]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/fsmc_nand.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40
41 /* fsmc controller registers for NOR flash */
42 #define CTRL 0x0
43 /* ctrl register definitions */
44 #define BANK_ENABLE (1 << 0)
45 #define MUXED (1 << 1)
46 #define NOR_DEV (2 << 2)
47 #define WIDTH_8 (0 << 4)
48 #define WIDTH_16 (1 << 4)
49 #define RSTPWRDWN (1 << 6)
50 #define WPROT (1 << 7)
51 #define WRT_ENABLE (1 << 12)
52 #define WAIT_ENB (1 << 13)
53
54 #define CTRL_TIM 0x4
55 /* ctrl_tim register definitions */
56
57 #define FSMC_NOR_BANK_SZ 0x8
58 #define FSMC_NOR_REG_SIZE 0x40
59
60 #define FSMC_NOR_REG(base, bank, reg) (base + \
61 FSMC_NOR_BANK_SZ * (bank) + \
62 reg)
63
64 /* fsmc controller registers for NAND flash */
65 #define PC 0x00
66 /* pc register definitions */
67 #define FSMC_RESET (1 << 0)
68 #define FSMC_WAITON (1 << 1)
69 #define FSMC_ENABLE (1 << 2)
70 #define FSMC_DEVTYPE_NAND (1 << 3)
71 #define FSMC_DEVWID_8 (0 << 4)
72 #define FSMC_DEVWID_16 (1 << 4)
73 #define FSMC_ECCEN (1 << 6)
74 #define FSMC_ECCPLEN_512 (0 << 7)
75 #define FSMC_ECCPLEN_256 (1 << 7)
76 #define FSMC_TCLR_1 (1)
77 #define FSMC_TCLR_SHIFT (9)
78 #define FSMC_TCLR_MASK (0xF)
79 #define FSMC_TAR_1 (1)
80 #define FSMC_TAR_SHIFT (13)
81 #define FSMC_TAR_MASK (0xF)
82 #define STS 0x04
83 /* sts register definitions */
84 #define FSMC_CODE_RDY (1 << 15)
85 #define COMM 0x08
86 /* comm register definitions */
87 #define FSMC_TSET_0 0
88 #define FSMC_TSET_SHIFT 0
89 #define FSMC_TSET_MASK 0xFF
90 #define FSMC_TWAIT_6 6
91 #define FSMC_TWAIT_SHIFT 8
92 #define FSMC_TWAIT_MASK 0xFF
93 #define FSMC_THOLD_4 4
94 #define FSMC_THOLD_SHIFT 16
95 #define FSMC_THOLD_MASK 0xFF
96 #define FSMC_THIZ_1 1
97 #define FSMC_THIZ_SHIFT 24
98 #define FSMC_THIZ_MASK 0xFF
99 #define ATTRIB 0x0C
100 #define IOATA 0x10
101 #define ECC1 0x14
102 #define ECC2 0x18
103 #define ECC3 0x1C
104 #define FSMC_NAND_BANK_SZ 0x20
105
106 #define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \
107 (FSMC_NAND_BANK_SZ * (bank)) + \
108 reg)
109
110 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
111
112 struct fsmc_nand_timings {
113 uint8_t tclr;
114 uint8_t tar;
115 uint8_t thiz;
116 uint8_t thold;
117 uint8_t twait;
118 uint8_t tset;
119 };
120
121 enum access_mode {
122 USE_DMA_ACCESS = 1,
123 USE_WORD_ACCESS,
124 };
125
126 /**
127 * struct fsmc_nand_data - structure for FSMC NAND device state
128 *
129 * @pid: Part ID on the AMBA PrimeCell format
130 * @mtd: MTD info for a NAND flash.
131 * @nand: Chip related info for a NAND flash.
132 * @partitions: Partition info for a NAND Flash.
133 * @nr_partitions: Total number of partition of a NAND flash.
134 *
135 * @bank: Bank number for probed device.
136 * @clk: Clock structure for FSMC.
137 *
138 * @read_dma_chan: DMA channel for read access
139 * @write_dma_chan: DMA channel for write access to NAND
140 * @dma_access_complete: Completion structure
141 *
142 * @data_pa: NAND Physical port for Data.
143 * @data_va: NAND port for Data.
144 * @cmd_va: NAND port for Command.
145 * @addr_va: NAND port for Address.
146 * @regs_va: FSMC regs base address.
147 */
148 struct fsmc_nand_data {
149 u32 pid;
150 struct nand_chip nand;
151
152 unsigned int bank;
153 struct device *dev;
154 enum access_mode mode;
155 struct clk *clk;
156
157 /* DMA related objects */
158 struct dma_chan *read_dma_chan;
159 struct dma_chan *write_dma_chan;
160 struct completion dma_access_complete;
161
162 struct fsmc_nand_timings *dev_timings;
163
164 dma_addr_t data_pa;
165 void __iomem *data_va;
166 void __iomem *cmd_va;
167 void __iomem *addr_va;
168 void __iomem *regs_va;
169 };
170
171 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
172 struct mtd_oob_region *oobregion)
173 {
174 struct nand_chip *chip = mtd_to_nand(mtd);
175
176 if (section >= chip->ecc.steps)
177 return -ERANGE;
178
179 oobregion->offset = (section * 16) + 2;
180 oobregion->length = 3;
181
182 return 0;
183 }
184
185 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
186 struct mtd_oob_region *oobregion)
187 {
188 struct nand_chip *chip = mtd_to_nand(mtd);
189
190 if (section >= chip->ecc.steps)
191 return -ERANGE;
192
193 oobregion->offset = (section * 16) + 8;
194
195 if (section < chip->ecc.steps - 1)
196 oobregion->length = 8;
197 else
198 oobregion->length = mtd->oobsize - oobregion->offset;
199
200 return 0;
201 }
202
203 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
204 .ecc = fsmc_ecc1_ooblayout_ecc,
205 .free = fsmc_ecc1_ooblayout_free,
206 };
207
208 /*
209 * ECC placement definitions in oobfree type format.
210 * There are 13 bytes of ecc for every 512 byte block and it has to be read
211 * consecutively and immediately after the 512 byte data block for hardware to
212 * generate the error bit offsets in 512 byte data.
213 */
214 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
215 struct mtd_oob_region *oobregion)
216 {
217 struct nand_chip *chip = mtd_to_nand(mtd);
218
219 if (section >= chip->ecc.steps)
220 return -ERANGE;
221
222 oobregion->length = chip->ecc.bytes;
223
224 if (!section && mtd->writesize <= 512)
225 oobregion->offset = 0;
226 else
227 oobregion->offset = (section * 16) + 2;
228
229 return 0;
230 }
231
232 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
233 struct mtd_oob_region *oobregion)
234 {
235 struct nand_chip *chip = mtd_to_nand(mtd);
236
237 if (section >= chip->ecc.steps)
238 return -ERANGE;
239
240 oobregion->offset = (section * 16) + 15;
241
242 if (section < chip->ecc.steps - 1)
243 oobregion->length = 3;
244 else
245 oobregion->length = mtd->oobsize - oobregion->offset;
246
247 return 0;
248 }
249
250 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
251 .ecc = fsmc_ecc4_ooblayout_ecc,
252 .free = fsmc_ecc4_ooblayout_free,
253 };
254
255 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
256 {
257 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
258 }
259
260 /*
261 * fsmc_cmd_ctrl - For facilitaing Hardware access
262 * This routine allows hardware specific access to control-lines(ALE,CLE)
263 */
264 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
265 {
266 struct nand_chip *this = mtd_to_nand(mtd);
267 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
268 void __iomem *regs = host->regs_va;
269 unsigned int bank = host->bank;
270
271 if (ctrl & NAND_CTRL_CHANGE) {
272 u32 pc;
273
274 if (ctrl & NAND_CLE) {
275 this->IO_ADDR_R = host->cmd_va;
276 this->IO_ADDR_W = host->cmd_va;
277 } else if (ctrl & NAND_ALE) {
278 this->IO_ADDR_R = host->addr_va;
279 this->IO_ADDR_W = host->addr_va;
280 } else {
281 this->IO_ADDR_R = host->data_va;
282 this->IO_ADDR_W = host->data_va;
283 }
284
285 pc = readl(FSMC_NAND_REG(regs, bank, PC));
286 if (ctrl & NAND_NCE)
287 pc |= FSMC_ENABLE;
288 else
289 pc &= ~FSMC_ENABLE;
290 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
291 }
292
293 mb();
294
295 if (cmd != NAND_CMD_NONE)
296 writeb_relaxed(cmd, this->IO_ADDR_W);
297 }
298
299 /*
300 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
301 *
302 * This routine initializes timing parameters related to NAND memory access in
303 * FSMC registers
304 */
305 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
306 uint32_t busw, struct fsmc_nand_timings *timings)
307 {
308 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
309 uint32_t tclr, tar, thiz, thold, twait, tset;
310 struct fsmc_nand_timings *tims;
311 struct fsmc_nand_timings default_timings = {
312 .tclr = FSMC_TCLR_1,
313 .tar = FSMC_TAR_1,
314 .thiz = FSMC_THIZ_1,
315 .thold = FSMC_THOLD_4,
316 .twait = FSMC_TWAIT_6,
317 .tset = FSMC_TSET_0,
318 };
319
320 if (timings)
321 tims = timings;
322 else
323 tims = &default_timings;
324
325 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
326 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
327 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
328 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
329 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
330 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
331
332 if (busw)
333 writel_relaxed(value | FSMC_DEVWID_16,
334 FSMC_NAND_REG(regs, bank, PC));
335 else
336 writel_relaxed(value | FSMC_DEVWID_8,
337 FSMC_NAND_REG(regs, bank, PC));
338
339 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
340 FSMC_NAND_REG(regs, bank, PC));
341 writel_relaxed(thiz | thold | twait | tset,
342 FSMC_NAND_REG(regs, bank, COMM));
343 writel_relaxed(thiz | thold | twait | tset,
344 FSMC_NAND_REG(regs, bank, ATTRIB));
345 }
346
347 /*
348 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
349 */
350 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
351 {
352 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
353 void __iomem *regs = host->regs_va;
354 uint32_t bank = host->bank;
355
356 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
357 FSMC_NAND_REG(regs, bank, PC));
358 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
359 FSMC_NAND_REG(regs, bank, PC));
360 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
361 FSMC_NAND_REG(regs, bank, PC));
362 }
363
364 /*
365 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
366 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
367 * max of 8-bits)
368 */
369 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
370 uint8_t *ecc)
371 {
372 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
373 void __iomem *regs = host->regs_va;
374 uint32_t bank = host->bank;
375 uint32_t ecc_tmp;
376 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
377
378 do {
379 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
380 break;
381 else
382 cond_resched();
383 } while (!time_after_eq(jiffies, deadline));
384
385 if (time_after_eq(jiffies, deadline)) {
386 dev_err(host->dev, "calculate ecc timed out\n");
387 return -ETIMEDOUT;
388 }
389
390 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
391 ecc[0] = (uint8_t) (ecc_tmp >> 0);
392 ecc[1] = (uint8_t) (ecc_tmp >> 8);
393 ecc[2] = (uint8_t) (ecc_tmp >> 16);
394 ecc[3] = (uint8_t) (ecc_tmp >> 24);
395
396 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
397 ecc[4] = (uint8_t) (ecc_tmp >> 0);
398 ecc[5] = (uint8_t) (ecc_tmp >> 8);
399 ecc[6] = (uint8_t) (ecc_tmp >> 16);
400 ecc[7] = (uint8_t) (ecc_tmp >> 24);
401
402 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
403 ecc[8] = (uint8_t) (ecc_tmp >> 0);
404 ecc[9] = (uint8_t) (ecc_tmp >> 8);
405 ecc[10] = (uint8_t) (ecc_tmp >> 16);
406 ecc[11] = (uint8_t) (ecc_tmp >> 24);
407
408 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
409 ecc[12] = (uint8_t) (ecc_tmp >> 16);
410
411 return 0;
412 }
413
414 /*
415 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
416 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
417 * max of 1-bit)
418 */
419 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
420 uint8_t *ecc)
421 {
422 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
423 void __iomem *regs = host->regs_va;
424 uint32_t bank = host->bank;
425 uint32_t ecc_tmp;
426
427 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
428 ecc[0] = (uint8_t) (ecc_tmp >> 0);
429 ecc[1] = (uint8_t) (ecc_tmp >> 8);
430 ecc[2] = (uint8_t) (ecc_tmp >> 16);
431
432 return 0;
433 }
434
435 /* Count the number of 0's in buff upto a max of max_bits */
436 static int count_written_bits(uint8_t *buff, int size, int max_bits)
437 {
438 int k, written_bits = 0;
439
440 for (k = 0; k < size; k++) {
441 written_bits += hweight8(~buff[k]);
442 if (written_bits > max_bits)
443 break;
444 }
445
446 return written_bits;
447 }
448
449 static void dma_complete(void *param)
450 {
451 struct fsmc_nand_data *host = param;
452
453 complete(&host->dma_access_complete);
454 }
455
456 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
457 enum dma_data_direction direction)
458 {
459 struct dma_chan *chan;
460 struct dma_device *dma_dev;
461 struct dma_async_tx_descriptor *tx;
462 dma_addr_t dma_dst, dma_src, dma_addr;
463 dma_cookie_t cookie;
464 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
465 int ret;
466 unsigned long time_left;
467
468 if (direction == DMA_TO_DEVICE)
469 chan = host->write_dma_chan;
470 else if (direction == DMA_FROM_DEVICE)
471 chan = host->read_dma_chan;
472 else
473 return -EINVAL;
474
475 dma_dev = chan->device;
476 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
477
478 if (direction == DMA_TO_DEVICE) {
479 dma_src = dma_addr;
480 dma_dst = host->data_pa;
481 } else {
482 dma_src = host->data_pa;
483 dma_dst = dma_addr;
484 }
485
486 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
487 len, flags);
488 if (!tx) {
489 dev_err(host->dev, "device_prep_dma_memcpy error\n");
490 ret = -EIO;
491 goto unmap_dma;
492 }
493
494 tx->callback = dma_complete;
495 tx->callback_param = host;
496 cookie = tx->tx_submit(tx);
497
498 ret = dma_submit_error(cookie);
499 if (ret) {
500 dev_err(host->dev, "dma_submit_error %d\n", cookie);
501 goto unmap_dma;
502 }
503
504 dma_async_issue_pending(chan);
505
506 time_left =
507 wait_for_completion_timeout(&host->dma_access_complete,
508 msecs_to_jiffies(3000));
509 if (time_left == 0) {
510 dmaengine_terminate_all(chan);
511 dev_err(host->dev, "wait_for_completion_timeout\n");
512 ret = -ETIMEDOUT;
513 goto unmap_dma;
514 }
515
516 ret = 0;
517
518 unmap_dma:
519 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
520
521 return ret;
522 }
523
524 /*
525 * fsmc_write_buf - write buffer to chip
526 * @mtd: MTD device structure
527 * @buf: data buffer
528 * @len: number of bytes to write
529 */
530 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
531 {
532 int i;
533 struct nand_chip *chip = mtd_to_nand(mtd);
534
535 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
536 IS_ALIGNED(len, sizeof(uint32_t))) {
537 uint32_t *p = (uint32_t *)buf;
538 len = len >> 2;
539 for (i = 0; i < len; i++)
540 writel_relaxed(p[i], chip->IO_ADDR_W);
541 } else {
542 for (i = 0; i < len; i++)
543 writeb_relaxed(buf[i], chip->IO_ADDR_W);
544 }
545 }
546
547 /*
548 * fsmc_read_buf - read chip data into buffer
549 * @mtd: MTD device structure
550 * @buf: buffer to store date
551 * @len: number of bytes to read
552 */
553 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
554 {
555 int i;
556 struct nand_chip *chip = mtd_to_nand(mtd);
557
558 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
559 IS_ALIGNED(len, sizeof(uint32_t))) {
560 uint32_t *p = (uint32_t *)buf;
561 len = len >> 2;
562 for (i = 0; i < len; i++)
563 p[i] = readl_relaxed(chip->IO_ADDR_R);
564 } else {
565 for (i = 0; i < len; i++)
566 buf[i] = readb_relaxed(chip->IO_ADDR_R);
567 }
568 }
569
570 /*
571 * fsmc_read_buf_dma - read chip data into buffer
572 * @mtd: MTD device structure
573 * @buf: buffer to store date
574 * @len: number of bytes to read
575 */
576 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
577 {
578 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
579
580 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
581 }
582
583 /*
584 * fsmc_write_buf_dma - write buffer to chip
585 * @mtd: MTD device structure
586 * @buf: data buffer
587 * @len: number of bytes to write
588 */
589 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
590 int len)
591 {
592 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
593
594 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
595 }
596
597 /*
598 * fsmc_read_page_hwecc
599 * @mtd: mtd info structure
600 * @chip: nand chip info structure
601 * @buf: buffer to store read data
602 * @oob_required: caller expects OOB data read to chip->oob_poi
603 * @page: page number to read
604 *
605 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
606 * performed in a strict sequence as follows:
607 * data(512 byte) -> ecc(13 byte)
608 * After this read, fsmc hardware generates and reports error data bits(up to a
609 * max of 8 bits)
610 */
611 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
612 uint8_t *buf, int oob_required, int page)
613 {
614 int i, j, s, stat, eccsize = chip->ecc.size;
615 int eccbytes = chip->ecc.bytes;
616 int eccsteps = chip->ecc.steps;
617 uint8_t *p = buf;
618 uint8_t *ecc_calc = chip->buffers->ecccalc;
619 uint8_t *ecc_code = chip->buffers->ecccode;
620 int off, len, group = 0;
621 /*
622 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
623 * end up reading 14 bytes (7 words) from oob. The local array is
624 * to maintain word alignment
625 */
626 uint16_t ecc_oob[7];
627 uint8_t *oob = (uint8_t *)&ecc_oob[0];
628 unsigned int max_bitflips = 0;
629
630 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
631 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
632 chip->ecc.hwctl(mtd, NAND_ECC_READ);
633 chip->read_buf(mtd, p, eccsize);
634
635 for (j = 0; j < eccbytes;) {
636 struct mtd_oob_region oobregion;
637 int ret;
638
639 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
640 if (ret)
641 return ret;
642
643 off = oobregion.offset;
644 len = oobregion.length;
645
646 /*
647 * length is intentionally kept a higher multiple of 2
648 * to read at least 13 bytes even in case of 16 bit NAND
649 * devices
650 */
651 if (chip->options & NAND_BUSWIDTH_16)
652 len = roundup(len, 2);
653
654 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
655 chip->read_buf(mtd, oob + j, len);
656 j += len;
657 }
658
659 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
660 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
661
662 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
663 if (stat < 0) {
664 mtd->ecc_stats.failed++;
665 } else {
666 mtd->ecc_stats.corrected += stat;
667 max_bitflips = max_t(unsigned int, max_bitflips, stat);
668 }
669 }
670
671 return max_bitflips;
672 }
673
674 /*
675 * fsmc_bch8_correct_data
676 * @mtd: mtd info structure
677 * @dat: buffer of read data
678 * @read_ecc: ecc read from device spare area
679 * @calc_ecc: ecc calculated from read data
680 *
681 * calc_ecc is a 104 bit information containing maximum of 8 error
682 * offset informations of 13 bits each in 512 bytes of read data.
683 */
684 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
685 uint8_t *read_ecc, uint8_t *calc_ecc)
686 {
687 struct nand_chip *chip = mtd_to_nand(mtd);
688 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
689 void __iomem *regs = host->regs_va;
690 unsigned int bank = host->bank;
691 uint32_t err_idx[8];
692 uint32_t num_err, i;
693 uint32_t ecc1, ecc2, ecc3, ecc4;
694
695 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
696
697 /* no bit flipping */
698 if (likely(num_err == 0))
699 return 0;
700
701 /* too many errors */
702 if (unlikely(num_err > 8)) {
703 /*
704 * This is a temporary erase check. A newly erased page read
705 * would result in an ecc error because the oob data is also
706 * erased to FF and the calculated ecc for an FF data is not
707 * FF..FF.
708 * This is a workaround to skip performing correction in case
709 * data is FF..FF
710 *
711 * Logic:
712 * For every page, each bit written as 0 is counted until these
713 * number of bits are greater than 8 (the maximum correction
714 * capability of FSMC for each 512 + 13 bytes)
715 */
716
717 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
718 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
719
720 if ((bits_ecc + bits_data) <= 8) {
721 if (bits_data)
722 memset(dat, 0xff, chip->ecc.size);
723 return bits_data;
724 }
725
726 return -EBADMSG;
727 }
728
729 /*
730 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
731 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
732 *
733 * calc_ecc is a 104 bit information containing maximum of 8 error
734 * offset informations of 13 bits each. calc_ecc is copied into a
735 * uint64_t array and error offset indexes are populated in err_idx
736 * array
737 */
738 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
739 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
740 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
741 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
742
743 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
744 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
745 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
746 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
747 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
748 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
749 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
750 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
751
752 i = 0;
753 while (num_err--) {
754 change_bit(0, (unsigned long *)&err_idx[i]);
755 change_bit(1, (unsigned long *)&err_idx[i]);
756
757 if (err_idx[i] < chip->ecc.size * 8) {
758 change_bit(err_idx[i], (unsigned long *)dat);
759 i++;
760 }
761 }
762 return i;
763 }
764
765 static bool filter(struct dma_chan *chan, void *slave)
766 {
767 chan->private = slave;
768 return true;
769 }
770
771 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
772 struct fsmc_nand_data *host,
773 struct nand_chip *nand)
774 {
775 struct device_node *np = pdev->dev.of_node;
776 u32 val;
777 int ret;
778
779 nand->options = 0;
780
781 if (!of_property_read_u32(np, "bank-width", &val)) {
782 if (val == 2) {
783 nand->options |= NAND_BUSWIDTH_16;
784 } else if (val != 1) {
785 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
786 return -EINVAL;
787 }
788 }
789
790 if (of_get_property(np, "nand-skip-bbtscan", NULL))
791 nand->options |= NAND_SKIP_BBTSCAN;
792
793 host->dev_timings = devm_kzalloc(&pdev->dev,
794 sizeof(*host->dev_timings), GFP_KERNEL);
795 if (!host->dev_timings)
796 return -ENOMEM;
797 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
798 sizeof(*host->dev_timings));
799 if (ret) {
800 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
801 host->dev_timings = NULL;
802 }
803
804 /* Set default NAND bank to 0 */
805 host->bank = 0;
806 if (!of_property_read_u32(np, "bank", &val)) {
807 if (val > 3) {
808 dev_err(&pdev->dev, "invalid bank %u\n", val);
809 return -EINVAL;
810 }
811 host->bank = val;
812 }
813 return 0;
814 }
815
816 /*
817 * fsmc_nand_probe - Probe function
818 * @pdev: platform device structure
819 */
820 static int __init fsmc_nand_probe(struct platform_device *pdev)
821 {
822 struct fsmc_nand_data *host;
823 struct mtd_info *mtd;
824 struct nand_chip *nand;
825 struct resource *res;
826 dma_cap_mask_t mask;
827 int ret = 0;
828 u32 pid;
829 int i;
830
831 /* Allocate memory for the device structure (and zero it) */
832 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
833 if (!host)
834 return -ENOMEM;
835
836 nand = &host->nand;
837
838 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
839 if (ret)
840 return ret;
841
842 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
843 host->data_va = devm_ioremap_resource(&pdev->dev, res);
844 if (IS_ERR(host->data_va))
845 return PTR_ERR(host->data_va);
846
847 host->data_pa = (dma_addr_t)res->start;
848
849 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
850 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
851 if (IS_ERR(host->addr_va))
852 return PTR_ERR(host->addr_va);
853
854 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
855 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
856 if (IS_ERR(host->cmd_va))
857 return PTR_ERR(host->cmd_va);
858
859 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
860 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
861 if (IS_ERR(host->regs_va))
862 return PTR_ERR(host->regs_va);
863
864 host->clk = devm_clk_get(&pdev->dev, NULL);
865 if (IS_ERR(host->clk)) {
866 dev_err(&pdev->dev, "failed to fetch block clock\n");
867 return PTR_ERR(host->clk);
868 }
869
870 ret = clk_prepare_enable(host->clk);
871 if (ret)
872 return ret;
873
874 /*
875 * This device ID is actually a common AMBA ID as used on the
876 * AMBA PrimeCell bus. However it is not a PrimeCell.
877 */
878 for (pid = 0, i = 0; i < 4; i++)
879 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
880 host->pid = pid;
881 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
882 "revision %02x, config %02x\n",
883 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
884 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
885
886 host->dev = &pdev->dev;
887
888 if (host->mode == USE_DMA_ACCESS)
889 init_completion(&host->dma_access_complete);
890
891 /* Link all private pointers */
892 mtd = nand_to_mtd(&host->nand);
893 nand_set_controller_data(nand, host);
894 nand_set_flash_node(nand, pdev->dev.of_node);
895
896 mtd->dev.parent = &pdev->dev;
897 nand->IO_ADDR_R = host->data_va;
898 nand->IO_ADDR_W = host->data_va;
899 nand->cmd_ctrl = fsmc_cmd_ctrl;
900 nand->chip_delay = 30;
901
902 /*
903 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
904 * can overwrite this value if the DT provides a different value.
905 */
906 nand->ecc.mode = NAND_ECC_HW;
907 nand->ecc.hwctl = fsmc_enable_hwecc;
908 nand->ecc.size = 512;
909 nand->badblockbits = 7;
910
911 switch (host->mode) {
912 case USE_DMA_ACCESS:
913 dma_cap_zero(mask);
914 dma_cap_set(DMA_MEMCPY, mask);
915 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
916 if (!host->read_dma_chan) {
917 dev_err(&pdev->dev, "Unable to get read dma channel\n");
918 goto err_req_read_chnl;
919 }
920 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
921 if (!host->write_dma_chan) {
922 dev_err(&pdev->dev, "Unable to get write dma channel\n");
923 goto err_req_write_chnl;
924 }
925 nand->read_buf = fsmc_read_buf_dma;
926 nand->write_buf = fsmc_write_buf_dma;
927 break;
928
929 default:
930 case USE_WORD_ACCESS:
931 nand->read_buf = fsmc_read_buf;
932 nand->write_buf = fsmc_write_buf;
933 break;
934 }
935
936 fsmc_nand_setup(host->regs_va, host->bank,
937 nand->options & NAND_BUSWIDTH_16,
938 host->dev_timings);
939
940 if (AMBA_REV_BITS(host->pid) >= 8) {
941 nand->ecc.read_page = fsmc_read_page_hwecc;
942 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
943 nand->ecc.correct = fsmc_bch8_correct_data;
944 nand->ecc.bytes = 13;
945 nand->ecc.strength = 8;
946 }
947
948 /*
949 * Scan to find existence of the device
950 */
951 ret = nand_scan_ident(mtd, 1, NULL);
952 if (ret) {
953 dev_err(&pdev->dev, "No NAND Device found!\n");
954 goto err_scan_ident;
955 }
956
957 if (AMBA_REV_BITS(host->pid) >= 8) {
958 switch (mtd->oobsize) {
959 case 16:
960 case 64:
961 case 128:
962 case 224:
963 case 256:
964 break;
965 default:
966 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
967 mtd->oobsize);
968 ret = -EINVAL;
969 goto err_probe;
970 }
971
972 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
973 } else {
974 switch (nand->ecc.mode) {
975 case NAND_ECC_HW:
976 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
977 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
978 nand->ecc.correct = nand_correct_data;
979 nand->ecc.bytes = 3;
980 nand->ecc.strength = 1;
981 break;
982
983 case NAND_ECC_SOFT:
984 if (nand->ecc.algo == NAND_ECC_BCH) {
985 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
986 break;
987 }
988
989 default:
990 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
991 goto err_probe;
992 }
993
994 /*
995 * Don't set layout for BCH4 SW ECC. This will be
996 * generated later in nand_bch_init() later.
997 */
998 if (nand->ecc.mode == NAND_ECC_HW) {
999 switch (mtd->oobsize) {
1000 case 16:
1001 case 64:
1002 case 128:
1003 mtd_set_ooblayout(mtd,
1004 &fsmc_ecc1_ooblayout_ops);
1005 break;
1006 default:
1007 dev_warn(&pdev->dev,
1008 "No oob scheme defined for oobsize %d\n",
1009 mtd->oobsize);
1010 ret = -EINVAL;
1011 goto err_probe;
1012 }
1013 }
1014 }
1015
1016 /* Second stage of scan to fill MTD data-structures */
1017 ret = nand_scan_tail(mtd);
1018 if (ret)
1019 goto err_probe;
1020
1021 mtd->name = "nand";
1022 ret = mtd_device_register(mtd, NULL, 0);
1023 if (ret)
1024 goto err_probe;
1025
1026 platform_set_drvdata(pdev, host);
1027 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1028 return 0;
1029
1030 err_probe:
1031 err_scan_ident:
1032 if (host->mode == USE_DMA_ACCESS)
1033 dma_release_channel(host->write_dma_chan);
1034 err_req_write_chnl:
1035 if (host->mode == USE_DMA_ACCESS)
1036 dma_release_channel(host->read_dma_chan);
1037 err_req_read_chnl:
1038 clk_disable_unprepare(host->clk);
1039 return ret;
1040 }
1041
1042 /*
1043 * Clean up routine
1044 */
1045 static int fsmc_nand_remove(struct platform_device *pdev)
1046 {
1047 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1048
1049 if (host) {
1050 nand_release(nand_to_mtd(&host->nand));
1051
1052 if (host->mode == USE_DMA_ACCESS) {
1053 dma_release_channel(host->write_dma_chan);
1054 dma_release_channel(host->read_dma_chan);
1055 }
1056 clk_disable_unprepare(host->clk);
1057 }
1058
1059 return 0;
1060 }
1061
1062 #ifdef CONFIG_PM_SLEEP
1063 static int fsmc_nand_suspend(struct device *dev)
1064 {
1065 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1066 if (host)
1067 clk_disable_unprepare(host->clk);
1068 return 0;
1069 }
1070
1071 static int fsmc_nand_resume(struct device *dev)
1072 {
1073 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1074 if (host) {
1075 clk_prepare_enable(host->clk);
1076 fsmc_nand_setup(host->regs_va, host->bank,
1077 host->nand.options & NAND_BUSWIDTH_16,
1078 host->dev_timings);
1079 }
1080 return 0;
1081 }
1082 #endif
1083
1084 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1085
1086 static const struct of_device_id fsmc_nand_id_table[] = {
1087 { .compatible = "st,spear600-fsmc-nand" },
1088 { .compatible = "stericsson,fsmc-nand" },
1089 {}
1090 };
1091 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1092
1093 static struct platform_driver fsmc_nand_driver = {
1094 .remove = fsmc_nand_remove,
1095 .driver = {
1096 .name = "fsmc-nand",
1097 .of_match_table = fsmc_nand_id_table,
1098 .pm = &fsmc_nand_pm_ops,
1099 },
1100 };
1101
1102 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1103
1104 MODULE_LICENSE("GPL");
1105 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1106 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");