]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/gpmi-nand/gpmi-lib.c
c7a578c954fb95128376d63315be0edce4ace181
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
1 /*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23
24 #include "gpmi-nand.h"
25 #include "gpmi-regs.h"
26 #include "bch-regs.h"
27
28 static struct timing_threshod timing_default_threshold = {
29 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
30 BP_GPMI_TIMING0_DATA_SETUP),
31 .internal_data_setup_in_ns = 0,
32 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
33 BP_GPMI_CTRL1_RDN_DELAY),
34 .max_dll_clock_period_in_ns = 32,
35 .max_dll_delay_in_ns = 16,
36 };
37
38 #define MXS_SET_ADDR 0x4
39 #define MXS_CLR_ADDR 0x8
40 /*
41 * Clear the bit and poll it cleared. This is usually called with
42 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43 * (bit 30).
44 */
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
46 {
47 int timeout = 0x400;
48
49 /* clear the bit */
50 writel(mask, addr + MXS_CLR_ADDR);
51
52 /*
53 * SFTRST needs 3 GPMI clocks to settle, the reference manual
54 * recommends to wait 1us.
55 */
56 udelay(1);
57
58 /* poll the bit becoming clear */
59 while ((readl(addr) & mask) && --timeout)
60 /* nothing */;
61
62 return !timeout;
63 }
64
65 #define MODULE_CLKGATE (1 << 30)
66 #define MODULE_SFTRST (1 << 31)
67 /*
68 * The current mxs_reset_block() will do two things:
69 * [1] enable the module.
70 * [2] reset the module.
71 *
72 * In most of the cases, it's ok.
73 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
74 * If you try to soft reset the BCH block, it becomes unusable until
75 * the next hard reset. This case occurs in the NAND boot mode. When the board
76 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
77 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
78 * You will see a DMA timeout in this case. The bug has been fixed
79 * in the following chips, such as MX28.
80 *
81 * To avoid this bug, just add a new parameter `just_enable` for
82 * the mxs_reset_block(), and rewrite it here.
83 */
84 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
85 {
86 int ret;
87 int timeout = 0x400;
88
89 /* clear and poll SFTRST */
90 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
91 if (unlikely(ret))
92 goto error;
93
94 /* clear CLKGATE */
95 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
96
97 if (!just_enable) {
98 /* set SFTRST to reset the block */
99 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
100 udelay(1);
101
102 /* poll CLKGATE becoming set */
103 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
104 /* nothing */;
105 if (unlikely(!timeout))
106 goto error;
107 }
108
109 /* clear and poll SFTRST */
110 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
111 if (unlikely(ret))
112 goto error;
113
114 /* clear and poll CLKGATE */
115 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
116 if (unlikely(ret))
117 goto error;
118
119 return 0;
120
121 error:
122 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
123 return -ETIMEDOUT;
124 }
125
126 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
127 {
128 struct clk *clk;
129 int ret;
130 int i;
131
132 for (i = 0; i < GPMI_CLK_MAX; i++) {
133 clk = this->resources.clock[i];
134 if (!clk)
135 break;
136
137 if (v) {
138 ret = clk_prepare_enable(clk);
139 if (ret)
140 goto err_clk;
141 } else {
142 clk_disable_unprepare(clk);
143 }
144 }
145 return 0;
146
147 err_clk:
148 for (; i > 0; i--)
149 clk_disable_unprepare(this->resources.clock[i - 1]);
150 return ret;
151 }
152
153 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
154 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
155
156 int gpmi_init(struct gpmi_nand_data *this)
157 {
158 struct resources *r = &this->resources;
159 int ret;
160
161 ret = gpmi_enable_clk(this);
162 if (ret)
163 goto err_out;
164 ret = gpmi_reset_block(r->gpmi_regs, false);
165 if (ret)
166 goto err_out;
167
168 /*
169 * Reset BCH here, too. We got failures otherwise :(
170 * See later BCH reset for explanation of MX23 handling
171 */
172 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
173 if (ret)
174 goto err_out;
175
176
177 /* Choose NAND mode. */
178 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
179
180 /* Set the IRQ polarity. */
181 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
182 r->gpmi_regs + HW_GPMI_CTRL1_SET);
183
184 /* Disable Write-Protection. */
185 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
186
187 /* Select BCH ECC. */
188 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190 /*
191 * Decouple the chip select from dma channel. We use dma0 for all
192 * the chips.
193 */
194 writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
195
196 gpmi_disable_clk(this);
197 return 0;
198 err_out:
199 return ret;
200 }
201
202 /* This function is very useful. It is called only when the bug occur. */
203 void gpmi_dump_info(struct gpmi_nand_data *this)
204 {
205 struct resources *r = &this->resources;
206 struct bch_geometry *geo = &this->bch_geometry;
207 u32 reg;
208 int i;
209
210 pr_err("Show GPMI registers :\n");
211 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
212 reg = readl(r->gpmi_regs + i * 0x10);
213 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
214 }
215
216 /* start to print out the BCH info */
217 pr_err("Show BCH registers :\n");
218 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
219 reg = readl(r->bch_regs + i * 0x10);
220 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
221 }
222 pr_err("BCH Geometry :\n");
223 pr_err("GF length : %u\n", geo->gf_len);
224 pr_err("ECC Strength : %u\n", geo->ecc_strength);
225 pr_err("Page Size in Bytes : %u\n", geo->page_size);
226 pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
227 pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
228 pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
229 pr_err("Payload Size in Bytes : %u\n", geo->payload_size);
230 pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
231 pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
232 pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
233 pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
234 }
235
236 /* Configures the geometry for BCH. */
237 int bch_set_geometry(struct gpmi_nand_data *this)
238 {
239 struct resources *r = &this->resources;
240 struct bch_geometry *bch_geo = &this->bch_geometry;
241 unsigned int block_count;
242 unsigned int block_size;
243 unsigned int metadata_size;
244 unsigned int ecc_strength;
245 unsigned int page_size;
246 unsigned int gf_len;
247 int ret;
248
249 if (common_nfc_set_geometry(this))
250 return !0;
251
252 block_count = bch_geo->ecc_chunk_count - 1;
253 block_size = bch_geo->ecc_chunk_size;
254 metadata_size = bch_geo->metadata_size;
255 ecc_strength = bch_geo->ecc_strength >> 1;
256 page_size = bch_geo->page_size;
257 gf_len = bch_geo->gf_len;
258
259 ret = gpmi_enable_clk(this);
260 if (ret)
261 goto err_out;
262
263 /*
264 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
265 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
266 * On the other hand, the MX28 needs the reset, because one case has been
267 * seen where the BCH produced ECC errors constantly after 10000
268 * consecutive reboots. The latter case has not been seen on the MX23
269 * yet, still we don't know if it could happen there as well.
270 */
271 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
272 if (ret)
273 goto err_out;
274
275 /* Configure layout 0. */
276 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
277 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
278 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
279 | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
280 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
281 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
282
283 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
284 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
285 | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
286 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
287 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
288
289 /* Set *all* chip selects to use layout 0. */
290 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
291
292 /* Enable interrupts. */
293 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
294 r->bch_regs + HW_BCH_CTRL_SET);
295
296 gpmi_disable_clk(this);
297 return 0;
298 err_out:
299 return ret;
300 }
301
302 /* Converts time in nanoseconds to cycles. */
303 static unsigned int ns_to_cycles(unsigned int time,
304 unsigned int period, unsigned int min)
305 {
306 unsigned int k;
307
308 k = (time + period - 1) / period;
309 return max(k, min);
310 }
311
312 #define DEF_MIN_PROP_DELAY 5
313 #define DEF_MAX_PROP_DELAY 9
314 /* Apply timing to current hardware conditions. */
315 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
316 struct gpmi_nfc_hardware_timing *hw)
317 {
318 struct timing_threshod *nfc = &timing_default_threshold;
319 struct resources *r = &this->resources;
320 struct nand_chip *nand = &this->nand;
321 struct nand_timing target = this->timing;
322 bool improved_timing_is_available;
323 unsigned long clock_frequency_in_hz;
324 unsigned int clock_period_in_ns;
325 bool dll_use_half_periods;
326 unsigned int dll_delay_shift;
327 unsigned int max_sample_delay_in_ns;
328 unsigned int address_setup_in_cycles;
329 unsigned int data_setup_in_ns;
330 unsigned int data_setup_in_cycles;
331 unsigned int data_hold_in_cycles;
332 int ideal_sample_delay_in_ns;
333 unsigned int sample_delay_factor;
334 int tEYE;
335 unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
336 unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
337
338 /*
339 * If there are multiple chips, we need to relax the timings to allow
340 * for signal distortion due to higher capacitance.
341 */
342 if (nand->numchips > 2) {
343 target.data_setup_in_ns += 10;
344 target.data_hold_in_ns += 10;
345 target.address_setup_in_ns += 10;
346 } else if (nand->numchips > 1) {
347 target.data_setup_in_ns += 5;
348 target.data_hold_in_ns += 5;
349 target.address_setup_in_ns += 5;
350 }
351
352 /* Check if improved timing information is available. */
353 improved_timing_is_available =
354 (target.tREA_in_ns >= 0) &&
355 (target.tRLOH_in_ns >= 0) &&
356 (target.tRHOH_in_ns >= 0);
357
358 /* Inspect the clock. */
359 nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
360 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
361 clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
362
363 /*
364 * The NFC quantizes setup and hold parameters in terms of clock cycles.
365 * Here, we quantize the setup and hold timing parameters to the
366 * next-highest clock period to make sure we apply at least the
367 * specified times.
368 *
369 * For data setup and data hold, the hardware interprets a value of zero
370 * as the largest possible delay. This is not what's intended by a zero
371 * in the input parameter, so we impose a minimum of one cycle.
372 */
373 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
374 clock_period_in_ns, 1);
375 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
376 clock_period_in_ns, 1);
377 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
378 clock_period_in_ns, 0);
379
380 /*
381 * The clock's period affects the sample delay in a number of ways:
382 *
383 * (1) The NFC HAL tells us the maximum clock period the sample delay
384 * DLL can tolerate. If the clock period is greater than half that
385 * maximum, we must configure the DLL to be driven by half periods.
386 *
387 * (2) We need to convert from an ideal sample delay, in ns, to a
388 * "sample delay factor," which the NFC uses. This factor depends on
389 * whether we're driving the DLL with full or half periods.
390 * Paraphrasing the reference manual:
391 *
392 * AD = SDF x 0.125 x RP
393 *
394 * where:
395 *
396 * AD is the applied delay, in ns.
397 * SDF is the sample delay factor, which is dimensionless.
398 * RP is the reference period, in ns, which is a full clock period
399 * if the DLL is being driven by full periods, or half that if
400 * the DLL is being driven by half periods.
401 *
402 * Let's re-arrange this in a way that's more useful to us:
403 *
404 * 8
405 * SDF = AD x ----
406 * RP
407 *
408 * The reference period is either the clock period or half that, so this
409 * is:
410 *
411 * 8 AD x DDF
412 * SDF = AD x ----- = --------
413 * f x P P
414 *
415 * where:
416 *
417 * f is 1 or 1/2, depending on how we're driving the DLL.
418 * P is the clock period.
419 * DDF is the DLL Delay Factor, a dimensionless value that
420 * incorporates all the constants in the conversion.
421 *
422 * DDF will be either 8 or 16, both of which are powers of two. We can
423 * reduce the cost of this conversion by using bit shifts instead of
424 * multiplication or division. Thus:
425 *
426 * AD << DDS
427 * SDF = ---------
428 * P
429 *
430 * or
431 *
432 * AD = (SDF >> DDS) x P
433 *
434 * where:
435 *
436 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
437 */
438 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
439 dll_use_half_periods = true;
440 dll_delay_shift = 3 + 1;
441 } else {
442 dll_use_half_periods = false;
443 dll_delay_shift = 3;
444 }
445
446 /*
447 * Compute the maximum sample delay the NFC allows, under current
448 * conditions. If the clock is running too slowly, no sample delay is
449 * possible.
450 */
451 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
452 max_sample_delay_in_ns = 0;
453 else {
454 /*
455 * Compute the delay implied by the largest sample delay factor
456 * the NFC allows.
457 */
458 max_sample_delay_in_ns =
459 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
460 dll_delay_shift;
461
462 /*
463 * Check if the implied sample delay larger than the NFC
464 * actually allows.
465 */
466 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
467 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
468 }
469
470 /*
471 * Check if improved timing information is available. If not, we have to
472 * use a less-sophisticated algorithm.
473 */
474 if (!improved_timing_is_available) {
475 /*
476 * Fold the read setup time required by the NFC into the ideal
477 * sample delay.
478 */
479 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
480 nfc->internal_data_setup_in_ns;
481
482 /*
483 * The ideal sample delay may be greater than the maximum
484 * allowed by the NFC. If so, we can trade off sample delay time
485 * for more data setup time.
486 *
487 * In each iteration of the following loop, we add a cycle to
488 * the data setup time and subtract a corresponding amount from
489 * the sample delay until we've satisified the constraints or
490 * can't do any better.
491 */
492 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
493 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
494
495 data_setup_in_cycles++;
496 ideal_sample_delay_in_ns -= clock_period_in_ns;
497
498 if (ideal_sample_delay_in_ns < 0)
499 ideal_sample_delay_in_ns = 0;
500
501 }
502
503 /*
504 * Compute the sample delay factor that corresponds most closely
505 * to the ideal sample delay. If the result is too large for the
506 * NFC, use the maximum value.
507 *
508 * Notice that we use the ns_to_cycles function to compute the
509 * sample delay factor. We do this because the form of the
510 * computation is the same as that for calculating cycles.
511 */
512 sample_delay_factor =
513 ns_to_cycles(
514 ideal_sample_delay_in_ns << dll_delay_shift,
515 clock_period_in_ns, 0);
516
517 if (sample_delay_factor > nfc->max_sample_delay_factor)
518 sample_delay_factor = nfc->max_sample_delay_factor;
519
520 /* Skip to the part where we return our results. */
521 goto return_results;
522 }
523
524 /*
525 * If control arrives here, we have more detailed timing information,
526 * so we can use a better algorithm.
527 */
528
529 /*
530 * Fold the read setup time required by the NFC into the maximum
531 * propagation delay.
532 */
533 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
534
535 /*
536 * Earlier, we computed the number of clock cycles required to satisfy
537 * the data setup time. Now, we need to know the actual nanoseconds.
538 */
539 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
540
541 /*
542 * Compute tEYE, the width of the data eye when reading from the NAND
543 * Flash. The eye width is fundamentally determined by the data setup
544 * time, perturbed by propagation delays and some characteristics of the
545 * NAND Flash device.
546 *
547 * start of the eye = max_prop_delay + tREA
548 * end of the eye = min_prop_delay + tRHOH + data_setup
549 */
550 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
551 (int)data_setup_in_ns;
552
553 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
554
555 /*
556 * The eye must be open. If it's not, we can try to open it by
557 * increasing its main forcer, the data setup time.
558 *
559 * In each iteration of the following loop, we increase the data setup
560 * time by a single clock cycle. We do this until either the eye is
561 * open or we run into NFC limits.
562 */
563 while ((tEYE <= 0) &&
564 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
565 /* Give a cycle to data setup. */
566 data_setup_in_cycles++;
567 /* Synchronize the data setup time with the cycles. */
568 data_setup_in_ns += clock_period_in_ns;
569 /* Adjust tEYE accordingly. */
570 tEYE += clock_period_in_ns;
571 }
572
573 /*
574 * When control arrives here, the eye is open. The ideal time to sample
575 * the data is in the center of the eye:
576 *
577 * end of the eye + start of the eye
578 * --------------------------------- - data_setup
579 * 2
580 *
581 * After some algebra, this simplifies to the code immediately below.
582 */
583 ideal_sample_delay_in_ns =
584 ((int)max_prop_delay_in_ns +
585 (int)target.tREA_in_ns +
586 (int)min_prop_delay_in_ns +
587 (int)target.tRHOH_in_ns -
588 (int)data_setup_in_ns) >> 1;
589
590 /*
591 * The following figure illustrates some aspects of a NAND Flash read:
592 *
593 *
594 * __ _____________________________________
595 * RDN \_________________/
596 *
597 * <---- tEYE ----->
598 * /-----------------\
599 * Read Data ----------------------------< >---------
600 * \-----------------/
601 * ^ ^ ^ ^
602 * | | | |
603 * |<--Data Setup -->|<--Delay Time -->| |
604 * | | | |
605 * | | |
606 * | |<-- Quantized Delay Time -->|
607 * | | |
608 *
609 *
610 * We have some issues we must now address:
611 *
612 * (1) The *ideal* sample delay time must not be negative. If it is, we
613 * jam it to zero.
614 *
615 * (2) The *ideal* sample delay time must not be greater than that
616 * allowed by the NFC. If it is, we can increase the data setup
617 * time, which will reduce the delay between the end of the data
618 * setup and the center of the eye. It will also make the eye
619 * larger, which might help with the next issue...
620 *
621 * (3) The *quantized* sample delay time must not fall either before the
622 * eye opens or after it closes (the latter is the problem
623 * illustrated in the above figure).
624 */
625
626 /* Jam a negative ideal sample delay to zero. */
627 if (ideal_sample_delay_in_ns < 0)
628 ideal_sample_delay_in_ns = 0;
629
630 /*
631 * Extend the data setup as needed to reduce the ideal sample delay
632 * below the maximum permitted by the NFC.
633 */
634 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
635 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
636
637 /* Give a cycle to data setup. */
638 data_setup_in_cycles++;
639 /* Synchronize the data setup time with the cycles. */
640 data_setup_in_ns += clock_period_in_ns;
641 /* Adjust tEYE accordingly. */
642 tEYE += clock_period_in_ns;
643
644 /*
645 * Decrease the ideal sample delay by one half cycle, to keep it
646 * in the middle of the eye.
647 */
648 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
649
650 /* Jam a negative ideal sample delay to zero. */
651 if (ideal_sample_delay_in_ns < 0)
652 ideal_sample_delay_in_ns = 0;
653 }
654
655 /*
656 * Compute the sample delay factor that corresponds to the ideal sample
657 * delay. If the result is too large, then use the maximum allowed
658 * value.
659 *
660 * Notice that we use the ns_to_cycles function to compute the sample
661 * delay factor. We do this because the form of the computation is the
662 * same as that for calculating cycles.
663 */
664 sample_delay_factor =
665 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
666 clock_period_in_ns, 0);
667
668 if (sample_delay_factor > nfc->max_sample_delay_factor)
669 sample_delay_factor = nfc->max_sample_delay_factor;
670
671 /*
672 * These macros conveniently encapsulate a computation we'll use to
673 * continuously evaluate whether or not the data sample delay is inside
674 * the eye.
675 */
676 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
677
678 #define QUANTIZED_DELAY \
679 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
680 dll_delay_shift))
681
682 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
683
684 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
685
686 /*
687 * While the quantized sample time falls outside the eye, reduce the
688 * sample delay or extend the data setup to move the sampling point back
689 * toward the eye. Do not allow the number of data setup cycles to
690 * exceed the maximum allowed by the NFC.
691 */
692 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
693 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
694 /*
695 * If control arrives here, the quantized sample delay falls
696 * outside the eye. Check if it's before the eye opens, or after
697 * the eye closes.
698 */
699 if (QUANTIZED_DELAY > IDEAL_DELAY) {
700 /*
701 * If control arrives here, the quantized sample delay
702 * falls after the eye closes. Decrease the quantized
703 * delay time and then go back to re-evaluate.
704 */
705 if (sample_delay_factor != 0)
706 sample_delay_factor--;
707 continue;
708 }
709
710 /*
711 * If control arrives here, the quantized sample delay falls
712 * before the eye opens. Shift the sample point by increasing
713 * data setup time. This will also make the eye larger.
714 */
715
716 /* Give a cycle to data setup. */
717 data_setup_in_cycles++;
718 /* Synchronize the data setup time with the cycles. */
719 data_setup_in_ns += clock_period_in_ns;
720 /* Adjust tEYE accordingly. */
721 tEYE += clock_period_in_ns;
722
723 /*
724 * Decrease the ideal sample delay by one half cycle, to keep it
725 * in the middle of the eye.
726 */
727 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
728
729 /* ...and one less period for the delay time. */
730 ideal_sample_delay_in_ns -= clock_period_in_ns;
731
732 /* Jam a negative ideal sample delay to zero. */
733 if (ideal_sample_delay_in_ns < 0)
734 ideal_sample_delay_in_ns = 0;
735
736 /*
737 * We have a new ideal sample delay, so re-compute the quantized
738 * delay.
739 */
740 sample_delay_factor =
741 ns_to_cycles(
742 ideal_sample_delay_in_ns << dll_delay_shift,
743 clock_period_in_ns, 0);
744
745 if (sample_delay_factor > nfc->max_sample_delay_factor)
746 sample_delay_factor = nfc->max_sample_delay_factor;
747 }
748
749 /* Control arrives here when we're ready to return our results. */
750 return_results:
751 hw->data_setup_in_cycles = data_setup_in_cycles;
752 hw->data_hold_in_cycles = data_hold_in_cycles;
753 hw->address_setup_in_cycles = address_setup_in_cycles;
754 hw->use_half_periods = dll_use_half_periods;
755 hw->sample_delay_factor = sample_delay_factor;
756 hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
757 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
758
759 /* Return success. */
760 return 0;
761 }
762
763 /*
764 * <1> Firstly, we should know what's the GPMI-clock means.
765 * The GPMI-clock is the internal clock in the gpmi nand controller.
766 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
767 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
768 *
769 * <2> Secondly, we should know what's the frequency on the nand chip pins.
770 * The frequency on the nand chip pins is derived from the GPMI-clock.
771 * We can get it from the following equation:
772 *
773 * F = G / (DS + DH)
774 *
775 * F : the frequency on the nand chip pins.
776 * G : the GPMI clock, such as 100MHz.
777 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
778 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
779 *
780 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
781 * the nand EDO(extended Data Out) timing could be applied.
782 * The GPMI implements a feedback read strobe to sample the read data.
783 * The feedback read strobe can be delayed to support the nand EDO timing
784 * where the read strobe may deasserts before the read data is valid, and
785 * read data is valid for some time after read strobe.
786 *
787 * The following figure illustrates some aspects of a NAND Flash read:
788 *
789 * |<---tREA---->|
790 * | |
791 * | | |
792 * |<--tRP-->| |
793 * | | |
794 * __ ___|__________________________________
795 * RDN \________/ |
796 * |
797 * /---------\
798 * Read Data --------------< >---------
799 * \---------/
800 * | |
801 * |<-D->|
802 * FeedbackRDN ________ ____________
803 * \___________/
804 *
805 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
806 *
807 *
808 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
809 *
810 * 4.1) From the aspect of the nand chip pins:
811 * Delay = (tREA + C - tRP) {1}
812 *
813 * tREA : the maximum read access time. From the ONFI nand standards,
814 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
815 * Please check it in : www.onfi.org
816 * C : a constant for adjust the delay. default is 4.
817 * tRP : the read pulse width.
818 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
819 * tRP = (GPMI-clock-period) * DATA_SETUP
820 *
821 * 4.2) From the aspect of the GPMI nand controller:
822 * Delay = RDN_DELAY * 0.125 * RP {2}
823 *
824 * RP : the DLL reference period.
825 * if (GPMI-clock-period > DLL_THRETHOLD)
826 * RP = GPMI-clock-period / 2;
827 * else
828 * RP = GPMI-clock-period;
829 *
830 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
831 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
832 * is 16ns, but in mx6q, we use 12ns.
833 *
834 * 4.3) since {1} equals {2}, we get:
835 *
836 * (tREA + 4 - tRP) * 8
837 * RDN_DELAY = --------------------- {3}
838 * RP
839 *
840 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
841 * For some ONFI nand, the mode 4 is the fastest mode;
842 * while for some ONFI nand, the mode 5 is the fastest mode.
843 * So we only support the mode 4 and mode 5. It is no need to
844 * support other modes.
845 */
846 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
847 struct gpmi_nfc_hardware_timing *hw)
848 {
849 struct resources *r = &this->resources;
850 unsigned long rate = clk_get_rate(r->clock[0]);
851 int mode = this->timing_mode;
852 int dll_threshold = 16; /* in ns */
853 unsigned long delay;
854 unsigned long clk_period;
855 int t_rea;
856 int c = 4;
857 int t_rp;
858 int rp;
859
860 /*
861 * [1] for GPMI_HW_GPMI_TIMING0:
862 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
863 * The GPMI can support 100MHz at most. So if we want to
864 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
865 * Set the ADDRESS_SETUP to 0 in mode 4.
866 */
867 hw->data_setup_in_cycles = 1;
868 hw->data_hold_in_cycles = 1;
869 hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
870
871 /* [2] for GPMI_HW_GPMI_TIMING1 */
872 hw->device_busy_timeout = 0x9000;
873
874 /* [3] for GPMI_HW_GPMI_CTRL1 */
875 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
876
877 if (GPMI_IS_MX6Q(this))
878 dll_threshold = 12;
879
880 /*
881 * Enlarge 10 times for the numerator and denominator in {3}.
882 * This make us to get more accurate result.
883 */
884 clk_period = NSEC_PER_SEC / (rate / 10);
885 dll_threshold *= 10;
886 t_rea = ((mode == 5) ? 16 : 20) * 10;
887 c *= 10;
888
889 t_rp = clk_period * 1; /* DATA_SETUP is 1 */
890
891 if (clk_period > dll_threshold) {
892 hw->use_half_periods = 1;
893 rp = clk_period / 2;
894 } else {
895 hw->use_half_periods = 0;
896 rp = clk_period;
897 }
898
899 /*
900 * Multiply the numerator with 10, we could do a round off:
901 * 7.8 round up to 8; 7.4 round down to 7.
902 */
903 delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
904 delay = (delay + 5) / 10;
905
906 hw->sample_delay_factor = delay;
907 }
908
909 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
910 {
911 struct resources *r = &this->resources;
912 struct nand_chip *nand = &this->nand;
913 struct mtd_info *mtd = &this->mtd;
914 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
915 unsigned long rate;
916 int ret;
917
918 nand->select_chip(mtd, 0);
919
920 /* [1] send SET FEATURE commond to NAND */
921 feature[0] = mode;
922 ret = nand->onfi_set_features(mtd, nand,
923 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
924 if (ret)
925 goto err_out;
926
927 /* [2] send GET FEATURE command to double-check the timing mode */
928 memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
929 ret = nand->onfi_get_features(mtd, nand,
930 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
931 if (ret || feature[0] != mode)
932 goto err_out;
933
934 nand->select_chip(mtd, -1);
935
936 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
937 rate = (mode == 5) ? 100000000 : 80000000;
938 clk_set_rate(r->clock[0], rate);
939
940 /* Let the gpmi_begin() re-compute the timing again. */
941 this->flags &= ~GPMI_TIMING_INIT_OK;
942
943 this->flags |= GPMI_ASYNC_EDO_ENABLED;
944 this->timing_mode = mode;
945 dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
946 return 0;
947
948 err_out:
949 nand->select_chip(mtd, -1);
950 dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
951 return -EINVAL;
952 }
953
954 int gpmi_extra_init(struct gpmi_nand_data *this)
955 {
956 struct nand_chip *chip = &this->nand;
957
958 /* Enable the asynchronous EDO feature. */
959 if (GPMI_IS_MX6Q(this) && chip->onfi_version) {
960 int mode = onfi_get_async_timing_mode(chip);
961
962 /* We only support the timing mode 4 and mode 5. */
963 if (mode & ONFI_TIMING_MODE_5)
964 mode = 5;
965 else if (mode & ONFI_TIMING_MODE_4)
966 mode = 4;
967 else
968 return 0;
969
970 return enable_edo_mode(this, mode);
971 }
972 return 0;
973 }
974
975 /* Begin the I/O */
976 void gpmi_begin(struct gpmi_nand_data *this)
977 {
978 struct resources *r = &this->resources;
979 void __iomem *gpmi_regs = r->gpmi_regs;
980 unsigned int clock_period_in_ns;
981 uint32_t reg;
982 unsigned int dll_wait_time_in_us;
983 struct gpmi_nfc_hardware_timing hw;
984 int ret;
985
986 /* Enable the clock. */
987 ret = gpmi_enable_clk(this);
988 if (ret) {
989 pr_err("We failed in enable the clk\n");
990 goto err_out;
991 }
992
993 /* Only initialize the timing once */
994 if (this->flags & GPMI_TIMING_INIT_OK)
995 return;
996 this->flags |= GPMI_TIMING_INIT_OK;
997
998 if (this->flags & GPMI_ASYNC_EDO_ENABLED)
999 gpmi_compute_edo_timing(this, &hw);
1000 else
1001 gpmi_nfc_compute_hardware_timing(this, &hw);
1002
1003 /* [1] Set HW_GPMI_TIMING0 */
1004 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1005 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
1006 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1007
1008 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1009
1010 /* [2] Set HW_GPMI_TIMING1 */
1011 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1012 gpmi_regs + HW_GPMI_TIMING1);
1013
1014 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1015
1016 /* Set the WRN_DLY_SEL */
1017 writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1018 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1019 gpmi_regs + HW_GPMI_CTRL1_SET);
1020
1021 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1022 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1023
1024 /* Clear out the DLL control fields. */
1025 reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1026 writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1027
1028 /* If no sample delay is called for, return immediately. */
1029 if (!hw.sample_delay_factor)
1030 return;
1031
1032 /* Set RDN_DELAY or HALF_PERIOD. */
1033 reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1034 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1035
1036 writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1037
1038 /* At last, we enable the DLL. */
1039 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1040
1041 /*
1042 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1043 * we can use the GPMI. Calculate the amount of time we need to wait,
1044 * in microseconds.
1045 */
1046 clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1047 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1048
1049 if (!dll_wait_time_in_us)
1050 dll_wait_time_in_us = 1;
1051
1052 /* Wait for the DLL to settle. */
1053 udelay(dll_wait_time_in_us);
1054
1055 err_out:
1056 return;
1057 }
1058
1059 void gpmi_end(struct gpmi_nand_data *this)
1060 {
1061 gpmi_disable_clk(this);
1062 }
1063
1064 /* Clears a BCH interrupt. */
1065 void gpmi_clear_bch(struct gpmi_nand_data *this)
1066 {
1067 struct resources *r = &this->resources;
1068 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1069 }
1070
1071 /* Returns the Ready/Busy status of the given chip. */
1072 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1073 {
1074 struct resources *r = &this->resources;
1075 uint32_t mask = 0;
1076 uint32_t reg = 0;
1077
1078 if (GPMI_IS_MX23(this)) {
1079 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1080 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1081 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
1082 /*
1083 * In the imx6, all the ready/busy pins are bound
1084 * together. So we only need to check chip 0.
1085 */
1086 if (GPMI_IS_MX6Q(this))
1087 chip = 0;
1088
1089 /* MX28 shares the same R/B register as MX6Q. */
1090 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1091 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1092 } else
1093 pr_err("unknow arch.\n");
1094 return reg & mask;
1095 }
1096
1097 static inline void set_dma_type(struct gpmi_nand_data *this,
1098 enum dma_ops_type type)
1099 {
1100 this->last_dma_type = this->dma_type;
1101 this->dma_type = type;
1102 }
1103
1104 int gpmi_send_command(struct gpmi_nand_data *this)
1105 {
1106 struct dma_chan *channel = get_dma_chan(this);
1107 struct dma_async_tx_descriptor *desc;
1108 struct scatterlist *sgl;
1109 int chip = this->current_chip;
1110 u32 pio[3];
1111
1112 /* [1] send out the PIO words */
1113 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1114 | BM_GPMI_CTRL0_WORD_LENGTH
1115 | BF_GPMI_CTRL0_CS(chip, this)
1116 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1117 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1118 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1119 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1120 pio[1] = pio[2] = 0;
1121 desc = dmaengine_prep_slave_sg(channel,
1122 (struct scatterlist *)pio,
1123 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1124 if (!desc) {
1125 pr_err("step 1 error\n");
1126 return -1;
1127 }
1128
1129 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1130 sgl = &this->cmd_sgl;
1131
1132 sg_init_one(sgl, this->cmd_buffer, this->command_length);
1133 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1134 desc = dmaengine_prep_slave_sg(channel,
1135 sgl, 1, DMA_MEM_TO_DEV,
1136 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1137
1138 if (!desc) {
1139 pr_err("step 2 error\n");
1140 return -1;
1141 }
1142
1143 /* [3] submit the DMA */
1144 set_dma_type(this, DMA_FOR_COMMAND);
1145 return start_dma_without_bch_irq(this, desc);
1146 }
1147
1148 int gpmi_send_data(struct gpmi_nand_data *this)
1149 {
1150 struct dma_async_tx_descriptor *desc;
1151 struct dma_chan *channel = get_dma_chan(this);
1152 int chip = this->current_chip;
1153 uint32_t command_mode;
1154 uint32_t address;
1155 u32 pio[2];
1156
1157 /* [1] PIO */
1158 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1159 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1160
1161 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1162 | BM_GPMI_CTRL0_WORD_LENGTH
1163 | BF_GPMI_CTRL0_CS(chip, this)
1164 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1165 | BF_GPMI_CTRL0_ADDRESS(address)
1166 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1167 pio[1] = 0;
1168 desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1169 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1170 if (!desc) {
1171 pr_err("step 1 error\n");
1172 return -1;
1173 }
1174
1175 /* [2] send DMA request */
1176 prepare_data_dma(this, DMA_TO_DEVICE);
1177 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1178 1, DMA_MEM_TO_DEV,
1179 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1180 if (!desc) {
1181 pr_err("step 2 error\n");
1182 return -1;
1183 }
1184 /* [3] submit the DMA */
1185 set_dma_type(this, DMA_FOR_WRITE_DATA);
1186 return start_dma_without_bch_irq(this, desc);
1187 }
1188
1189 int gpmi_read_data(struct gpmi_nand_data *this)
1190 {
1191 struct dma_async_tx_descriptor *desc;
1192 struct dma_chan *channel = get_dma_chan(this);
1193 int chip = this->current_chip;
1194 u32 pio[2];
1195
1196 /* [1] : send PIO */
1197 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1198 | BM_GPMI_CTRL0_WORD_LENGTH
1199 | BF_GPMI_CTRL0_CS(chip, this)
1200 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1201 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1202 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1203 pio[1] = 0;
1204 desc = dmaengine_prep_slave_sg(channel,
1205 (struct scatterlist *)pio,
1206 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1207 if (!desc) {
1208 pr_err("step 1 error\n");
1209 return -1;
1210 }
1211
1212 /* [2] : send DMA request */
1213 prepare_data_dma(this, DMA_FROM_DEVICE);
1214 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1215 1, DMA_DEV_TO_MEM,
1216 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1217 if (!desc) {
1218 pr_err("step 2 error\n");
1219 return -1;
1220 }
1221
1222 /* [3] : submit the DMA */
1223 set_dma_type(this, DMA_FOR_READ_DATA);
1224 return start_dma_without_bch_irq(this, desc);
1225 }
1226
1227 int gpmi_send_page(struct gpmi_nand_data *this,
1228 dma_addr_t payload, dma_addr_t auxiliary)
1229 {
1230 struct bch_geometry *geo = &this->bch_geometry;
1231 uint32_t command_mode;
1232 uint32_t address;
1233 uint32_t ecc_command;
1234 uint32_t buffer_mask;
1235 struct dma_async_tx_descriptor *desc;
1236 struct dma_chan *channel = get_dma_chan(this);
1237 int chip = this->current_chip;
1238 u32 pio[6];
1239
1240 /* A DMA descriptor that does an ECC page read. */
1241 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1242 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1243 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1244 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1245 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1246
1247 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1248 | BM_GPMI_CTRL0_WORD_LENGTH
1249 | BF_GPMI_CTRL0_CS(chip, this)
1250 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1251 | BF_GPMI_CTRL0_ADDRESS(address)
1252 | BF_GPMI_CTRL0_XFER_COUNT(0);
1253 pio[1] = 0;
1254 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1255 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1256 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1257 pio[3] = geo->page_size;
1258 pio[4] = payload;
1259 pio[5] = auxiliary;
1260
1261 desc = dmaengine_prep_slave_sg(channel,
1262 (struct scatterlist *)pio,
1263 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1264 DMA_CTRL_ACK);
1265 if (!desc) {
1266 pr_err("step 2 error\n");
1267 return -1;
1268 }
1269 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1270 return start_dma_with_bch_irq(this, desc);
1271 }
1272
1273 int gpmi_read_page(struct gpmi_nand_data *this,
1274 dma_addr_t payload, dma_addr_t auxiliary)
1275 {
1276 struct bch_geometry *geo = &this->bch_geometry;
1277 uint32_t command_mode;
1278 uint32_t address;
1279 uint32_t ecc_command;
1280 uint32_t buffer_mask;
1281 struct dma_async_tx_descriptor *desc;
1282 struct dma_chan *channel = get_dma_chan(this);
1283 int chip = this->current_chip;
1284 u32 pio[6];
1285
1286 /* [1] Wait for the chip to report ready. */
1287 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1288 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1289
1290 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1291 | BM_GPMI_CTRL0_WORD_LENGTH
1292 | BF_GPMI_CTRL0_CS(chip, this)
1293 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1294 | BF_GPMI_CTRL0_ADDRESS(address)
1295 | BF_GPMI_CTRL0_XFER_COUNT(0);
1296 pio[1] = 0;
1297 desc = dmaengine_prep_slave_sg(channel,
1298 (struct scatterlist *)pio, 2,
1299 DMA_TRANS_NONE, 0);
1300 if (!desc) {
1301 pr_err("step 1 error\n");
1302 return -1;
1303 }
1304
1305 /* [2] Enable the BCH block and read. */
1306 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1307 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1308 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1309 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1310 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1311
1312 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1313 | BM_GPMI_CTRL0_WORD_LENGTH
1314 | BF_GPMI_CTRL0_CS(chip, this)
1315 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1316 | BF_GPMI_CTRL0_ADDRESS(address)
1317 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1318
1319 pio[1] = 0;
1320 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1321 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1322 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1323 pio[3] = geo->page_size;
1324 pio[4] = payload;
1325 pio[5] = auxiliary;
1326 desc = dmaengine_prep_slave_sg(channel,
1327 (struct scatterlist *)pio,
1328 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1329 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1330 if (!desc) {
1331 pr_err("step 2 error\n");
1332 return -1;
1333 }
1334
1335 /* [3] Disable the BCH block */
1336 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1337 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1338
1339 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1340 | BM_GPMI_CTRL0_WORD_LENGTH
1341 | BF_GPMI_CTRL0_CS(chip, this)
1342 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1343 | BF_GPMI_CTRL0_ADDRESS(address)
1344 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1345 pio[1] = 0;
1346 pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1347 desc = dmaengine_prep_slave_sg(channel,
1348 (struct scatterlist *)pio, 3,
1349 DMA_TRANS_NONE,
1350 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1351 if (!desc) {
1352 pr_err("step 3 error\n");
1353 return -1;
1354 }
1355
1356 /* [4] submit the DMA */
1357 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1358 return start_dma_with_bch_irq(this, desc);
1359 }