]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/nand_base.c
[MTD] Fix build warnings (and debug build error) in nand_base.c
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
89
90 /*
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
93 */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
99 *
100 * Deselect, release chip lock and wake up anyone waiting on the device
101 */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104 struct nand_chip *chip = mtd->priv;
105
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
108
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
120 *
121 * Default read function for 8bit buswith
122 */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
132 *
133 * Default read function for 16bit buswith with
134 * endianess conversion
135 */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 16bit buswith without
147 * endianess conversion
148 */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chip: chipnumber to select, -1 for deselect
159 *
160 * Default select function for 1 chip devices.
161 */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164 struct nand_chip *chip = mtd->priv;
165
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
172
173 default:
174 BUG();
175 }
176 }
177
178 /**
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
183 *
184 * Default write function for 8bit buswith
185 */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188 int i;
189 struct nand_chip *chip = mtd->priv;
190
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
200 *
201 * Default read function for 8bit buswith
202 */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205 int i;
206 struct nand_chip *chip = mtd->priv;
207
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
217 *
218 * Default verify function for 8bit buswith
219 */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222 int i;
223 struct nand_chip *chip = mtd->priv;
224
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
229 }
230
231 /**
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 16bit buswith
238 */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
245
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
256 *
257 * Default read function for 16bit buswith
258 */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
265
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
275 *
276 * Default verify function for 16bit buswith
277 */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
288
289 return 0;
290 }
291
292 /**
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
297 *
298 * Check, if the block is bad.
299 */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
305
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
309
310 nand_get_device(chip, mtd, FL_READING);
311
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
316
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
330 }
331
332 if (getchip)
333 nand_release_device(mtd);
334
335 return res;
336 }
337
338 /**
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
342 *
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
351
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
363 */
364 ofs += mtd->oobsize;
365 chip->ops.len = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371 }
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
375 }
376
377 /**
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
381 *
382 * The function expects, that the device is already selected
383 */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
398 *
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
401 */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
404 {
405 struct nand_chip *chip = mtd->priv;
406
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
409
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
417 */
418 static void nand_wait_ready(struct mtd_info *mtd)
419 {
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
422
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432
433 /**
434 * nand_command - [DEFAULT] Send command to NAND device
435 * @mtd: MTD device structure
436 * @command: the command to be sent
437 * @column: the column address for this command, -1 if none
438 * @page_addr: the page address for this command, -1 if none
439 *
440 * Send command to NAND device. This function is used for small page
441 * devices (256/512 Bytes per page)
442 */
443 static void nand_command(struct mtd_info *mtd, unsigned int command,
444 int column, int page_addr)
445 {
446 register struct nand_chip *chip = mtd->priv;
447 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
448
449 /*
450 * Write out the command to the device.
451 */
452 if (command == NAND_CMD_SEQIN) {
453 int readcmd;
454
455 if (column >= mtd->writesize) {
456 /* OOB area */
457 column -= mtd->writesize;
458 readcmd = NAND_CMD_READOOB;
459 } else if (column < 256) {
460 /* First 256 bytes --> READ0 */
461 readcmd = NAND_CMD_READ0;
462 } else {
463 column -= 256;
464 readcmd = NAND_CMD_READ1;
465 }
466 chip->cmd_ctrl(mtd, readcmd, ctrl);
467 ctrl &= ~NAND_CTRL_CHANGE;
468 }
469 chip->cmd_ctrl(mtd, command, ctrl);
470
471 /*
472 * Address cycle, when necessary
473 */
474 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
475 /* Serially input address */
476 if (column != -1) {
477 /* Adjust columns for 16 bit buswidth */
478 if (chip->options & NAND_BUSWIDTH_16)
479 column >>= 1;
480 chip->cmd_ctrl(mtd, column, ctrl);
481 ctrl &= ~NAND_CTRL_CHANGE;
482 }
483 if (page_addr != -1) {
484 chip->cmd_ctrl(mtd, page_addr, ctrl);
485 ctrl &= ~NAND_CTRL_CHANGE;
486 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
487 /* One more address cycle for devices > 32MiB */
488 if (chip->chipsize > (32 << 20))
489 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
490 }
491 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
492
493 /*
494 * program and erase have their own busy handlers
495 * status and sequential in needs no delay
496 */
497 switch (command) {
498
499 case NAND_CMD_PAGEPROG:
500 case NAND_CMD_ERASE1:
501 case NAND_CMD_ERASE2:
502 case NAND_CMD_SEQIN:
503 case NAND_CMD_STATUS:
504 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE);
505 return;
506
507 case NAND_CMD_RESET:
508 if (chip->dev_ready)
509 break;
510 udelay(chip->chip_delay);
511 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 chip->cmd_ctrl(mtd,
514 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516 return;
517
518 /* This applies to read commands */
519 default:
520 /*
521 * If we don't have access to the busy pin, we apply the given
522 * command delay
523 */
524 if (!chip->dev_ready) {
525 udelay(chip->chip_delay);
526 return;
527 }
528 }
529 /* Apply this short delay always to ensure that we do wait tWB in
530 * any case on any machine. */
531 ndelay(100);
532
533 nand_wait_ready(mtd);
534 }
535
536 /**
537 * nand_command_lp - [DEFAULT] Send command to NAND large page device
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
542 *
543 * Send command to NAND device. This is the version for the new large page
544 * devices We dont have the separate regions as we have in the small page
545 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
546 *
547 */
548 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
549 int column, int page_addr)
550 {
551 register struct nand_chip *chip = mtd->priv;
552
553 /* Emulate NAND_CMD_READOOB */
554 if (command == NAND_CMD_READOOB) {
555 column += mtd->writesize;
556 command = NAND_CMD_READ0;
557 }
558
559 /* Command latch cycle */
560 chip->cmd_ctrl(mtd, command & 0xff,
561 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
562
563 if (column != -1 || page_addr != -1) {
564 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
565
566 /* Serially input address */
567 if (column != -1) {
568 /* Adjust columns for 16 bit buswidth */
569 if (chip->options & NAND_BUSWIDTH_16)
570 column >>= 1;
571 chip->cmd_ctrl(mtd, column, ctrl);
572 ctrl &= ~NAND_CTRL_CHANGE;
573 chip->cmd_ctrl(mtd, column >> 8, ctrl);
574 }
575 if (page_addr != -1) {
576 chip->cmd_ctrl(mtd, page_addr, ctrl);
577 chip->cmd_ctrl(mtd, page_addr >> 8,
578 NAND_NCE | NAND_ALE);
579 /* One more address cycle for devices > 128MiB */
580 if (chip->chipsize > (128 << 20))
581 chip->cmd_ctrl(mtd, page_addr >> 16,
582 NAND_NCE | NAND_ALE);
583 }
584 }
585 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
586
587 /*
588 * program and erase have their own busy handlers
589 * status, sequential in, and deplete1 need no delay
590 */
591 switch (command) {
592
593 case NAND_CMD_CACHEDPROG:
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 case NAND_CMD_DEPLETE1:
600 return;
601
602 /*
603 * read error status commands require only a short delay
604 */
605 case NAND_CMD_STATUS_ERROR:
606 case NAND_CMD_STATUS_ERROR0:
607 case NAND_CMD_STATUS_ERROR1:
608 case NAND_CMD_STATUS_ERROR2:
609 case NAND_CMD_STATUS_ERROR3:
610 udelay(chip->chip_delay);
611 return;
612
613 case NAND_CMD_RESET:
614 if (chip->dev_ready)
615 break;
616 udelay(chip->chip_delay);
617 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620 NAND_NCE | NAND_CTRL_CHANGE);
621 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622 return;
623
624 case NAND_CMD_READ0:
625 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
626 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
627 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
628 NAND_NCE | NAND_CTRL_CHANGE);
629
630 /* This applies to read commands */
631 default:
632 /*
633 * If we don't have access to the busy pin, we apply the given
634 * command delay
635 */
636 if (!chip->dev_ready) {
637 udelay(chip->chip_delay);
638 return;
639 }
640 }
641
642 /* Apply this short delay always to ensure that we do wait tWB in
643 * any case on any machine. */
644 ndelay(100);
645
646 nand_wait_ready(mtd);
647 }
648
649 /**
650 * nand_get_device - [GENERIC] Get chip for selected access
651 * @this: the nand chip descriptor
652 * @mtd: MTD device structure
653 * @new_state: the state which is requested
654 *
655 * Get the device and lock it for exclusive access
656 */
657 static int
658 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
659 {
660 spinlock_t *lock = &chip->controller->lock;
661 wait_queue_head_t *wq = &chip->controller->wq;
662 DECLARE_WAITQUEUE(wait, current);
663 retry:
664 spin_lock(lock);
665
666 /* Hardware controller shared among independend devices */
667 /* Hardware controller shared among independend devices */
668 if (!chip->controller->active)
669 chip->controller->active = chip;
670
671 if (chip->controller->active == chip && chip->state == FL_READY) {
672 chip->state = new_state;
673 spin_unlock(lock);
674 return 0;
675 }
676 if (new_state == FL_PM_SUSPENDED) {
677 spin_unlock(lock);
678 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
679 }
680 set_current_state(TASK_UNINTERRUPTIBLE);
681 add_wait_queue(wq, &wait);
682 spin_unlock(lock);
683 schedule();
684 remove_wait_queue(wq, &wait);
685 goto retry;
686 }
687
688 /**
689 * nand_wait - [DEFAULT] wait until the command is done
690 * @mtd: MTD device structure
691 * @this: NAND chip structure
692 * @state: state to select the max. timeout value
693 *
694 * Wait for command done. This applies to erase and program only
695 * Erase can take up to 400ms and program up to 20ms according to
696 * general NAND and SmartMedia specs
697 *
698 */
699 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip, int state)
700 {
701
702 unsigned long timeo = jiffies;
703 int status;
704
705 if (state == FL_ERASING)
706 timeo += (HZ * 400) / 1000;
707 else
708 timeo += (HZ * 20) / 1000;
709
710 led_trigger_event(nand_led_trigger, LED_FULL);
711
712 /* Apply this short delay always to ensure that we do wait tWB in
713 * any case on any machine. */
714 ndelay(100);
715
716 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
717 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
718 else
719 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
720
721 while (time_before(jiffies, timeo)) {
722 /* Check, if we were interrupted */
723 if (chip->state != state)
724 return 0;
725
726 if (chip->dev_ready) {
727 if (chip->dev_ready(mtd))
728 break;
729 } else {
730 if (chip->read_byte(mtd) & NAND_STATUS_READY)
731 break;
732 }
733 cond_resched();
734 }
735 led_trigger_event(nand_led_trigger, LED_OFF);
736
737 status = (int)chip->read_byte(mtd);
738 return status;
739 }
740
741 /**
742 * nand_read_page_raw - [Intern] read raw page data without ecc
743 * @mtd: mtd info structure
744 * @chip: nand chip info structure
745 * @buf: buffer to store read data
746 */
747 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
748 uint8_t *buf)
749 {
750 chip->read_buf(mtd, buf, mtd->writesize);
751 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
752 return 0;
753 }
754
755 /**
756 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
757 * @mtd: mtd info structure
758 * @chip: nand chip info structure
759 * @buf: buffer to store read data
760 */
761 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
762 uint8_t *buf)
763 {
764 int i, eccsize = chip->ecc.size;
765 int eccbytes = chip->ecc.bytes;
766 int eccsteps = chip->ecc.steps;
767 uint8_t *p = buf;
768 uint8_t *ecc_calc = chip->buffers.ecccalc;
769 uint8_t *ecc_code = chip->buffers.ecccode;
770 int *eccpos = chip->ecc.layout->eccpos;
771
772 nand_read_page_raw(mtd, chip, buf);
773
774 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
775 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
776
777 for (i = 0; i < chip->ecc.total; i++)
778 ecc_code[i] = chip->oob_poi[eccpos[i]];
779
780 eccsteps = chip->ecc.steps;
781 p = buf;
782
783 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
784 int stat;
785
786 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
787 if (stat == -1)
788 mtd->ecc_stats.failed++;
789 else
790 mtd->ecc_stats.corrected += stat;
791 }
792 return 0;
793 }
794
795 /**
796 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
797 * @mtd: mtd info structure
798 * @chip: nand chip info structure
799 * @buf: buffer to store read data
800 *
801 * Not for syndrome calculating ecc controllers which need a special oob layout
802 */
803 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
804 uint8_t *buf)
805 {
806 int i, eccsize = chip->ecc.size;
807 int eccbytes = chip->ecc.bytes;
808 int eccsteps = chip->ecc.steps;
809 uint8_t *p = buf;
810 uint8_t *ecc_calc = chip->buffers.ecccalc;
811 uint8_t *ecc_code = chip->buffers.ecccode;
812 int *eccpos = chip->ecc.layout->eccpos;
813
814 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
815 chip->ecc.hwctl(mtd, NAND_ECC_READ);
816 chip->read_buf(mtd, p, eccsize);
817 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
818 }
819 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
820
821 for (i = 0; i < chip->ecc.total; i++)
822 ecc_code[i] = chip->oob_poi[eccpos[i]];
823
824 eccsteps = chip->ecc.steps;
825 p = buf;
826
827 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
828 int stat;
829
830 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
831 if (stat == -1)
832 mtd->ecc_stats.failed++;
833 else
834 mtd->ecc_stats.corrected += stat;
835 }
836 return 0;
837 }
838
839 /**
840 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
841 * @mtd: mtd info structure
842 * @chip: nand chip info structure
843 * @buf: buffer to store read data
844 *
845 * The hw generator calculates the error syndrome automatically. Therefor
846 * we need a special oob layout and handling.
847 */
848 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
849 uint8_t *buf)
850 {
851 int i, eccsize = chip->ecc.size;
852 int eccbytes = chip->ecc.bytes;
853 int eccsteps = chip->ecc.steps;
854 uint8_t *p = buf;
855 uint8_t *oob = chip->oob_poi;
856
857 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
858 int stat;
859
860 chip->ecc.hwctl(mtd, NAND_ECC_READ);
861 chip->read_buf(mtd, p, eccsize);
862
863 if (chip->ecc.prepad) {
864 chip->read_buf(mtd, oob, chip->ecc.prepad);
865 oob += chip->ecc.prepad;
866 }
867
868 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
869 chip->read_buf(mtd, oob, eccbytes);
870 stat = chip->ecc.correct(mtd, p, oob, NULL);
871
872 if (stat == -1)
873 mtd->ecc_stats.failed++;
874 else
875 mtd->ecc_stats.corrected += stat;
876
877 oob += eccbytes;
878
879 if (chip->ecc.postpad) {
880 chip->read_buf(mtd, oob, chip->ecc.postpad);
881 oob += chip->ecc.postpad;
882 }
883 }
884
885 /* Calculate remaining oob bytes */
886 i = oob - chip->oob_poi;
887 if (i)
888 chip->read_buf(mtd, oob, i);
889
890 return 0;
891 }
892
893 /**
894 * nand_transfer_oob - [Internal] Transfer oob to client buffer
895 * @chip: nand chip structure
896 * @ops: oob ops structure
897 */
898 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
899 struct mtd_oob_ops *ops)
900 {
901 size_t len = ops->ooblen;
902
903 switch(ops->mode) {
904
905 case MTD_OOB_PLACE:
906 case MTD_OOB_RAW:
907 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
908 return oob + len;
909
910 case MTD_OOB_AUTO: {
911 struct nand_oobfree *free = chip->ecc.layout->oobfree;
912 size_t bytes;
913
914 for(; free->length && len; free++, len -= bytes) {
915 bytes = min_t(size_t, len, free->length);
916
917 memcpy(oob, chip->oob_poi + free->offset, bytes);
918 oob += bytes;
919 }
920 return oob;
921 }
922 default:
923 BUG();
924 }
925 return NULL;
926 }
927
928 /**
929 * nand_do_read_ops - [Internal] Read data with ECC
930 *
931 * @mtd: MTD device structure
932 * @from: offset to read from
933 *
934 * Internal function. Called with chip held.
935 */
936 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
937 struct mtd_oob_ops *ops)
938 {
939 int chipnr, page, realpage, col, bytes, aligned;
940 struct nand_chip *chip = mtd->priv;
941 struct mtd_ecc_stats stats;
942 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
943 int sndcmd = 1;
944 int ret = 0;
945 uint32_t readlen = ops->len;
946 uint8_t *bufpoi, *oob, *buf;
947
948 stats = mtd->ecc_stats;
949
950 chipnr = (int)(from >> chip->chip_shift);
951 chip->select_chip(mtd, chipnr);
952
953 realpage = (int)(from >> chip->page_shift);
954 page = realpage & chip->pagemask;
955
956 col = (int)(from & (mtd->writesize - 1));
957 chip->oob_poi = chip->buffers.oobrbuf;
958
959 buf = ops->datbuf;
960 oob = ops->oobbuf;
961
962 while(1) {
963 bytes = min(mtd->writesize - col, readlen);
964 aligned = (bytes == mtd->writesize);
965
966 /* Is the current page in the buffer ? */
967 if (realpage != chip->pagebuf || oob) {
968 bufpoi = aligned ? buf : chip->buffers.databuf;
969
970 if (likely(sndcmd)) {
971 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
972 sndcmd = 0;
973 }
974
975 /* Now read the page into the buffer */
976 ret = chip->ecc.read_page(mtd, chip, bufpoi);
977 if (ret < 0)
978 break;
979
980 /* Transfer not aligned data */
981 if (!aligned) {
982 chip->pagebuf = realpage;
983 memcpy(buf, chip->buffers.databuf + col, bytes);
984 }
985
986 buf += bytes;
987
988 if (unlikely(oob)) {
989 /* Raw mode does data:oob:data:oob */
990 if (ops->mode != MTD_OOB_RAW)
991 oob = nand_transfer_oob(chip, oob, ops);
992 else
993 buf = nand_transfer_oob(chip, buf, ops);
994 }
995
996 if (!(chip->options & NAND_NO_READRDY)) {
997 /*
998 * Apply delay or wait for ready/busy pin. Do
999 * this before the AUTOINCR check, so no
1000 * problems arise if a chip which does auto
1001 * increment is marked as NOAUTOINCR by the
1002 * board driver.
1003 */
1004 if (!chip->dev_ready)
1005 udelay(chip->chip_delay);
1006 else
1007 nand_wait_ready(mtd);
1008 }
1009 } else {
1010 memcpy(buf, chip->buffers.databuf + col, bytes);
1011 buf += bytes;
1012 }
1013
1014 readlen -= bytes;
1015
1016 if (!readlen)
1017 break;
1018
1019 /* For subsequent reads align to page boundary. */
1020 col = 0;
1021 /* Increment page address */
1022 realpage++;
1023
1024 page = realpage & chip->pagemask;
1025 /* Check, if we cross a chip boundary */
1026 if (!page) {
1027 chipnr++;
1028 chip->select_chip(mtd, -1);
1029 chip->select_chip(mtd, chipnr);
1030 }
1031
1032 /* Check, if the chip supports auto page increment
1033 * or if we have hit a block boundary.
1034 */
1035 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1036 sndcmd = 1;
1037 }
1038
1039 ops->retlen = ops->len - (size_t) readlen;
1040
1041 if (ret)
1042 return ret;
1043
1044 if (mtd->ecc_stats.failed - stats.failed)
1045 return -EBADMSG;
1046
1047 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1048 }
1049
1050 /**
1051 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1052 * @mtd: MTD device structure
1053 * @from: offset to read from
1054 * @len: number of bytes to read
1055 * @retlen: pointer to variable to store the number of read bytes
1056 * @buf: the databuffer to put data
1057 *
1058 * Get hold of the chip and call nand_do_read
1059 */
1060 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1061 size_t *retlen, uint8_t *buf)
1062 {
1063 struct nand_chip *chip = mtd->priv;
1064 int ret;
1065
1066 /* Do not allow reads past end of device */
1067 if ((from + len) > mtd->size)
1068 return -EINVAL;
1069 if (!len)
1070 return 0;
1071
1072 nand_get_device(chip, mtd, FL_READING);
1073
1074 chip->ops.len = len;
1075 chip->ops.datbuf = buf;
1076 chip->ops.oobbuf = NULL;
1077
1078 ret = nand_do_read_ops(mtd, from, &chip->ops);
1079
1080 nand_release_device(mtd);
1081
1082 *retlen = chip->ops.retlen;
1083 return ret;
1084 }
1085
1086 /**
1087 * nand_do_read_oob - [Intern] NAND read out-of-band
1088 * @mtd: MTD device structure
1089 * @from: offset to read from
1090 * @ops: oob operations description structure
1091 *
1092 * NAND read out-of-band data from the spare area
1093 */
1094 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1095 struct mtd_oob_ops *ops)
1096 {
1097 int col, page, realpage, chipnr, sndcmd = 1;
1098 struct nand_chip *chip = mtd->priv;
1099 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1100 int direct, bytes, readlen = ops->len;
1101 uint8_t *bufpoi, *buf = ops->oobbuf;
1102
1103 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1104 (unsigned long long)from, readlen);
1105
1106 chipnr = (int)(from >> chip->chip_shift);
1107 chip->select_chip(mtd, chipnr);
1108
1109 /* Shift to get page */
1110 realpage = (int)(from >> chip->page_shift);
1111 page = realpage & chip->pagemask;
1112
1113 if (ops->mode != MTD_OOB_AUTO) {
1114 col = ops->ooboffs;
1115 direct = 1;
1116 } else {
1117 col = 0;
1118 direct = 0;
1119 }
1120
1121 while(1) {
1122 bytes = direct ? ops->ooblen : mtd->oobsize;
1123 bufpoi = direct ? buf : chip->buffers.oobrbuf;
1124
1125 if (likely(sndcmd)) {
1126 chip->cmdfunc(mtd, NAND_CMD_READOOB, col, page);
1127 sndcmd = 0;
1128 }
1129
1130 chip->read_buf(mtd, bufpoi, bytes);
1131
1132 if (unlikely(!direct))
1133 buf = nand_transfer_oob(chip, buf, ops);
1134 else
1135 buf += ops->ooblen;
1136
1137 readlen -= ops->ooblen;
1138 if (!readlen)
1139 break;
1140
1141 if (!(chip->options & NAND_NO_READRDY)) {
1142 /*
1143 * Apply delay or wait for ready/busy pin. Do this
1144 * before the AUTOINCR check, so no problems arise if a
1145 * chip which does auto increment is marked as
1146 * NOAUTOINCR by the board driver.
1147 */
1148 if (!chip->dev_ready)
1149 udelay(chip->chip_delay);
1150 else
1151 nand_wait_ready(mtd);
1152 }
1153
1154 /* Increment page address */
1155 realpage++;
1156
1157 page = realpage & chip->pagemask;
1158 /* Check, if we cross a chip boundary */
1159 if (!page) {
1160 chipnr++;
1161 chip->select_chip(mtd, -1);
1162 chip->select_chip(mtd, chipnr);
1163 }
1164
1165 /* Check, if the chip supports auto page increment
1166 * or if we have hit a block boundary.
1167 */
1168 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1169 sndcmd = 1;
1170 }
1171
1172 ops->retlen = ops->len;
1173 return 0;
1174 }
1175
1176 /**
1177 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1178 * @mtd: MTD device structure
1179 * @from: offset to read from
1180 * @ops: oob operation description structure
1181 *
1182 * NAND read data and/or out-of-band data
1183 */
1184 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1185 struct mtd_oob_ops *ops)
1186 {
1187 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1188 uint8_t *buf) = NULL;
1189 struct nand_chip *chip = mtd->priv;
1190 int ret = -ENOTSUPP;
1191
1192 ops->retlen = 0;
1193
1194 /* Do not allow reads past end of device */
1195 if ((from + ops->len) > mtd->size) {
1196 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1197 "Attempt read beyond end of device\n");
1198 return -EINVAL;
1199 }
1200
1201 nand_get_device(chip, mtd, FL_READING);
1202
1203 switch(ops->mode) {
1204 case MTD_OOB_PLACE:
1205 case MTD_OOB_AUTO:
1206 break;
1207
1208 case MTD_OOB_RAW:
1209 /* Replace the read_page algorithm temporary */
1210 read_page = chip->ecc.read_page;
1211 chip->ecc.read_page = nand_read_page_raw;
1212 break;
1213
1214 default:
1215 goto out;
1216 }
1217
1218 if (!ops->datbuf)
1219 ret = nand_do_read_oob(mtd, from, ops);
1220 else
1221 ret = nand_do_read_ops(mtd, from, ops);
1222
1223 if (unlikely(ops->mode == MTD_OOB_RAW))
1224 chip->ecc.read_page = read_page;
1225 out:
1226 nand_release_device(mtd);
1227 return ret;
1228 }
1229
1230
1231 /**
1232 * nand_write_page_raw - [Intern] raw page write function
1233 * @mtd: mtd info structure
1234 * @chip: nand chip info structure
1235 * @buf: data buffer
1236 */
1237 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1238 const uint8_t *buf)
1239 {
1240 chip->write_buf(mtd, buf, mtd->writesize);
1241 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1242 }
1243
1244 /**
1245 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1246 * @mtd: mtd info structure
1247 * @chip: nand chip info structure
1248 * @buf: data buffer
1249 */
1250 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1251 const uint8_t *buf)
1252 {
1253 int i, eccsize = chip->ecc.size;
1254 int eccbytes = chip->ecc.bytes;
1255 int eccsteps = chip->ecc.steps;
1256 uint8_t *ecc_calc = chip->buffers.ecccalc;
1257 const uint8_t *p = buf;
1258 int *eccpos = chip->ecc.layout->eccpos;
1259
1260 /* Software ecc calculation */
1261 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1262 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1263
1264 for (i = 0; i < chip->ecc.total; i++)
1265 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1266
1267 nand_write_page_raw(mtd, chip, buf);
1268 }
1269
1270 /**
1271 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1272 * @mtd: mtd info structure
1273 * @chip: nand chip info structure
1274 * @buf: data buffer
1275 */
1276 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1277 const uint8_t *buf)
1278 {
1279 int i, eccsize = chip->ecc.size;
1280 int eccbytes = chip->ecc.bytes;
1281 int eccsteps = chip->ecc.steps;
1282 uint8_t *ecc_calc = chip->buffers.ecccalc;
1283 const uint8_t *p = buf;
1284 int *eccpos = chip->ecc.layout->eccpos;
1285
1286 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1287 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1288 chip->write_buf(mtd, p, eccsize);
1289 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1290 }
1291
1292 for (i = 0; i < chip->ecc.total; i++)
1293 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1294
1295 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1296 }
1297
1298 /**
1299 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1300 * @mtd: mtd info structure
1301 * @chip: nand chip info structure
1302 * @buf: data buffer
1303 *
1304 * The hw generator calculates the error syndrome automatically. Therefor
1305 * we need a special oob layout and handling.
1306 */
1307 static void nand_write_page_syndrome(struct mtd_info *mtd,
1308 struct nand_chip *chip, const uint8_t *buf)
1309 {
1310 int i, eccsize = chip->ecc.size;
1311 int eccbytes = chip->ecc.bytes;
1312 int eccsteps = chip->ecc.steps;
1313 const uint8_t *p = buf;
1314 uint8_t *oob = chip->oob_poi;
1315
1316 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1317
1318 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1319 chip->write_buf(mtd, p, eccsize);
1320
1321 if (chip->ecc.prepad) {
1322 chip->write_buf(mtd, oob, chip->ecc.prepad);
1323 oob += chip->ecc.prepad;
1324 }
1325
1326 chip->ecc.calculate(mtd, p, oob);
1327 chip->write_buf(mtd, oob, eccbytes);
1328 oob += eccbytes;
1329
1330 if (chip->ecc.postpad) {
1331 chip->write_buf(mtd, oob, chip->ecc.postpad);
1332 oob += chip->ecc.postpad;
1333 }
1334 }
1335
1336 /* Calculate remaining oob bytes */
1337 i = oob - chip->oob_poi;
1338 if (i)
1339 chip->write_buf(mtd, oob, i);
1340 }
1341
1342 /**
1343 * nand_write_page - [INTERNAL] write one page
1344 * @mtd: MTD device structure
1345 * @chip: NAND chip descriptor
1346 * @buf: the data to write
1347 * @page: page number to write
1348 * @cached: cached programming
1349 */
1350 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1351 const uint8_t *buf, int page, int cached)
1352 {
1353 int status;
1354
1355 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1356
1357 chip->ecc.write_page(mtd, chip, buf);
1358
1359 /*
1360 * Cached progamming disabled for now, Not sure if its worth the
1361 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1362 */
1363 cached = 0;
1364
1365 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1366
1367 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1368 status = chip->waitfunc(mtd, chip, FL_WRITING);
1369 /*
1370 * See if operation failed and additional status checks are
1371 * available
1372 */
1373 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1374 status = chip->errstat(mtd, chip, FL_WRITING, status,
1375 page);
1376
1377 if (status & NAND_STATUS_FAIL)
1378 return -EIO;
1379 } else {
1380 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1381 status = chip->waitfunc(mtd, chip, FL_WRITING);
1382 }
1383
1384 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1385 /* Send command to read back the data */
1386 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1387
1388 if (chip->verify_buf(mtd, buf, mtd->writesize))
1389 return -EIO;
1390 #endif
1391 return 0;
1392 }
1393
1394 /**
1395 * nand_fill_oob - [Internal] Transfer client buffer to oob
1396 * @chip: nand chip structure
1397 * @oob: oob data buffer
1398 * @ops: oob ops structure
1399 */
1400 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1401 struct mtd_oob_ops *ops)
1402 {
1403 size_t len = ops->ooblen;
1404
1405 switch(ops->mode) {
1406
1407 case MTD_OOB_PLACE:
1408 case MTD_OOB_RAW:
1409 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1410 return oob + len;
1411
1412 case MTD_OOB_AUTO: {
1413 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1414 size_t bytes;
1415
1416 for(; free->length && len; free++, len -= bytes) {
1417 bytes = min_t(size_t, len, free->length);
1418 memcpy(chip->oob_poi + free->offset, oob, bytes);
1419 oob += bytes;
1420 }
1421 return oob;
1422 }
1423 default:
1424 BUG();
1425 }
1426 return NULL;
1427 }
1428
1429 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1430
1431 /**
1432 * nand_do_write_ops - [Internal] NAND write with ECC
1433 * @mtd: MTD device structure
1434 * @to: offset to write to
1435 * @ops: oob operations description structure
1436 *
1437 * NAND write with ECC
1438 */
1439 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1440 struct mtd_oob_ops *ops)
1441 {
1442 int chipnr, realpage, page, blockmask;
1443 struct nand_chip *chip = mtd->priv;
1444 uint32_t writelen = ops->len;
1445 uint8_t *oob = ops->oobbuf;
1446 uint8_t *buf = ops->datbuf;
1447 int bytes = mtd->writesize;
1448 int ret;
1449
1450 ops->retlen = 0;
1451
1452 /* reject writes, which are not page aligned */
1453 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1454 printk(KERN_NOTICE "nand_write: "
1455 "Attempt to write not page aligned data\n");
1456 return -EINVAL;
1457 }
1458
1459 if (!writelen)
1460 return 0;
1461
1462 /* Check, if it is write protected */
1463 if (nand_check_wp(mtd))
1464 return -EIO;
1465
1466 chipnr = (int)(to >> chip->chip_shift);
1467 chip->select_chip(mtd, chipnr);
1468
1469 realpage = (int)(to >> chip->page_shift);
1470 page = realpage & chip->pagemask;
1471 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1472
1473 /* Invalidate the page cache, when we write to the cached page */
1474 if (to <= (chip->pagebuf << chip->page_shift) &&
1475 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1476 chip->pagebuf = -1;
1477
1478 chip->oob_poi = chip->buffers.oobwbuf;
1479
1480 while(1) {
1481 int cached = writelen > bytes && page != blockmask;
1482
1483 if (unlikely(oob))
1484 oob = nand_fill_oob(chip, oob, ops);
1485
1486 ret = nand_write_page(mtd, chip, buf, page, cached);
1487 if (ret)
1488 break;
1489
1490 writelen -= bytes;
1491 if (!writelen)
1492 break;
1493
1494 buf += bytes;
1495 realpage++;
1496
1497 page = realpage & chip->pagemask;
1498 /* Check, if we cross a chip boundary */
1499 if (!page) {
1500 chipnr++;
1501 chip->select_chip(mtd, -1);
1502 chip->select_chip(mtd, chipnr);
1503 }
1504 }
1505
1506 if (unlikely(oob))
1507 memset(chip->oob_poi, 0xff, mtd->oobsize);
1508
1509 ops->retlen = ops->len - writelen;
1510 return ret;
1511 }
1512
1513 /**
1514 * nand_write - [MTD Interface] NAND write with ECC
1515 * @mtd: MTD device structure
1516 * @to: offset to write to
1517 * @len: number of bytes to write
1518 * @retlen: pointer to variable to store the number of written bytes
1519 * @buf: the data to write
1520 *
1521 * NAND write with ECC
1522 */
1523 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1524 size_t *retlen, const uint8_t *buf)
1525 {
1526 struct nand_chip *chip = mtd->priv;
1527 int ret;
1528
1529 /* Do not allow reads past end of device */
1530 if ((to + len) > mtd->size)
1531 return -EINVAL;
1532 if (!len)
1533 return 0;
1534
1535 nand_get_device(chip, mtd, FL_READING);
1536
1537 chip->ops.len = len;
1538 chip->ops.datbuf = (uint8_t *)buf;
1539 chip->ops.oobbuf = NULL;
1540
1541 ret = nand_do_write_ops(mtd, to, &chip->ops);
1542
1543 nand_release_device(mtd);
1544
1545 *retlen = chip->ops.retlen;
1546 return ret;
1547 }
1548
1549 /**
1550 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1551 * @mtd: MTD device structure
1552 * @to: offset to write to
1553 * @ops: oob operation description structure
1554 *
1555 * NAND write out-of-band
1556 */
1557 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1558 struct mtd_oob_ops *ops)
1559 {
1560 int chipnr, page, status;
1561 struct nand_chip *chip = mtd->priv;
1562
1563 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1564 (unsigned int)to, (int)ops->len);
1565
1566 /* Do not allow write past end of page */
1567 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1568 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1569 "Attempt to write past end of page\n");
1570 return -EINVAL;
1571 }
1572
1573 chipnr = (int)(to >> chip->chip_shift);
1574 chip->select_chip(mtd, chipnr);
1575
1576 /* Shift to get page */
1577 page = (int)(to >> chip->page_shift);
1578
1579 /*
1580 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1581 * of my DiskOnChip 2000 test units) will clear the whole data page too
1582 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1583 * it in the doc2000 driver in August 1999. dwmw2.
1584 */
1585 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1586
1587 /* Check, if it is write protected */
1588 if (nand_check_wp(mtd))
1589 return -EROFS;
1590
1591 /* Invalidate the page cache, if we write to the cached page */
1592 if (page == chip->pagebuf)
1593 chip->pagebuf = -1;
1594
1595 if (ops->mode == MTD_OOB_AUTO || NAND_MUST_PAD(chip)) {
1596 chip->oob_poi = chip->buffers.oobwbuf;
1597 memset(chip->oob_poi, 0xff, mtd->oobsize);
1598 nand_fill_oob(chip, ops->oobbuf, ops);
1599 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize,
1600 page & chip->pagemask);
1601 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1602 memset(chip->oob_poi, 0xff, mtd->oobsize);
1603 } else {
1604 chip->cmdfunc(mtd, NAND_CMD_SEQIN,
1605 mtd->writesize + ops->ooboffs,
1606 page & chip->pagemask);
1607 chip->write_buf(mtd, ops->oobbuf, ops->len);
1608 }
1609
1610 /* Send command to program the OOB data */
1611 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1612
1613 status = chip->waitfunc(mtd, chip, FL_WRITING);
1614
1615 /* See if device thinks it succeeded */
1616 if (status & NAND_STATUS_FAIL) {
1617 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1618 "Failed write, page 0x%08x\n", page);
1619 return -EIO;
1620 }
1621 ops->retlen = ops->len;
1622
1623 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1624 if (ops->mode != MTD_OOB_AUTO) {
1625 /* Send command to read back the data */
1626 chip->cmdfunc(mtd, NAND_CMD_READOOB, ops->ooboffs,
1627 page & chip->pagemask);
1628
1629 if (chip->verify_buf(mtd, ops->oobbuf, ops->len)) {
1630 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1631 "Failed write verify, page 0x%08x\n", page);
1632 return -EIO;
1633 }
1634 }
1635 #endif
1636 return 0;
1637 }
1638
1639 /**
1640 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1641 * @mtd: MTD device structure
1642 * @from: offset to read from
1643 * @ops: oob operation description structure
1644 */
1645 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1646 struct mtd_oob_ops *ops)
1647 {
1648 void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1649 const uint8_t *buf) = NULL;
1650 struct nand_chip *chip = mtd->priv;
1651 int ret = -ENOTSUPP;
1652
1653 ops->retlen = 0;
1654
1655 /* Do not allow writes past end of device */
1656 if ((to + ops->len) > mtd->size) {
1657 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1658 "Attempt read beyond end of device\n");
1659 return -EINVAL;
1660 }
1661
1662 nand_get_device(chip, mtd, FL_READING);
1663
1664 switch(ops->mode) {
1665 case MTD_OOB_PLACE:
1666 case MTD_OOB_AUTO:
1667 break;
1668
1669 case MTD_OOB_RAW:
1670 /* Replace the write_page algorithm temporary */
1671 write_page = chip->ecc.write_page;
1672 chip->ecc.write_page = nand_write_page_raw;
1673 break;
1674
1675 default:
1676 goto out;
1677 }
1678
1679 if (!ops->datbuf)
1680 ret = nand_do_write_oob(mtd, to, ops);
1681 else
1682 ret = nand_do_write_ops(mtd, to, ops);
1683
1684 if (unlikely(ops->mode == MTD_OOB_RAW))
1685 chip->ecc.write_page = write_page;
1686 out:
1687 nand_release_device(mtd);
1688 return ret;
1689 }
1690
1691 /**
1692 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1693 * @mtd: MTD device structure
1694 * @page: the page address of the block which will be erased
1695 *
1696 * Standard erase command for NAND chips
1697 */
1698 static void single_erase_cmd(struct mtd_info *mtd, int page)
1699 {
1700 struct nand_chip *chip = mtd->priv;
1701 /* Send commands to erase a block */
1702 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1703 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1704 }
1705
1706 /**
1707 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1708 * @mtd: MTD device structure
1709 * @page: the page address of the block which will be erased
1710 *
1711 * AND multi block erase command function
1712 * Erase 4 consecutive blocks
1713 */
1714 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1715 {
1716 struct nand_chip *chip = mtd->priv;
1717 /* Send commands to erase a block */
1718 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1719 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1720 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1721 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1722 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1723 }
1724
1725 /**
1726 * nand_erase - [MTD Interface] erase block(s)
1727 * @mtd: MTD device structure
1728 * @instr: erase instruction
1729 *
1730 * Erase one ore more blocks
1731 */
1732 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1733 {
1734 return nand_erase_nand(mtd, instr, 0);
1735 }
1736
1737 #define BBT_PAGE_MASK 0xffffff3f
1738 /**
1739 * nand_erase_nand - [Internal] erase block(s)
1740 * @mtd: MTD device structure
1741 * @instr: erase instruction
1742 * @allowbbt: allow erasing the bbt area
1743 *
1744 * Erase one ore more blocks
1745 */
1746 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1747 int allowbbt)
1748 {
1749 int page, len, status, pages_per_block, ret, chipnr;
1750 struct nand_chip *chip = mtd->priv;
1751 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1752 unsigned int bbt_masked_page = 0xffffffff;
1753
1754 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1755 (unsigned int)instr->addr, (unsigned int)instr->len);
1756
1757 /* Start address must align on block boundary */
1758 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1759 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1760 return -EINVAL;
1761 }
1762
1763 /* Length must align on block boundary */
1764 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1765 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1766 "Length not block aligned\n");
1767 return -EINVAL;
1768 }
1769
1770 /* Do not allow erase past end of device */
1771 if ((instr->len + instr->addr) > mtd->size) {
1772 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1773 "Erase past end of device\n");
1774 return -EINVAL;
1775 }
1776
1777 instr->fail_addr = 0xffffffff;
1778
1779 /* Grab the lock and see if the device is available */
1780 nand_get_device(chip, mtd, FL_ERASING);
1781
1782 /* Shift to get first page */
1783 page = (int)(instr->addr >> chip->page_shift);
1784 chipnr = (int)(instr->addr >> chip->chip_shift);
1785
1786 /* Calculate pages in each block */
1787 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1788
1789 /* Select the NAND device */
1790 chip->select_chip(mtd, chipnr);
1791
1792 /* Check, if it is write protected */
1793 if (nand_check_wp(mtd)) {
1794 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1795 "Device is write protected!!!\n");
1796 instr->state = MTD_ERASE_FAILED;
1797 goto erase_exit;
1798 }
1799
1800 /*
1801 * If BBT requires refresh, set the BBT page mask to see if the BBT
1802 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1803 * can not be matched. This is also done when the bbt is actually
1804 * erased to avoid recusrsive updates
1805 */
1806 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1807 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1808
1809 /* Loop through the pages */
1810 len = instr->len;
1811
1812 instr->state = MTD_ERASING;
1813
1814 while (len) {
1815 /*
1816 * heck if we have a bad block, we do not erase bad blocks !
1817 */
1818 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1819 chip->page_shift, 0, allowbbt)) {
1820 printk(KERN_WARNING "nand_erase: attempt to erase a "
1821 "bad block at page 0x%08x\n", page);
1822 instr->state = MTD_ERASE_FAILED;
1823 goto erase_exit;
1824 }
1825
1826 /*
1827 * Invalidate the page cache, if we erase the block which
1828 * contains the current cached page
1829 */
1830 if (page <= chip->pagebuf && chip->pagebuf <
1831 (page + pages_per_block))
1832 chip->pagebuf = -1;
1833
1834 chip->erase_cmd(mtd, page & chip->pagemask);
1835
1836 status = chip->waitfunc(mtd, chip, FL_ERASING);
1837
1838 /*
1839 * See if operation failed and additional status checks are
1840 * available
1841 */
1842 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1843 status = chip->errstat(mtd, chip, FL_ERASING,
1844 status, page);
1845
1846 /* See if block erase succeeded */
1847 if (status & NAND_STATUS_FAIL) {
1848 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1849 "Failed erase, page 0x%08x\n", page);
1850 instr->state = MTD_ERASE_FAILED;
1851 instr->fail_addr = (page << chip->page_shift);
1852 goto erase_exit;
1853 }
1854
1855 /*
1856 * If BBT requires refresh, set the BBT rewrite flag to the
1857 * page being erased
1858 */
1859 if (bbt_masked_page != 0xffffffff &&
1860 (page & BBT_PAGE_MASK) == bbt_masked_page)
1861 rewrite_bbt[chipnr] = (page << chip->page_shift);
1862
1863 /* Increment page address and decrement length */
1864 len -= (1 << chip->phys_erase_shift);
1865 page += pages_per_block;
1866
1867 /* Check, if we cross a chip boundary */
1868 if (len && !(page & chip->pagemask)) {
1869 chipnr++;
1870 chip->select_chip(mtd, -1);
1871 chip->select_chip(mtd, chipnr);
1872
1873 /*
1874 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1875 * page mask to see if this BBT should be rewritten
1876 */
1877 if (bbt_masked_page != 0xffffffff &&
1878 (chip->bbt_td->options & NAND_BBT_PERCHIP))
1879 bbt_masked_page = chip->bbt_td->pages[chipnr] &
1880 BBT_PAGE_MASK;
1881 }
1882 }
1883 instr->state = MTD_ERASE_DONE;
1884
1885 erase_exit:
1886
1887 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1888 /* Do call back function */
1889 if (!ret)
1890 mtd_erase_callback(instr);
1891
1892 /* Deselect and wake up anyone waiting on the device */
1893 nand_release_device(mtd);
1894
1895 /*
1896 * If BBT requires refresh and erase was successful, rewrite any
1897 * selected bad block tables
1898 */
1899 if (bbt_masked_page == 0xffffffff || ret)
1900 return ret;
1901
1902 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
1903 if (!rewrite_bbt[chipnr])
1904 continue;
1905 /* update the BBT for chip */
1906 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
1907 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
1908 chip->bbt_td->pages[chipnr]);
1909 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
1910 }
1911
1912 /* Return more or less happy */
1913 return ret;
1914 }
1915
1916 /**
1917 * nand_sync - [MTD Interface] sync
1918 * @mtd: MTD device structure
1919 *
1920 * Sync is actually a wait for chip ready function
1921 */
1922 static void nand_sync(struct mtd_info *mtd)
1923 {
1924 struct nand_chip *chip = mtd->priv;
1925
1926 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
1927
1928 /* Grab the lock and see if the device is available */
1929 nand_get_device(chip, mtd, FL_SYNCING);
1930 /* Release it and go back */
1931 nand_release_device(mtd);
1932 }
1933
1934 /**
1935 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
1936 * @mtd: MTD device structure
1937 * @ofs: offset relative to mtd start
1938 */
1939 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1940 {
1941 /* Check for invalid offset */
1942 if (offs > mtd->size)
1943 return -EINVAL;
1944
1945 return nand_block_checkbad(mtd, offs, 1, 0);
1946 }
1947
1948 /**
1949 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
1950 * @mtd: MTD device structure
1951 * @ofs: offset relative to mtd start
1952 */
1953 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1954 {
1955 struct nand_chip *chip = mtd->priv;
1956 int ret;
1957
1958 if ((ret = nand_block_isbad(mtd, ofs))) {
1959 /* If it was bad already, return success and do nothing. */
1960 if (ret > 0)
1961 return 0;
1962 return ret;
1963 }
1964
1965 return chip->block_markbad(mtd, ofs);
1966 }
1967
1968 /**
1969 * nand_suspend - [MTD Interface] Suspend the NAND flash
1970 * @mtd: MTD device structure
1971 */
1972 static int nand_suspend(struct mtd_info *mtd)
1973 {
1974 struct nand_chip *chip = mtd->priv;
1975
1976 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
1977 }
1978
1979 /**
1980 * nand_resume - [MTD Interface] Resume the NAND flash
1981 * @mtd: MTD device structure
1982 */
1983 static void nand_resume(struct mtd_info *mtd)
1984 {
1985 struct nand_chip *chip = mtd->priv;
1986
1987 if (chip->state == FL_PM_SUSPENDED)
1988 nand_release_device(mtd);
1989 else
1990 printk(KERN_ERR "nand_resume() called for a chip which is not "
1991 "in suspended state\n");
1992 }
1993
1994 /*
1995 * Set default functions
1996 */
1997 static void nand_set_defaults(struct nand_chip *chip, int busw)
1998 {
1999 /* check for proper chip_delay setup, set 20us if not */
2000 if (!chip->chip_delay)
2001 chip->chip_delay = 20;
2002
2003 /* check, if a user supplied command function given */
2004 if (chip->cmdfunc == NULL)
2005 chip->cmdfunc = nand_command;
2006
2007 /* check, if a user supplied wait function given */
2008 if (chip->waitfunc == NULL)
2009 chip->waitfunc = nand_wait;
2010
2011 if (!chip->select_chip)
2012 chip->select_chip = nand_select_chip;
2013 if (!chip->read_byte)
2014 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2015 if (!chip->read_word)
2016 chip->read_word = nand_read_word;
2017 if (!chip->block_bad)
2018 chip->block_bad = nand_block_bad;
2019 if (!chip->block_markbad)
2020 chip->block_markbad = nand_default_block_markbad;
2021 if (!chip->write_buf)
2022 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2023 if (!chip->read_buf)
2024 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2025 if (!chip->verify_buf)
2026 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2027 if (!chip->scan_bbt)
2028 chip->scan_bbt = nand_default_bbt;
2029
2030 if (!chip->controller) {
2031 chip->controller = &chip->hwcontrol;
2032 spin_lock_init(&chip->controller->lock);
2033 init_waitqueue_head(&chip->controller->wq);
2034 }
2035
2036 }
2037
2038 /*
2039 * Get the flash and manufacturer id and lookup if the type is supported
2040 */
2041 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2042 struct nand_chip *chip,
2043 int busw, int *maf_id)
2044 {
2045 struct nand_flash_dev *type = NULL;
2046 int i, dev_id, maf_idx;
2047
2048 /* Select the device */
2049 chip->select_chip(mtd, 0);
2050
2051 /* Send the command for reading device ID */
2052 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2053
2054 /* Read manufacturer and device IDs */
2055 *maf_id = chip->read_byte(mtd);
2056 dev_id = chip->read_byte(mtd);
2057
2058 /* Lookup the flash id */
2059 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2060 if (dev_id == nand_flash_ids[i].id) {
2061 type = &nand_flash_ids[i];
2062 break;
2063 }
2064 }
2065
2066 if (!type)
2067 return ERR_PTR(-ENODEV);
2068
2069 if (!mtd->name)
2070 mtd->name = type->name;
2071
2072 chip->chipsize = type->chipsize << 20;
2073
2074 /* Newer devices have all the information in additional id bytes */
2075 if (!type->pagesize) {
2076 int extid;
2077 /* The 3rd id byte contains non relevant data ATM */
2078 extid = chip->read_byte(mtd);
2079 /* The 4th id byte is the important one */
2080 extid = chip->read_byte(mtd);
2081 /* Calc pagesize */
2082 mtd->writesize = 1024 << (extid & 0x3);
2083 extid >>= 2;
2084 /* Calc oobsize */
2085 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2086 extid >>= 2;
2087 /* Calc blocksize. Blocksize is multiples of 64KiB */
2088 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2089 extid >>= 2;
2090 /* Get buswidth information */
2091 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2092
2093 } else {
2094 /*
2095 * Old devices have chip data hardcoded in the device id table
2096 */
2097 mtd->erasesize = type->erasesize;
2098 mtd->writesize = type->pagesize;
2099 mtd->oobsize = mtd->writesize / 32;
2100 busw = type->options & NAND_BUSWIDTH_16;
2101 }
2102
2103 /* Try to identify manufacturer */
2104 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) {
2105 if (nand_manuf_ids[maf_idx].id == *maf_id)
2106 break;
2107 }
2108
2109 /*
2110 * Check, if buswidth is correct. Hardware drivers should set
2111 * chip correct !
2112 */
2113 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2114 printk(KERN_INFO "NAND device: Manufacturer ID:"
2115 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2116 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2117 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2118 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2119 busw ? 16 : 8);
2120 return ERR_PTR(-EINVAL);
2121 }
2122
2123 /* Calculate the address shift from the page size */
2124 chip->page_shift = ffs(mtd->writesize) - 1;
2125 /* Convert chipsize to number of pages per chip -1. */
2126 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2127
2128 chip->bbt_erase_shift = chip->phys_erase_shift =
2129 ffs(mtd->erasesize) - 1;
2130 chip->chip_shift = ffs(chip->chipsize) - 1;
2131
2132 /* Set the bad block position */
2133 chip->badblockpos = mtd->writesize > 512 ?
2134 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2135
2136 /* Get chip options, preserve non chip based options */
2137 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2138 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2139
2140 /*
2141 * Set chip as a default. Board drivers can override it, if necessary
2142 */
2143 chip->options |= NAND_NO_AUTOINCR;
2144
2145 /* Check if chip is a not a samsung device. Do not clear the
2146 * options for chips which are not having an extended id.
2147 */
2148 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2149 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2150
2151 /* Check for AND chips with 4 page planes */
2152 if (chip->options & NAND_4PAGE_ARRAY)
2153 chip->erase_cmd = multi_erase_cmd;
2154 else
2155 chip->erase_cmd = single_erase_cmd;
2156
2157 /* Do not replace user supplied command function ! */
2158 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2159 chip->cmdfunc = nand_command_lp;
2160
2161 printk(KERN_INFO "NAND device: Manufacturer ID:"
2162 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2163 nand_manuf_ids[maf_idx].name, type->name);
2164
2165 return type;
2166 }
2167
2168 /* module_text_address() isn't exported, and it's mostly a pointless
2169 test if this is a module _anyway_ -- they'd have to try _really_ hard
2170 to call us from in-kernel code if the core NAND support is modular. */
2171 #ifdef MODULE
2172 #define caller_is_module() (1)
2173 #else
2174 #define caller_is_module() \
2175 module_text_address((unsigned long)__builtin_return_address(0))
2176 #endif
2177
2178 /**
2179 * nand_scan - [NAND Interface] Scan for the NAND device
2180 * @mtd: MTD device structure
2181 * @maxchips: Number of chips to scan for
2182 *
2183 * This fills out all the uninitialized function pointers
2184 * with the defaults.
2185 * The flash ID is read and the mtd/chip structures are
2186 * filled with the appropriate values.
2187 * The mtd->owner field must be set to the module of the caller
2188 *
2189 */
2190 int nand_scan(struct mtd_info *mtd, int maxchips)
2191 {
2192 int i, busw, nand_maf_id;
2193 struct nand_chip *chip = mtd->priv;
2194 struct nand_flash_dev *type;
2195
2196 /* Many callers got this wrong, so check for it for a while... */
2197 if (!mtd->owner && caller_is_module()) {
2198 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2199 BUG();
2200 }
2201
2202 /* Get buswidth to select the correct functions */
2203 busw = chip->options & NAND_BUSWIDTH_16;
2204 /* Set the default functions */
2205 nand_set_defaults(chip, busw);
2206
2207 /* Read the flash type */
2208 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2209
2210 if (IS_ERR(type)) {
2211 printk(KERN_WARNING "No NAND device found!!!\n");
2212 chip->select_chip(mtd, -1);
2213 return PTR_ERR(type);
2214 }
2215
2216 /* Check for a chip array */
2217 for (i = 1; i < maxchips; i++) {
2218 chip->select_chip(mtd, i);
2219 /* Send the command for reading device ID */
2220 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2221 /* Read manufacturer and device IDs */
2222 if (nand_maf_id != chip->read_byte(mtd) ||
2223 type->id != chip->read_byte(mtd))
2224 break;
2225 }
2226 if (i > 1)
2227 printk(KERN_INFO "%d NAND chips detected\n", i);
2228
2229 /* Store the number of chips and calc total size for mtd */
2230 chip->numchips = i;
2231 mtd->size = i * chip->chipsize;
2232
2233 /* Preset the internal oob write buffer */
2234 memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2235
2236 /*
2237 * If no default placement scheme is given, select an appropriate one
2238 */
2239 if (!chip->ecc.layout) {
2240 switch (mtd->oobsize) {
2241 case 8:
2242 chip->ecc.layout = &nand_oob_8;
2243 break;
2244 case 16:
2245 chip->ecc.layout = &nand_oob_16;
2246 break;
2247 case 64:
2248 chip->ecc.layout = &nand_oob_64;
2249 break;
2250 default:
2251 printk(KERN_WARNING "No oob scheme defined for "
2252 "oobsize %d\n", mtd->oobsize);
2253 BUG();
2254 }
2255 }
2256
2257 /*
2258 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2259 * selected and we have 256 byte pagesize fallback to software ECC
2260 */
2261 switch (chip->ecc.mode) {
2262 case NAND_ECC_HW:
2263 /* Use standard hwecc read page function ? */
2264 if (!chip->ecc.read_page)
2265 chip->ecc.read_page = nand_read_page_hwecc;
2266 if (!chip->ecc.write_page)
2267 chip->ecc.write_page = nand_write_page_hwecc;
2268
2269 case NAND_ECC_HW_SYNDROME:
2270 if (!chip->ecc.calculate || !chip->ecc.correct ||
2271 !chip->ecc.hwctl) {
2272 printk(KERN_WARNING "No ECC functions supplied, "
2273 "Hardware ECC not possible\n");
2274 BUG();
2275 }
2276 /* Use standard syndrome read/write page function ? */
2277 if (!chip->ecc.read_page)
2278 chip->ecc.read_page = nand_read_page_syndrome;
2279 if (!chip->ecc.write_page)
2280 chip->ecc.write_page = nand_write_page_syndrome;
2281
2282 if (mtd->writesize >= chip->ecc.size)
2283 break;
2284 printk(KERN_WARNING "%d byte HW ECC not possible on "
2285 "%d byte page size, fallback to SW ECC\n",
2286 chip->ecc.size, mtd->writesize);
2287 chip->ecc.mode = NAND_ECC_SOFT;
2288
2289 case NAND_ECC_SOFT:
2290 chip->ecc.calculate = nand_calculate_ecc;
2291 chip->ecc.correct = nand_correct_data;
2292 chip->ecc.read_page = nand_read_page_swecc;
2293 chip->ecc.write_page = nand_write_page_swecc;
2294 chip->ecc.size = 256;
2295 chip->ecc.bytes = 3;
2296 break;
2297
2298 case NAND_ECC_NONE:
2299 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2300 "This is not recommended !!\n");
2301 chip->ecc.read_page = nand_read_page_raw;
2302 chip->ecc.write_page = nand_write_page_raw;
2303 chip->ecc.size = mtd->writesize;
2304 chip->ecc.bytes = 0;
2305 break;
2306 default:
2307 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2308 chip->ecc.mode);
2309 BUG();
2310 }
2311
2312 /*
2313 * The number of bytes available for a client to place data into
2314 * the out of band area
2315 */
2316 chip->ecc.layout->oobavail = 0;
2317 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2318 chip->ecc.layout->oobavail +=
2319 chip->ecc.layout->oobfree[i].length;
2320
2321 /*
2322 * Set the number of read / write steps for one page depending on ECC
2323 * mode
2324 */
2325 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2326 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2327 printk(KERN_WARNING "Invalid ecc parameters\n");
2328 BUG();
2329 }
2330 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2331
2332 /* Initialize state */
2333 chip->state = FL_READY;
2334
2335 /* De-select the device */
2336 chip->select_chip(mtd, -1);
2337
2338 /* Invalidate the pagebuffer reference */
2339 chip->pagebuf = -1;
2340
2341 /* Fill in remaining MTD driver data */
2342 mtd->type = MTD_NANDFLASH;
2343 mtd->flags = MTD_CAP_NANDFLASH;
2344 mtd->ecctype = MTD_ECC_SW;
2345 mtd->erase = nand_erase;
2346 mtd->point = NULL;
2347 mtd->unpoint = NULL;
2348 mtd->read = nand_read;
2349 mtd->write = nand_write;
2350 mtd->read_oob = nand_read_oob;
2351 mtd->write_oob = nand_write_oob;
2352 mtd->sync = nand_sync;
2353 mtd->lock = NULL;
2354 mtd->unlock = NULL;
2355 mtd->suspend = nand_suspend;
2356 mtd->resume = nand_resume;
2357 mtd->block_isbad = nand_block_isbad;
2358 mtd->block_markbad = nand_block_markbad;
2359
2360 /* propagate ecc.layout to mtd_info */
2361 mtd->ecclayout = chip->ecc.layout;
2362
2363 /* Check, if we should skip the bad block table scan */
2364 if (chip->options & NAND_SKIP_BBTSCAN)
2365 return 0;
2366
2367 /* Build bad block table */
2368 return chip->scan_bbt(mtd);
2369 }
2370
2371 /**
2372 * nand_release - [NAND Interface] Free resources held by the NAND device
2373 * @mtd: MTD device structure
2374 */
2375 void nand_release(struct mtd_info *mtd)
2376 {
2377 struct nand_chip *chip = mtd->priv;
2378
2379 #ifdef CONFIG_MTD_PARTITIONS
2380 /* Deregister partitions */
2381 del_mtd_partitions(mtd);
2382 #endif
2383 /* Deregister the device */
2384 del_mtd_device(mtd);
2385
2386 /* Free bad block table memory */
2387 kfree(chip->bbt);
2388 }
2389
2390 EXPORT_SYMBOL_GPL(nand_scan);
2391 EXPORT_SYMBOL_GPL(nand_release);
2392
2393 static int __init nand_base_init(void)
2394 {
2395 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2396 return 0;
2397 }
2398
2399 static void __exit nand_base_exit(void)
2400 {
2401 led_trigger_unregister_simple(nand_led_trigger);
2402 }
2403
2404 module_init(nand_base_init);
2405 module_exit(nand_base_exit);
2406
2407 MODULE_LICENSE("GPL");
2408 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2409 MODULE_DESCRIPTION("Generic NAND flash driver code");