578 ret = -ENODEV;
1579 goto notfound;
1580 }
1581 /* Check the TOGGLE bit in the ECC register */
1582 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1583 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1584 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1585 if ((tmp == tmpb) || (tmp != tmpc)) {
1586 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1587 ret = -ENODEV;
1588 goto notfound;
1589 }
1590
1591 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1592 unsigned char oldval;
1593 unsigned char newval;
1594 nand = mtd->priv;
1595 doc = nand->priv;
1596 /* Use the alias resolution register to determine if this is
1597 in fact the same DOC aliased to a new address. If writes
1598 to one chip's alias resolution register change the value on
1599 the other chip, they're the same chip. */
1600 if (ChipID == DOC_ChipID_DocMilPlus16) {
1601 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1602 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1603 } else {
1604 oldval = ReadDOC(doc->virtadr, AliasResolution);
1605 newval = ReadDOC(virtadr, AliasResolution);
1606 }
1607 if (oldval != newval)
1608 continue;
1609 if (ChipID == DOC_ChipID_DocMilPlus16) {
1610 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1611 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1612 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1613 } else {
1614 WriteDOC(~newval, virtadr, AliasResolution);
1615 oldval = ReadDOC(doc->virtadr, AliasResolution);
1616 WriteDOC(newval, virtadr, AliasResolution); // restore it
1617 }
1618 newval = ~newval;
1619 if (oldval == newval) {
1620 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1621 goto notfound;
1622 }
1623 }
1624
1625 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1626
1627 len = sizeof(struct mtd_info) +
1628 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1629 mtd = kzalloc(len, GFP_KERNEL);
1630 if (!mtd) {
1631 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1632 ret = -ENOMEM;
1633 goto fail;
1634 }
1635
1636 nand = (struct nand_chip *) (mtd + 1);
1637 doc = (struct doc_priv *) (nand + 1);
1638 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1639 nand->bbt_md = nand->bbt_td + 1;
1640
1641 mtd->priv = nand;
1642 mtd->owner = THIS_MODULE;
1643
1644 nand->priv = doc;
1645 nand->select_chip = doc200x_select_chip;
1646 nand->cmd_ctrl = doc200x_hwcontrol;
1647 nand->dev_ready = doc200x_dev_ready;
1648 nand->waitfunc = doc200x_wait;
1649 nand->block_bad = doc200x_block_bad;
1650 nand->ecc.hwctl = doc200x_enable_hwecc;
1651 nand->ecc.calculate = doc200x_calculate_ecc;
1652 nand->ecc.correct = doc200x_correct_data;
1653
1654 nand->ecc.layout = &doc200x_oobinfo;
1655 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1656 nand->ecc.size = 512;
1657 nand->ecc.bytes = 6;
1658 nand->options = NAND_USE_FLASH_BBT;
1659
1660 doc->physadr = physadr;
1661 doc->virtadr = virtadr;
1662 doc->ChipID = ChipID;
1663 doc->curfloor = -1;
1664 doc->curchip = -1;
1665 doc->mh0_page = -1;
1666 doc->mh1_page = -1;
1667 doc->nextdoc = doclist;
1668
1669 if (ChipID == DOC_ChipID_Doc2k)
1670 numchips = doc2000_init(mtd);
1671 else if (ChipID == DOC_ChipID_DocMilPlus16)
1672 numchips = doc2001plus_init(mtd);
1673 else
1674 numchips = doc2001_init(mtd);
1675
1676 if ((ret = nand_scan(mtd, numchips))) {
1677 /* DBB note: i believe nand_release is necessary here, as
1678 buffers may have been allocated in nand_base. Check with
1679 Thomas. FIX ME! */
1680 /* nand_release will call del_mtd_device, but we haven't yet
1681 added it. This is handled without incident by
1682 del_mtd_device, as far as I can tell. */
1683 nand_release(mtd);
1684 kfree(mtd);
1685 goto fail;
1686 }
1687
1688 /* Success! */
1689 doclist = mtd;
1690 return 0;
1691
1692 notfound:
1693 /* Put back the contents of the DOCControl register, in case it's not
1694 actually a DiskOnChip. */
1695 WriteDOC(save_control, virtadr, DOCControl);
1696 fail:
1697 iounmap(virtadr);
1698 return ret;
1699 }
1700
1701 static void release_nanddoc(void)
1702 {
1703 struct mtd_info *mtd, *nextmtd;
1704 struct nand_chip *nand;
1705 struct doc_priv *doc;
1706
1707 for (mtd = doclist; mtd; mtd = nextmtd) {
1708 nand = mtd->priv;
1709 doc = nand->priv;
1710
1711 nextmtd = doc->nextdoc;
1712 nand_release(mtd);
1713 iounmap(doc->virtadr);
1714 kfree(mtd);
1715 }
1716 }
1717
1718 static int __init init_nanddoc(void)
1719 {
1720 int i, ret = 0;
1721
1722 /* We could create the decoder on demand, if memory is a concern.
1723 * This way we have it handy, if an error happens
1724 *
1725 * Symbolsize is 10 (bits)
1726 * Primitve polynomial is x^10+x^3+1
1727 * first consecutive root is 510
1728 * primitve element to generate roots = 1
1729 * generator polinomial degree = 4
1730 */
1731 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1732 if (!rs_decoder) {
1733 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1734 return -ENOMEM;
1735 }
1736
1737 if (doc_config_location) {
1738 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1739 ret = doc_probe(doc_config_location);
1740 if (ret < 0)
1741 goto outerr;
1742 } else {
1743 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1744 doc_probe(doc_locations[i]);
1745 }
1746 }
1747 /* No banner message any more. Print a message if no DiskOnChip
1748 found, so the user knows we at least tried. */
1749 if (!doclist) {
1750 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1751 ret = -ENODEV;
1752 goto outerr;
1753 }
1754 return 0;
1755 outerr:
1756 free_rs(rs_decoder);
1757 return ret;
1758 }
1759
1760 static void __exit cleanup_nanddoc(void)
1761 {
1762 /* Cleanup the nand/DoC resources */
1763 release_nanddoc();
1764
1765 /* Free the reed solomon resources */
1766 if (rs_decoder) {
1767 free_rs(rs_decoder);
1768 }
1769 }
1770
1771 module_init(init_nanddoc);
1772 module_exit(cleanup_nanddoc);
1773
1774 MODULE_LICENSE("GPL");
1775 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1776 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");