]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/mxc_nand.c
Merge tag 'for-linus-20141215' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
67
68 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
78
79 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
80
81 /*
82 * Operation modes for the NFC. Valid for v1, v2 and v3
83 * type controllers.
84 */
85 #define NFC_CMD (1 << 0)
86 #define NFC_ADDR (1 << 1)
87 #define NFC_INPUT (1 << 2)
88 #define NFC_OUTPUT (1 << 3)
89 #define NFC_ID (1 << 4)
90 #define NFC_STATUS (1 << 5)
91
92 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
94
95 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
98
99 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
100
101 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
102
103 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
105 #define NFC_V3_WRPROT_LOCK (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
108
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
110
111 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
125
126 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8 (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
133
134 #define NFC_V3_IPC (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ (1 << 0)
136 #define NFC_V3_IPC_INT (1 << 31)
137
138 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
139
140 struct mxc_nand_host;
141
142 struct mxc_nand_devtype_data {
143 void (*preset)(struct mtd_info *);
144 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146 void (*send_page)(struct mtd_info *, unsigned int);
147 void (*send_read_id)(struct mxc_nand_host *);
148 uint16_t (*get_dev_status)(struct mxc_nand_host *);
149 int (*check_int)(struct mxc_nand_host *);
150 void (*irq_control)(struct mxc_nand_host *, int);
151 u32 (*get_ecc_status)(struct mxc_nand_host *);
152 struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153 void (*select_chip)(struct mtd_info *mtd, int chip);
154 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155 u_char *read_ecc, u_char *calc_ecc);
156
157 /*
158 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159 * (CONFIG1:INT_MSK is set). To handle this the driver uses
160 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161 */
162 int irqpending_quirk;
163 int needs_ip;
164
165 size_t regs_offset;
166 size_t spare0_offset;
167 size_t axi_offset;
168
169 int spare_len;
170 int eccbytes;
171 int eccsize;
172 int ppb_shift;
173 };
174
175 struct mxc_nand_host {
176 struct mtd_info mtd;
177 struct nand_chip nand;
178 struct device *dev;
179
180 void __iomem *spare0;
181 void __iomem *main_area0;
182
183 void __iomem *base;
184 void __iomem *regs;
185 void __iomem *regs_axi;
186 void __iomem *regs_ip;
187 int status_request;
188 struct clk *clk;
189 int clk_act;
190 int irq;
191 int eccsize;
192 int active_cs;
193
194 struct completion op_completion;
195
196 uint8_t *data_buf;
197 unsigned int buf_start;
198
199 const struct mxc_nand_devtype_data *devtype_data;
200 struct mxc_nand_platform_data pdata;
201 };
202
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205 .eccbytes = 5,
206 .eccpos = {6, 7, 8, 9, 10},
207 .oobfree = {{0, 5}, {12, 4}, }
208 };
209
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211 .eccbytes = 20,
212 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219 .eccbytes = 1 * 9,
220 .eccpos = {
221 7, 8, 9, 10, 11, 12, 13, 14, 15
222 },
223 .oobfree = {
224 {.offset = 0, .length = 5}
225 }
226 };
227
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230 .eccbytes = 4 * 9,
231 .eccpos = {
232 7, 8, 9, 10, 11, 12, 13, 14, 15,
233 23, 24, 25, 26, 27, 28, 29, 30, 31,
234 39, 40, 41, 42, 43, 44, 45, 46, 47,
235 55, 56, 57, 58, 59, 60, 61, 62, 63
236 },
237 .oobfree = {
238 {.offset = 2, .length = 4},
239 {.offset = 16, .length = 7},
240 {.offset = 32, .length = 7},
241 {.offset = 48, .length = 7}
242 }
243 };
244
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247 .eccbytes = 8 * 9,
248 .eccpos = {
249 7, 8, 9, 10, 11, 12, 13, 14, 15,
250 23, 24, 25, 26, 27, 28, 29, 30, 31,
251 39, 40, 41, 42, 43, 44, 45, 46, 47,
252 55, 56, 57, 58, 59, 60, 61, 62, 63,
253 71, 72, 73, 74, 75, 76, 77, 78, 79,
254 87, 88, 89, 90, 91, 92, 93, 94, 95,
255 103, 104, 105, 106, 107, 108, 109, 110, 111,
256 119, 120, 121, 122, 123, 124, 125, 126, 127,
257 },
258 .oobfree = {
259 {.offset = 2, .length = 4},
260 {.offset = 16, .length = 7},
261 {.offset = 32, .length = 7},
262 {.offset = 48, .length = 7},
263 {.offset = 64, .length = 7},
264 {.offset = 80, .length = 7},
265 {.offset = 96, .length = 7},
266 {.offset = 112, .length = 7},
267 }
268 };
269
270 static const char * const part_probes[] = {
271 "cmdlinepart", "RedBoot", "ofpart", NULL };
272
273 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
274 {
275 int i;
276 u32 *t = trg;
277 const __iomem u32 *s = src;
278
279 for (i = 0; i < (size >> 2); i++)
280 *t++ = __raw_readl(s++);
281 }
282
283 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 {
285 /* __iowrite32_copy use 32bit size values so divide by 4 */
286 __iowrite32_copy(trg, src, size / 4);
287 }
288
289 static int check_int_v3(struct mxc_nand_host *host)
290 {
291 uint32_t tmp;
292
293 tmp = readl(NFC_V3_IPC);
294 if (!(tmp & NFC_V3_IPC_INT))
295 return 0;
296
297 tmp &= ~NFC_V3_IPC_INT;
298 writel(tmp, NFC_V3_IPC);
299
300 return 1;
301 }
302
303 static int check_int_v1_v2(struct mxc_nand_host *host)
304 {
305 uint32_t tmp;
306
307 tmp = readw(NFC_V1_V2_CONFIG2);
308 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
309 return 0;
310
311 if (!host->devtype_data->irqpending_quirk)
312 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
313
314 return 1;
315 }
316
317 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
318 {
319 uint16_t tmp;
320
321 tmp = readw(NFC_V1_V2_CONFIG1);
322
323 if (activate)
324 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
325 else
326 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
327
328 writew(tmp, NFC_V1_V2_CONFIG1);
329 }
330
331 static void irq_control_v3(struct mxc_nand_host *host, int activate)
332 {
333 uint32_t tmp;
334
335 tmp = readl(NFC_V3_CONFIG2);
336
337 if (activate)
338 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
339 else
340 tmp |= NFC_V3_CONFIG2_INT_MSK;
341
342 writel(tmp, NFC_V3_CONFIG2);
343 }
344
345 static void irq_control(struct mxc_nand_host *host, int activate)
346 {
347 if (host->devtype_data->irqpending_quirk) {
348 if (activate)
349 enable_irq(host->irq);
350 else
351 disable_irq_nosync(host->irq);
352 } else {
353 host->devtype_data->irq_control(host, activate);
354 }
355 }
356
357 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
358 {
359 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
360 }
361
362 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
363 {
364 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
365 }
366
367 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
368 {
369 return readl(NFC_V3_ECC_STATUS_RESULT);
370 }
371
372 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
373 {
374 struct mxc_nand_host *host = dev_id;
375
376 if (!host->devtype_data->check_int(host))
377 return IRQ_NONE;
378
379 irq_control(host, 0);
380
381 complete(&host->op_completion);
382
383 return IRQ_HANDLED;
384 }
385
386 /* This function polls the NANDFC to wait for the basic operation to
387 * complete by checking the INT bit of config2 register.
388 */
389 static void wait_op_done(struct mxc_nand_host *host, int useirq)
390 {
391 int max_retries = 8000;
392
393 if (useirq) {
394 if (!host->devtype_data->check_int(host)) {
395 reinit_completion(&host->op_completion);
396 irq_control(host, 1);
397 wait_for_completion(&host->op_completion);
398 }
399 } else {
400 while (max_retries-- > 0) {
401 if (host->devtype_data->check_int(host))
402 break;
403
404 udelay(1);
405 }
406 if (max_retries < 0)
407 pr_debug("%s: INT not set\n", __func__);
408 }
409 }
410
411 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
412 {
413 /* fill command */
414 writel(cmd, NFC_V3_FLASH_CMD);
415
416 /* send out command */
417 writel(NFC_CMD, NFC_V3_LAUNCH);
418
419 /* Wait for operation to complete */
420 wait_op_done(host, useirq);
421 }
422
423 /* This function issues the specified command to the NAND device and
424 * waits for completion. */
425 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
426 {
427 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
428
429 writew(cmd, NFC_V1_V2_FLASH_CMD);
430 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
431
432 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
433 int max_retries = 100;
434 /* Reset completion is indicated by NFC_CONFIG2 */
435 /* being set to 0 */
436 while (max_retries-- > 0) {
437 if (readw(NFC_V1_V2_CONFIG2) == 0) {
438 break;
439 }
440 udelay(1);
441 }
442 if (max_retries < 0)
443 pr_debug("%s: RESET failed\n", __func__);
444 } else {
445 /* Wait for operation to complete */
446 wait_op_done(host, useirq);
447 }
448 }
449
450 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
451 {
452 /* fill address */
453 writel(addr, NFC_V3_FLASH_ADDR0);
454
455 /* send out address */
456 writel(NFC_ADDR, NFC_V3_LAUNCH);
457
458 wait_op_done(host, 0);
459 }
460
461 /* This function sends an address (or partial address) to the
462 * NAND device. The address is used to select the source/destination for
463 * a NAND command. */
464 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
465 {
466 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
467
468 writew(addr, NFC_V1_V2_FLASH_ADDR);
469 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
470
471 /* Wait for operation to complete */
472 wait_op_done(host, islast);
473 }
474
475 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
476 {
477 struct nand_chip *nand_chip = mtd->priv;
478 struct mxc_nand_host *host = nand_chip->priv;
479 uint32_t tmp;
480
481 tmp = readl(NFC_V3_CONFIG1);
482 tmp &= ~(7 << 4);
483 writel(tmp, NFC_V3_CONFIG1);
484
485 /* transfer data from NFC ram to nand */
486 writel(ops, NFC_V3_LAUNCH);
487
488 wait_op_done(host, false);
489 }
490
491 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
492 {
493 struct nand_chip *nand_chip = mtd->priv;
494 struct mxc_nand_host *host = nand_chip->priv;
495
496 /* NANDFC buffer 0 is used for page read/write */
497 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
498
499 writew(ops, NFC_V1_V2_CONFIG2);
500
501 /* Wait for operation to complete */
502 wait_op_done(host, true);
503 }
504
505 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
506 {
507 struct nand_chip *nand_chip = mtd->priv;
508 struct mxc_nand_host *host = nand_chip->priv;
509 int bufs, i;
510
511 if (mtd->writesize > 512)
512 bufs = 4;
513 else
514 bufs = 1;
515
516 for (i = 0; i < bufs; i++) {
517
518 /* NANDFC buffer 0 is used for page read/write */
519 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
520
521 writew(ops, NFC_V1_V2_CONFIG2);
522
523 /* Wait for operation to complete */
524 wait_op_done(host, true);
525 }
526 }
527
528 static void send_read_id_v3(struct mxc_nand_host *host)
529 {
530 struct nand_chip *this = &host->nand;
531
532 /* Read ID into main buffer */
533 writel(NFC_ID, NFC_V3_LAUNCH);
534
535 wait_op_done(host, true);
536
537 memcpy32_fromio(host->data_buf, host->main_area0, 16);
538
539 if (this->options & NAND_BUSWIDTH_16) {
540 /* compress the ID info */
541 host->data_buf[1] = host->data_buf[2];
542 host->data_buf[2] = host->data_buf[4];
543 host->data_buf[3] = host->data_buf[6];
544 host->data_buf[4] = host->data_buf[8];
545 host->data_buf[5] = host->data_buf[10];
546 }
547 }
548
549 /* Request the NANDFC to perform a read of the NAND device ID. */
550 static void send_read_id_v1_v2(struct mxc_nand_host *host)
551 {
552 struct nand_chip *this = &host->nand;
553
554 /* NANDFC buffer 0 is used for device ID output */
555 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
556
557 writew(NFC_ID, NFC_V1_V2_CONFIG2);
558
559 /* Wait for operation to complete */
560 wait_op_done(host, true);
561
562 memcpy32_fromio(host->data_buf, host->main_area0, 16);
563
564 if (this->options & NAND_BUSWIDTH_16) {
565 /* compress the ID info */
566 host->data_buf[1] = host->data_buf[2];
567 host->data_buf[2] = host->data_buf[4];
568 host->data_buf[3] = host->data_buf[6];
569 host->data_buf[4] = host->data_buf[8];
570 host->data_buf[5] = host->data_buf[10];
571 }
572 }
573
574 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
575 {
576 writew(NFC_STATUS, NFC_V3_LAUNCH);
577 wait_op_done(host, true);
578
579 return readl(NFC_V3_CONFIG1) >> 16;
580 }
581
582 /* This function requests the NANDFC to perform a read of the
583 * NAND device status and returns the current status. */
584 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
585 {
586 void __iomem *main_buf = host->main_area0;
587 uint32_t store;
588 uint16_t ret;
589
590 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
591
592 /*
593 * The device status is stored in main_area0. To
594 * prevent corruption of the buffer save the value
595 * and restore it afterwards.
596 */
597 store = readl(main_buf);
598
599 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
600 wait_op_done(host, true);
601
602 ret = readw(main_buf);
603
604 writel(store, main_buf);
605
606 return ret;
607 }
608
609 /* This functions is used by upper layer to checks if device is ready */
610 static int mxc_nand_dev_ready(struct mtd_info *mtd)
611 {
612 /*
613 * NFC handles R/B internally. Therefore, this function
614 * always returns status as ready.
615 */
616 return 1;
617 }
618
619 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
620 {
621 /*
622 * If HW ECC is enabled, we turn it on during init. There is
623 * no need to enable again here.
624 */
625 }
626
627 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
628 u_char *read_ecc, u_char *calc_ecc)
629 {
630 struct nand_chip *nand_chip = mtd->priv;
631 struct mxc_nand_host *host = nand_chip->priv;
632
633 /*
634 * 1-Bit errors are automatically corrected in HW. No need for
635 * additional correction. 2-Bit errors cannot be corrected by
636 * HW ECC, so we need to return failure
637 */
638 uint16_t ecc_status = get_ecc_status_v1(host);
639
640 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
641 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
642 return -1;
643 }
644
645 return 0;
646 }
647
648 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
649 u_char *read_ecc, u_char *calc_ecc)
650 {
651 struct nand_chip *nand_chip = mtd->priv;
652 struct mxc_nand_host *host = nand_chip->priv;
653 u32 ecc_stat, err;
654 int no_subpages = 1;
655 int ret = 0;
656 u8 ecc_bit_mask, err_limit;
657
658 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
659 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
660
661 no_subpages = mtd->writesize >> 9;
662
663 ecc_stat = host->devtype_data->get_ecc_status(host);
664
665 do {
666 err = ecc_stat & ecc_bit_mask;
667 if (err > err_limit) {
668 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
669 return -1;
670 } else {
671 ret += err;
672 }
673 ecc_stat >>= 4;
674 } while (--no_subpages);
675
676 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
677
678 return ret;
679 }
680
681 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
682 u_char *ecc_code)
683 {
684 return 0;
685 }
686
687 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
688 {
689 struct nand_chip *nand_chip = mtd->priv;
690 struct mxc_nand_host *host = nand_chip->priv;
691 uint8_t ret;
692
693 /* Check for status request */
694 if (host->status_request)
695 return host->devtype_data->get_dev_status(host) & 0xFF;
696
697 ret = *(uint8_t *)(host->data_buf + host->buf_start);
698 host->buf_start++;
699
700 return ret;
701 }
702
703 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
704 {
705 struct nand_chip *nand_chip = mtd->priv;
706 struct mxc_nand_host *host = nand_chip->priv;
707 uint16_t ret;
708
709 ret = *(uint16_t *)(host->data_buf + host->buf_start);
710 host->buf_start += 2;
711
712 return ret;
713 }
714
715 /* Write data of length len to buffer buf. The data to be
716 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
717 * Operation by the NFC, the data is written to NAND Flash */
718 static void mxc_nand_write_buf(struct mtd_info *mtd,
719 const u_char *buf, int len)
720 {
721 struct nand_chip *nand_chip = mtd->priv;
722 struct mxc_nand_host *host = nand_chip->priv;
723 u16 col = host->buf_start;
724 int n = mtd->oobsize + mtd->writesize - col;
725
726 n = min(n, len);
727
728 memcpy(host->data_buf + col, buf, n);
729
730 host->buf_start += n;
731 }
732
733 /* Read the data buffer from the NAND Flash. To read the data from NAND
734 * Flash first the data output cycle is initiated by the NFC, which copies
735 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
736 */
737 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
738 {
739 struct nand_chip *nand_chip = mtd->priv;
740 struct mxc_nand_host *host = nand_chip->priv;
741 u16 col = host->buf_start;
742 int n = mtd->oobsize + mtd->writesize - col;
743
744 n = min(n, len);
745
746 memcpy(buf, host->data_buf + col, n);
747
748 host->buf_start += n;
749 }
750
751 /* This function is used by upper layer for select and
752 * deselect of the NAND chip */
753 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
754 {
755 struct nand_chip *nand_chip = mtd->priv;
756 struct mxc_nand_host *host = nand_chip->priv;
757
758 if (chip == -1) {
759 /* Disable the NFC clock */
760 if (host->clk_act) {
761 clk_disable_unprepare(host->clk);
762 host->clk_act = 0;
763 }
764 return;
765 }
766
767 if (!host->clk_act) {
768 /* Enable the NFC clock */
769 clk_prepare_enable(host->clk);
770 host->clk_act = 1;
771 }
772 }
773
774 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
775 {
776 struct nand_chip *nand_chip = mtd->priv;
777 struct mxc_nand_host *host = nand_chip->priv;
778
779 if (chip == -1) {
780 /* Disable the NFC clock */
781 if (host->clk_act) {
782 clk_disable_unprepare(host->clk);
783 host->clk_act = 0;
784 }
785 return;
786 }
787
788 if (!host->clk_act) {
789 /* Enable the NFC clock */
790 clk_prepare_enable(host->clk);
791 host->clk_act = 1;
792 }
793
794 host->active_cs = chip;
795 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
796 }
797
798 /*
799 * Function to transfer data to/from spare area.
800 */
801 static void copy_spare(struct mtd_info *mtd, bool bfrom)
802 {
803 struct nand_chip *this = mtd->priv;
804 struct mxc_nand_host *host = this->priv;
805 u16 i, j;
806 u16 n = mtd->writesize >> 9;
807 u8 *d = host->data_buf + mtd->writesize;
808 u8 __iomem *s = host->spare0;
809 u16 t = host->devtype_data->spare_len;
810
811 j = (mtd->oobsize / n >> 1) << 1;
812
813 if (bfrom) {
814 for (i = 0; i < n - 1; i++)
815 memcpy32_fromio(d + i * j, s + i * t, j);
816
817 /* the last section */
818 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
819 } else {
820 for (i = 0; i < n - 1; i++)
821 memcpy32_toio(&s[i * t], &d[i * j], j);
822
823 /* the last section */
824 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
825 }
826 }
827
828 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
829 {
830 struct nand_chip *nand_chip = mtd->priv;
831 struct mxc_nand_host *host = nand_chip->priv;
832
833 /* Write out column address, if necessary */
834 if (column != -1) {
835 /*
836 * MXC NANDFC can only perform full page+spare or
837 * spare-only read/write. When the upper layers
838 * perform a read/write buf operation, the saved column
839 * address is used to index into the full page.
840 */
841 host->devtype_data->send_addr(host, 0, page_addr == -1);
842 if (mtd->writesize > 512)
843 /* another col addr cycle for 2k page */
844 host->devtype_data->send_addr(host, 0, false);
845 }
846
847 /* Write out page address, if necessary */
848 if (page_addr != -1) {
849 /* paddr_0 - p_addr_7 */
850 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
851
852 if (mtd->writesize > 512) {
853 if (mtd->size >= 0x10000000) {
854 /* paddr_8 - paddr_15 */
855 host->devtype_data->send_addr(host,
856 (page_addr >> 8) & 0xff,
857 false);
858 host->devtype_data->send_addr(host,
859 (page_addr >> 16) & 0xff,
860 true);
861 } else
862 /* paddr_8 - paddr_15 */
863 host->devtype_data->send_addr(host,
864 (page_addr >> 8) & 0xff, true);
865 } else {
866 /* One more address cycle for higher density devices */
867 if (mtd->size >= 0x4000000) {
868 /* paddr_8 - paddr_15 */
869 host->devtype_data->send_addr(host,
870 (page_addr >> 8) & 0xff,
871 false);
872 host->devtype_data->send_addr(host,
873 (page_addr >> 16) & 0xff,
874 true);
875 } else
876 /* paddr_8 - paddr_15 */
877 host->devtype_data->send_addr(host,
878 (page_addr >> 8) & 0xff, true);
879 }
880 }
881 }
882
883 /*
884 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
885 * on how much oob the nand chip has. For 8bit ecc we need at least
886 * 26 bytes of oob data per 512 byte block.
887 */
888 static int get_eccsize(struct mtd_info *mtd)
889 {
890 int oobbytes_per_512 = 0;
891
892 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
893
894 if (oobbytes_per_512 < 26)
895 return 4;
896 else
897 return 8;
898 }
899
900 static void preset_v1(struct mtd_info *mtd)
901 {
902 struct nand_chip *nand_chip = mtd->priv;
903 struct mxc_nand_host *host = nand_chip->priv;
904 uint16_t config1 = 0;
905
906 if (nand_chip->ecc.mode == NAND_ECC_HW)
907 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
908
909 if (!host->devtype_data->irqpending_quirk)
910 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
911
912 host->eccsize = 1;
913
914 writew(config1, NFC_V1_V2_CONFIG1);
915 /* preset operation */
916
917 /* Unlock the internal RAM Buffer */
918 writew(0x2, NFC_V1_V2_CONFIG);
919
920 /* Blocks to be unlocked */
921 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
922 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
923
924 /* Unlock Block Command for given address range */
925 writew(0x4, NFC_V1_V2_WRPROT);
926 }
927
928 static void preset_v2(struct mtd_info *mtd)
929 {
930 struct nand_chip *nand_chip = mtd->priv;
931 struct mxc_nand_host *host = nand_chip->priv;
932 uint16_t config1 = 0;
933
934 if (nand_chip->ecc.mode == NAND_ECC_HW)
935 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
936
937 config1 |= NFC_V2_CONFIG1_FP_INT;
938
939 if (!host->devtype_data->irqpending_quirk)
940 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
941
942 if (mtd->writesize) {
943 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
944
945 host->eccsize = get_eccsize(mtd);
946 if (host->eccsize == 4)
947 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
948
949 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
950 } else {
951 host->eccsize = 1;
952 }
953
954 writew(config1, NFC_V1_V2_CONFIG1);
955 /* preset operation */
956
957 /* Unlock the internal RAM Buffer */
958 writew(0x2, NFC_V1_V2_CONFIG);
959
960 /* Blocks to be unlocked */
961 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
962 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
963 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
964 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
965 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
966 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
967 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
968 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
969
970 /* Unlock Block Command for given address range */
971 writew(0x4, NFC_V1_V2_WRPROT);
972 }
973
974 static void preset_v3(struct mtd_info *mtd)
975 {
976 struct nand_chip *chip = mtd->priv;
977 struct mxc_nand_host *host = chip->priv;
978 uint32_t config2, config3;
979 int i, addr_phases;
980
981 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
982 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
983
984 /* Unlock the internal RAM Buffer */
985 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
986 NFC_V3_WRPROT);
987
988 /* Blocks to be unlocked */
989 for (i = 0; i < NAND_MAX_CHIPS; i++)
990 writel(0x0 | (0xffff << 16),
991 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
992
993 writel(0, NFC_V3_IPC);
994
995 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
996 NFC_V3_CONFIG2_2CMD_PHASES |
997 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
998 NFC_V3_CONFIG2_ST_CMD(0x70) |
999 NFC_V3_CONFIG2_INT_MSK |
1000 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1001
1002 if (chip->ecc.mode == NAND_ECC_HW)
1003 config2 |= NFC_V3_CONFIG2_ECC_EN;
1004
1005 addr_phases = fls(chip->pagemask) >> 3;
1006
1007 if (mtd->writesize == 2048) {
1008 config2 |= NFC_V3_CONFIG2_PS_2048;
1009 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1010 } else if (mtd->writesize == 4096) {
1011 config2 |= NFC_V3_CONFIG2_PS_4096;
1012 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1013 } else {
1014 config2 |= NFC_V3_CONFIG2_PS_512;
1015 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1016 }
1017
1018 if (mtd->writesize) {
1019 config2 |= NFC_V3_CONFIG2_PPB(
1020 ffs(mtd->erasesize / mtd->writesize) - 6,
1021 host->devtype_data->ppb_shift);
1022 host->eccsize = get_eccsize(mtd);
1023 if (host->eccsize == 8)
1024 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1025 }
1026
1027 writel(config2, NFC_V3_CONFIG2);
1028
1029 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1030 NFC_V3_CONFIG3_NO_SDMA |
1031 NFC_V3_CONFIG3_RBB_MODE |
1032 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1033 NFC_V3_CONFIG3_ADD_OP(0);
1034
1035 if (!(chip->options & NAND_BUSWIDTH_16))
1036 config3 |= NFC_V3_CONFIG3_FW8;
1037
1038 writel(config3, NFC_V3_CONFIG3);
1039
1040 writel(0, NFC_V3_DELAY_LINE);
1041 }
1042
1043 /* Used by the upper layer to write command to NAND Flash for
1044 * different operations to be carried out on NAND Flash */
1045 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1046 int column, int page_addr)
1047 {
1048 struct nand_chip *nand_chip = mtd->priv;
1049 struct mxc_nand_host *host = nand_chip->priv;
1050
1051 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1052 command, column, page_addr);
1053
1054 /* Reset command state information */
1055 host->status_request = false;
1056
1057 /* Command pre-processing step */
1058 switch (command) {
1059 case NAND_CMD_RESET:
1060 host->devtype_data->preset(mtd);
1061 host->devtype_data->send_cmd(host, command, false);
1062 break;
1063
1064 case NAND_CMD_STATUS:
1065 host->buf_start = 0;
1066 host->status_request = true;
1067
1068 host->devtype_data->send_cmd(host, command, true);
1069 mxc_do_addr_cycle(mtd, column, page_addr);
1070 break;
1071
1072 case NAND_CMD_READ0:
1073 case NAND_CMD_READOOB:
1074 if (command == NAND_CMD_READ0)
1075 host->buf_start = column;
1076 else
1077 host->buf_start = column + mtd->writesize;
1078
1079 command = NAND_CMD_READ0; /* only READ0 is valid */
1080
1081 host->devtype_data->send_cmd(host, command, false);
1082 mxc_do_addr_cycle(mtd, column, page_addr);
1083
1084 if (mtd->writesize > 512)
1085 host->devtype_data->send_cmd(host,
1086 NAND_CMD_READSTART, true);
1087
1088 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1089
1090 memcpy32_fromio(host->data_buf, host->main_area0,
1091 mtd->writesize);
1092 copy_spare(mtd, true);
1093 break;
1094
1095 case NAND_CMD_SEQIN:
1096 if (column >= mtd->writesize)
1097 /* call ourself to read a page */
1098 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1099
1100 host->buf_start = column;
1101
1102 host->devtype_data->send_cmd(host, command, false);
1103 mxc_do_addr_cycle(mtd, column, page_addr);
1104 break;
1105
1106 case NAND_CMD_PAGEPROG:
1107 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1108 copy_spare(mtd, false);
1109 host->devtype_data->send_page(mtd, NFC_INPUT);
1110 host->devtype_data->send_cmd(host, command, true);
1111 mxc_do_addr_cycle(mtd, column, page_addr);
1112 break;
1113
1114 case NAND_CMD_READID:
1115 host->devtype_data->send_cmd(host, command, true);
1116 mxc_do_addr_cycle(mtd, column, page_addr);
1117 host->devtype_data->send_read_id(host);
1118 host->buf_start = column;
1119 break;
1120
1121 case NAND_CMD_ERASE1:
1122 case NAND_CMD_ERASE2:
1123 host->devtype_data->send_cmd(host, command, false);
1124 mxc_do_addr_cycle(mtd, column, page_addr);
1125
1126 break;
1127 }
1128 }
1129
1130 /*
1131 * The generic flash bbt decriptors overlap with our ecc
1132 * hardware, so define some i.MX specific ones.
1133 */
1134 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1135 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1136
1137 static struct nand_bbt_descr bbt_main_descr = {
1138 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1139 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1140 .offs = 0,
1141 .len = 4,
1142 .veroffs = 4,
1143 .maxblocks = 4,
1144 .pattern = bbt_pattern,
1145 };
1146
1147 static struct nand_bbt_descr bbt_mirror_descr = {
1148 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1149 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1150 .offs = 0,
1151 .len = 4,
1152 .veroffs = 4,
1153 .maxblocks = 4,
1154 .pattern = mirror_pattern,
1155 };
1156
1157 /* v1 + irqpending_quirk: i.MX21 */
1158 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1159 .preset = preset_v1,
1160 .send_cmd = send_cmd_v1_v2,
1161 .send_addr = send_addr_v1_v2,
1162 .send_page = send_page_v1,
1163 .send_read_id = send_read_id_v1_v2,
1164 .get_dev_status = get_dev_status_v1_v2,
1165 .check_int = check_int_v1_v2,
1166 .irq_control = irq_control_v1_v2,
1167 .get_ecc_status = get_ecc_status_v1,
1168 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1169 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1170 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1171 .select_chip = mxc_nand_select_chip_v1_v3,
1172 .correct_data = mxc_nand_correct_data_v1,
1173 .irqpending_quirk = 1,
1174 .needs_ip = 0,
1175 .regs_offset = 0xe00,
1176 .spare0_offset = 0x800,
1177 .spare_len = 16,
1178 .eccbytes = 3,
1179 .eccsize = 1,
1180 };
1181
1182 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1183 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1184 .preset = preset_v1,
1185 .send_cmd = send_cmd_v1_v2,
1186 .send_addr = send_addr_v1_v2,
1187 .send_page = send_page_v1,
1188 .send_read_id = send_read_id_v1_v2,
1189 .get_dev_status = get_dev_status_v1_v2,
1190 .check_int = check_int_v1_v2,
1191 .irq_control = irq_control_v1_v2,
1192 .get_ecc_status = get_ecc_status_v1,
1193 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1194 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1195 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1196 .select_chip = mxc_nand_select_chip_v1_v3,
1197 .correct_data = mxc_nand_correct_data_v1,
1198 .irqpending_quirk = 0,
1199 .needs_ip = 0,
1200 .regs_offset = 0xe00,
1201 .spare0_offset = 0x800,
1202 .axi_offset = 0,
1203 .spare_len = 16,
1204 .eccbytes = 3,
1205 .eccsize = 1,
1206 };
1207
1208 /* v21: i.MX25, i.MX35 */
1209 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1210 .preset = preset_v2,
1211 .send_cmd = send_cmd_v1_v2,
1212 .send_addr = send_addr_v1_v2,
1213 .send_page = send_page_v2,
1214 .send_read_id = send_read_id_v1_v2,
1215 .get_dev_status = get_dev_status_v1_v2,
1216 .check_int = check_int_v1_v2,
1217 .irq_control = irq_control_v1_v2,
1218 .get_ecc_status = get_ecc_status_v2,
1219 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1220 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1221 .ecclayout_4k = &nandv2_hw_eccoob_4k,
1222 .select_chip = mxc_nand_select_chip_v2,
1223 .correct_data = mxc_nand_correct_data_v2_v3,
1224 .irqpending_quirk = 0,
1225 .needs_ip = 0,
1226 .regs_offset = 0x1e00,
1227 .spare0_offset = 0x1000,
1228 .axi_offset = 0,
1229 .spare_len = 64,
1230 .eccbytes = 9,
1231 .eccsize = 0,
1232 };
1233
1234 /* v3.2a: i.MX51 */
1235 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1236 .preset = preset_v3,
1237 .send_cmd = send_cmd_v3,
1238 .send_addr = send_addr_v3,
1239 .send_page = send_page_v3,
1240 .send_read_id = send_read_id_v3,
1241 .get_dev_status = get_dev_status_v3,
1242 .check_int = check_int_v3,
1243 .irq_control = irq_control_v3,
1244 .get_ecc_status = get_ecc_status_v3,
1245 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1246 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1247 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1248 .select_chip = mxc_nand_select_chip_v1_v3,
1249 .correct_data = mxc_nand_correct_data_v2_v3,
1250 .irqpending_quirk = 0,
1251 .needs_ip = 1,
1252 .regs_offset = 0,
1253 .spare0_offset = 0x1000,
1254 .axi_offset = 0x1e00,
1255 .spare_len = 64,
1256 .eccbytes = 0,
1257 .eccsize = 0,
1258 .ppb_shift = 7,
1259 };
1260
1261 /* v3.2b: i.MX53 */
1262 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1263 .preset = preset_v3,
1264 .send_cmd = send_cmd_v3,
1265 .send_addr = send_addr_v3,
1266 .send_page = send_page_v3,
1267 .send_read_id = send_read_id_v3,
1268 .get_dev_status = get_dev_status_v3,
1269 .check_int = check_int_v3,
1270 .irq_control = irq_control_v3,
1271 .get_ecc_status = get_ecc_status_v3,
1272 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1273 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1274 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1275 .select_chip = mxc_nand_select_chip_v1_v3,
1276 .correct_data = mxc_nand_correct_data_v2_v3,
1277 .irqpending_quirk = 0,
1278 .needs_ip = 1,
1279 .regs_offset = 0,
1280 .spare0_offset = 0x1000,
1281 .axi_offset = 0x1e00,
1282 .spare_len = 64,
1283 .eccbytes = 0,
1284 .eccsize = 0,
1285 .ppb_shift = 8,
1286 };
1287
1288 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1289 {
1290 return host->devtype_data == &imx21_nand_devtype_data;
1291 }
1292
1293 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1294 {
1295 return host->devtype_data == &imx27_nand_devtype_data;
1296 }
1297
1298 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1299 {
1300 return host->devtype_data == &imx25_nand_devtype_data;
1301 }
1302
1303 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1304 {
1305 return host->devtype_data == &imx51_nand_devtype_data;
1306 }
1307
1308 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1309 {
1310 return host->devtype_data == &imx53_nand_devtype_data;
1311 }
1312
1313 static struct platform_device_id mxcnd_devtype[] = {
1314 {
1315 .name = "imx21-nand",
1316 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1317 }, {
1318 .name = "imx27-nand",
1319 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1320 }, {
1321 .name = "imx25-nand",
1322 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1323 }, {
1324 .name = "imx51-nand",
1325 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1326 }, {
1327 .name = "imx53-nand",
1328 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1329 }, {
1330 /* sentinel */
1331 }
1332 };
1333 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1334
1335 #ifdef CONFIG_OF_MTD
1336 static const struct of_device_id mxcnd_dt_ids[] = {
1337 {
1338 .compatible = "fsl,imx21-nand",
1339 .data = &imx21_nand_devtype_data,
1340 }, {
1341 .compatible = "fsl,imx27-nand",
1342 .data = &imx27_nand_devtype_data,
1343 }, {
1344 .compatible = "fsl,imx25-nand",
1345 .data = &imx25_nand_devtype_data,
1346 }, {
1347 .compatible = "fsl,imx51-nand",
1348 .data = &imx51_nand_devtype_data,
1349 }, {
1350 .compatible = "fsl,imx53-nand",
1351 .data = &imx53_nand_devtype_data,
1352 },
1353 { /* sentinel */ }
1354 };
1355
1356 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1357 {
1358 struct device_node *np = host->dev->of_node;
1359 struct mxc_nand_platform_data *pdata = &host->pdata;
1360 const struct of_device_id *of_id =
1361 of_match_device(mxcnd_dt_ids, host->dev);
1362 int buswidth;
1363
1364 if (!np)
1365 return 1;
1366
1367 if (of_get_nand_ecc_mode(np) >= 0)
1368 pdata->hw_ecc = 1;
1369
1370 pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1371
1372 buswidth = of_get_nand_bus_width(np);
1373 if (buswidth < 0)
1374 return buswidth;
1375
1376 pdata->width = buswidth / 8;
1377
1378 host->devtype_data = of_id->data;
1379
1380 return 0;
1381 }
1382 #else
1383 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1384 {
1385 return 1;
1386 }
1387 #endif
1388
1389 static int mxcnd_probe(struct platform_device *pdev)
1390 {
1391 struct nand_chip *this;
1392 struct mtd_info *mtd;
1393 struct mxc_nand_host *host;
1394 struct resource *res;
1395 int err = 0;
1396
1397 /* Allocate memory for MTD device structure and private data */
1398 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1399 GFP_KERNEL);
1400 if (!host)
1401 return -ENOMEM;
1402
1403 /* allocate a temporary buffer for the nand_scan_ident() */
1404 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1405 if (!host->data_buf)
1406 return -ENOMEM;
1407
1408 host->dev = &pdev->dev;
1409 /* structures must be linked */
1410 this = &host->nand;
1411 mtd = &host->mtd;
1412 mtd->priv = this;
1413 mtd->owner = THIS_MODULE;
1414 mtd->dev.parent = &pdev->dev;
1415 mtd->name = DRIVER_NAME;
1416
1417 /* 50 us command delay time */
1418 this->chip_delay = 5;
1419
1420 this->priv = host;
1421 this->dev_ready = mxc_nand_dev_ready;
1422 this->cmdfunc = mxc_nand_command;
1423 this->read_byte = mxc_nand_read_byte;
1424 this->read_word = mxc_nand_read_word;
1425 this->write_buf = mxc_nand_write_buf;
1426 this->read_buf = mxc_nand_read_buf;
1427
1428 host->clk = devm_clk_get(&pdev->dev, NULL);
1429 if (IS_ERR(host->clk))
1430 return PTR_ERR(host->clk);
1431
1432 err = mxcnd_probe_dt(host);
1433 if (err > 0) {
1434 struct mxc_nand_platform_data *pdata =
1435 dev_get_platdata(&pdev->dev);
1436 if (pdata) {
1437 host->pdata = *pdata;
1438 host->devtype_data = (struct mxc_nand_devtype_data *)
1439 pdev->id_entry->driver_data;
1440 } else {
1441 err = -ENODEV;
1442 }
1443 }
1444 if (err < 0)
1445 return err;
1446
1447 if (host->devtype_data->needs_ip) {
1448 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1450 if (IS_ERR(host->regs_ip))
1451 return PTR_ERR(host->regs_ip);
1452
1453 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1454 } else {
1455 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 }
1457
1458 host->base = devm_ioremap_resource(&pdev->dev, res);
1459 if (IS_ERR(host->base))
1460 return PTR_ERR(host->base);
1461
1462 host->main_area0 = host->base;
1463
1464 if (host->devtype_data->regs_offset)
1465 host->regs = host->base + host->devtype_data->regs_offset;
1466 host->spare0 = host->base + host->devtype_data->spare0_offset;
1467 if (host->devtype_data->axi_offset)
1468 host->regs_axi = host->base + host->devtype_data->axi_offset;
1469
1470 this->ecc.bytes = host->devtype_data->eccbytes;
1471 host->eccsize = host->devtype_data->eccsize;
1472
1473 this->select_chip = host->devtype_data->select_chip;
1474 this->ecc.size = 512;
1475 this->ecc.layout = host->devtype_data->ecclayout_512;
1476
1477 if (host->pdata.hw_ecc) {
1478 this->ecc.calculate = mxc_nand_calculate_ecc;
1479 this->ecc.hwctl = mxc_nand_enable_hwecc;
1480 this->ecc.correct = host->devtype_data->correct_data;
1481 this->ecc.mode = NAND_ECC_HW;
1482 } else {
1483 this->ecc.mode = NAND_ECC_SOFT;
1484 }
1485
1486 /* NAND bus width determines access functions used by upper layer */
1487 if (host->pdata.width == 2)
1488 this->options |= NAND_BUSWIDTH_16;
1489
1490 if (host->pdata.flash_bbt) {
1491 this->bbt_td = &bbt_main_descr;
1492 this->bbt_md = &bbt_mirror_descr;
1493 /* update flash based bbt */
1494 this->bbt_options |= NAND_BBT_USE_FLASH;
1495 }
1496
1497 init_completion(&host->op_completion);
1498
1499 host->irq = platform_get_irq(pdev, 0);
1500 if (host->irq < 0)
1501 return host->irq;
1502
1503 /*
1504 * Use host->devtype_data->irq_control() here instead of irq_control()
1505 * because we must not disable_irq_nosync without having requested the
1506 * irq.
1507 */
1508 host->devtype_data->irq_control(host, 0);
1509
1510 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1511 0, DRIVER_NAME, host);
1512 if (err)
1513 return err;
1514
1515 err = clk_prepare_enable(host->clk);
1516 if (err)
1517 return err;
1518 host->clk_act = 1;
1519
1520 /*
1521 * Now that we "own" the interrupt make sure the interrupt mask bit is
1522 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1523 * on this machine.
1524 */
1525 if (host->devtype_data->irqpending_quirk) {
1526 disable_irq_nosync(host->irq);
1527 host->devtype_data->irq_control(host, 1);
1528 }
1529
1530 /* first scan to find the device and get the page size */
1531 if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1532 err = -ENXIO;
1533 goto escan;
1534 }
1535
1536 /* allocate the right size buffer now */
1537 devm_kfree(&pdev->dev, (void *)host->data_buf);
1538 host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1539 GFP_KERNEL);
1540 if (!host->data_buf) {
1541 err = -ENOMEM;
1542 goto escan;
1543 }
1544
1545 /* Call preset again, with correct writesize this time */
1546 host->devtype_data->preset(mtd);
1547
1548 if (mtd->writesize == 2048)
1549 this->ecc.layout = host->devtype_data->ecclayout_2k;
1550 else if (mtd->writesize == 4096)
1551 this->ecc.layout = host->devtype_data->ecclayout_4k;
1552
1553 if (this->ecc.mode == NAND_ECC_HW) {
1554 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1555 this->ecc.strength = 1;
1556 else
1557 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1558 }
1559
1560 /* second phase scan */
1561 if (nand_scan_tail(mtd)) {
1562 err = -ENXIO;
1563 goto escan;
1564 }
1565
1566 /* Register the partitions */
1567 mtd_device_parse_register(mtd, part_probes,
1568 &(struct mtd_part_parser_data){
1569 .of_node = pdev->dev.of_node,
1570 },
1571 host->pdata.parts,
1572 host->pdata.nr_parts);
1573
1574 platform_set_drvdata(pdev, host);
1575
1576 return 0;
1577
1578 escan:
1579 if (host->clk_act)
1580 clk_disable_unprepare(host->clk);
1581
1582 return err;
1583 }
1584
1585 static int mxcnd_remove(struct platform_device *pdev)
1586 {
1587 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1588
1589 nand_release(&host->mtd);
1590 if (host->clk_act)
1591 clk_disable_unprepare(host->clk);
1592
1593 return 0;
1594 }
1595
1596 static struct platform_driver mxcnd_driver = {
1597 .driver = {
1598 .name = DRIVER_NAME,
1599 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1600 },
1601 .id_table = mxcnd_devtype,
1602 .probe = mxcnd_probe,
1603 .remove = mxcnd_remove,
1604 };
1605 module_platform_driver(mxcnd_driver);
1606
1607 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1608 MODULE_DESCRIPTION("MXC NAND MTD driver");
1609 MODULE_LICENSE("GPL");