]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
89
90 /*
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
93 */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
99 *
100 * Deselect, release chip lock and wake up anyone waiting on the device
101 */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104 struct nand_chip *chip = mtd->priv;
105
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
108
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
120 *
121 * Default read function for 8bit buswith
122 */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
132 *
133 * Default read function for 16bit buswith with
134 * endianess conversion
135 */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 16bit buswith without
147 * endianess conversion
148 */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
159 *
160 * Default select function for 1 chip devices.
161 */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164 struct nand_chip *chip = mtd->priv;
165
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
172
173 default:
174 BUG();
175 }
176 }
177
178 /**
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
183 *
184 * Default write function for 8bit buswith
185 */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188 int i;
189 struct nand_chip *chip = mtd->priv;
190
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
200 *
201 * Default read function for 8bit buswith
202 */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205 int i;
206 struct nand_chip *chip = mtd->priv;
207
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
217 *
218 * Default verify function for 8bit buswith
219 */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222 int i;
223 struct nand_chip *chip = mtd->priv;
224
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
229 }
230
231 /**
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 16bit buswith
238 */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
245
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
256 *
257 * Default read function for 16bit buswith
258 */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
265
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
275 *
276 * Default verify function for 16bit buswith
277 */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
288
289 return 0;
290 }
291
292 /**
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
297 *
298 * Check, if the block is bad.
299 */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
305
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
309
310 nand_get_device(chip, mtd, FL_READING);
311
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
316
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
330 }
331
332 if (getchip)
333 nand_release_device(mtd);
334
335 return res;
336 }
337
338 /**
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
342 *
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
351
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
363 */
364 ofs += mtd->oobsize;
365 chip->ops.len = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371 }
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
375 }
376
377 /**
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
381 *
382 * The function expects, that the device is already selected
383 */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
398 *
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
401 */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
404 {
405 struct nand_chip *chip = mtd->priv;
406
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
409
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
417 */
418 static void nand_wait_ready(struct mtd_info *mtd)
419 {
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
422
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432
433 /**
434 * nand_command - [DEFAULT] Send command to NAND device
435 * @mtd: MTD device structure
436 * @command: the command to be sent
437 * @column: the column address for this command, -1 if none
438 * @page_addr: the page address for this command, -1 if none
439 *
440 * Send command to NAND device. This function is used for small page
441 * devices (256/512 Bytes per page)
442 */
443 static void nand_command(struct mtd_info *mtd, unsigned int command,
444 int column, int page_addr)
445 {
446 register struct nand_chip *chip = mtd->priv;
447 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
448
449 /*
450 * Write out the command to the device.
451 */
452 if (command == NAND_CMD_SEQIN) {
453 int readcmd;
454
455 if (column >= mtd->writesize) {
456 /* OOB area */
457 column -= mtd->writesize;
458 readcmd = NAND_CMD_READOOB;
459 } else if (column < 256) {
460 /* First 256 bytes --> READ0 */
461 readcmd = NAND_CMD_READ0;
462 } else {
463 column -= 256;
464 readcmd = NAND_CMD_READ1;
465 }
466 chip->cmd_ctrl(mtd, readcmd, ctrl);
467 ctrl &= ~NAND_CTRL_CHANGE;
468 }
469 chip->cmd_ctrl(mtd, command, ctrl);
470
471 /*
472 * Address cycle, when necessary
473 */
474 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
475 /* Serially input address */
476 if (column != -1) {
477 /* Adjust columns for 16 bit buswidth */
478 if (chip->options & NAND_BUSWIDTH_16)
479 column >>= 1;
480 chip->cmd_ctrl(mtd, column, ctrl);
481 ctrl &= ~NAND_CTRL_CHANGE;
482 }
483 if (page_addr != -1) {
484 chip->cmd_ctrl(mtd, page_addr, ctrl);
485 ctrl &= ~NAND_CTRL_CHANGE;
486 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
487 /* One more address cycle for devices > 32MiB */
488 if (chip->chipsize > (32 << 20))
489 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
490 }
491 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
492
493 /*
494 * program and erase have their own busy handlers
495 * status and sequential in needs no delay
496 */
497 switch (command) {
498
499 case NAND_CMD_PAGEPROG:
500 case NAND_CMD_ERASE1:
501 case NAND_CMD_ERASE2:
502 case NAND_CMD_SEQIN:
503 case NAND_CMD_STATUS:
504 return;
505
506 case NAND_CMD_RESET:
507 if (chip->dev_ready)
508 break;
509 udelay(chip->chip_delay);
510 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
511 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
512 chip->cmd_ctrl(mtd,
513 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
514 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
515 return;
516
517 /* This applies to read commands */
518 default:
519 /*
520 * If we don't have access to the busy pin, we apply the given
521 * command delay
522 */
523 if (!chip->dev_ready) {
524 udelay(chip->chip_delay);
525 return;
526 }
527 }
528 /* Apply this short delay always to ensure that we do wait tWB in
529 * any case on any machine. */
530 ndelay(100);
531
532 nand_wait_ready(mtd);
533 }
534
535 /**
536 * nand_command_lp - [DEFAULT] Send command to NAND large page device
537 * @mtd: MTD device structure
538 * @command: the command to be sent
539 * @column: the column address for this command, -1 if none
540 * @page_addr: the page address for this command, -1 if none
541 *
542 * Send command to NAND device. This is the version for the new large page
543 * devices We dont have the separate regions as we have in the small page
544 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
545 */
546 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
547 int column, int page_addr)
548 {
549 register struct nand_chip *chip = mtd->priv;
550
551 /* Emulate NAND_CMD_READOOB */
552 if (command == NAND_CMD_READOOB) {
553 column += mtd->writesize;
554 command = NAND_CMD_READ0;
555 }
556
557 /* Command latch cycle */
558 chip->cmd_ctrl(mtd, command & 0xff,
559 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
560
561 if (column != -1 || page_addr != -1) {
562 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
563
564 /* Serially input address */
565 if (column != -1) {
566 /* Adjust columns for 16 bit buswidth */
567 if (chip->options & NAND_BUSWIDTH_16)
568 column >>= 1;
569 chip->cmd_ctrl(mtd, column, ctrl);
570 ctrl &= ~NAND_CTRL_CHANGE;
571 chip->cmd_ctrl(mtd, column >> 8, ctrl);
572 }
573 if (page_addr != -1) {
574 chip->cmd_ctrl(mtd, page_addr, ctrl);
575 chip->cmd_ctrl(mtd, page_addr >> 8,
576 NAND_NCE | NAND_ALE);
577 /* One more address cycle for devices > 128MiB */
578 if (chip->chipsize > (128 << 20))
579 chip->cmd_ctrl(mtd, page_addr >> 16,
580 NAND_NCE | NAND_ALE);
581 }
582 }
583 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
584
585 /*
586 * program and erase have their own busy handlers
587 * status, sequential in, and deplete1 need no delay
588 */
589 switch (command) {
590
591 case NAND_CMD_CACHEDPROG:
592 case NAND_CMD_PAGEPROG:
593 case NAND_CMD_ERASE1:
594 case NAND_CMD_ERASE2:
595 case NAND_CMD_SEQIN:
596 case NAND_CMD_RNDIN:
597 case NAND_CMD_STATUS:
598 case NAND_CMD_DEPLETE1:
599 return;
600
601 /*
602 * read error status commands require only a short delay
603 */
604 case NAND_CMD_STATUS_ERROR:
605 case NAND_CMD_STATUS_ERROR0:
606 case NAND_CMD_STATUS_ERROR1:
607 case NAND_CMD_STATUS_ERROR2:
608 case NAND_CMD_STATUS_ERROR3:
609 udelay(chip->chip_delay);
610 return;
611
612 case NAND_CMD_RESET:
613 if (chip->dev_ready)
614 break;
615 udelay(chip->chip_delay);
616 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
617 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
618 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
619 NAND_NCE | NAND_CTRL_CHANGE);
620 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
621 return;
622
623 case NAND_CMD_RNDOUT:
624 /* No ready / busy check necessary */
625 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
626 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
627 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
628 NAND_NCE | NAND_CTRL_CHANGE);
629 return;
630
631 case NAND_CMD_READ0:
632 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
633 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
634 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
635 NAND_NCE | NAND_CTRL_CHANGE);
636
637 /* This applies to read commands */
638 default:
639 /*
640 * If we don't have access to the busy pin, we apply the given
641 * command delay
642 */
643 if (!chip->dev_ready) {
644 udelay(chip->chip_delay);
645 return;
646 }
647 }
648
649 /* Apply this short delay always to ensure that we do wait tWB in
650 * any case on any machine. */
651 ndelay(100);
652
653 nand_wait_ready(mtd);
654 }
655
656 /**
657 * nand_get_device - [GENERIC] Get chip for selected access
658 * @chip: the nand chip descriptor
659 * @mtd: MTD device structure
660 * @new_state: the state which is requested
661 *
662 * Get the device and lock it for exclusive access
663 */
664 static int
665 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
666 {
667 spinlock_t *lock = &chip->controller->lock;
668 wait_queue_head_t *wq = &chip->controller->wq;
669 DECLARE_WAITQUEUE(wait, current);
670 retry:
671 spin_lock(lock);
672
673 /* Hardware controller shared among independend devices */
674 /* Hardware controller shared among independend devices */
675 if (!chip->controller->active)
676 chip->controller->active = chip;
677
678 if (chip->controller->active == chip && chip->state == FL_READY) {
679 chip->state = new_state;
680 spin_unlock(lock);
681 return 0;
682 }
683 if (new_state == FL_PM_SUSPENDED) {
684 spin_unlock(lock);
685 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
686 }
687 set_current_state(TASK_UNINTERRUPTIBLE);
688 add_wait_queue(wq, &wait);
689 spin_unlock(lock);
690 schedule();
691 remove_wait_queue(wq, &wait);
692 goto retry;
693 }
694
695 /**
696 * nand_wait - [DEFAULT] wait until the command is done
697 * @mtd: MTD device structure
698 * @chip: NAND chip structure
699 *
700 * Wait for command done. This applies to erase and program only
701 * Erase can take up to 400ms and program up to 20ms according to
702 * general NAND and SmartMedia specs
703 */
704 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
705 {
706
707 unsigned long timeo = jiffies;
708 int status, state = chip->state;
709
710 if (state == FL_ERASING)
711 timeo += (HZ * 400) / 1000;
712 else
713 timeo += (HZ * 20) / 1000;
714
715 led_trigger_event(nand_led_trigger, LED_FULL);
716
717 /* Apply this short delay always to ensure that we do wait tWB in
718 * any case on any machine. */
719 ndelay(100);
720
721 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
722 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
723 else
724 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
725
726 while (time_before(jiffies, timeo)) {
727 if (chip->dev_ready) {
728 if (chip->dev_ready(mtd))
729 break;
730 } else {
731 if (chip->read_byte(mtd) & NAND_STATUS_READY)
732 break;
733 }
734 cond_resched();
735 }
736 led_trigger_event(nand_led_trigger, LED_OFF);
737
738 status = (int)chip->read_byte(mtd);
739 return status;
740 }
741
742 /**
743 * nand_read_page_raw - [Intern] read raw page data without ecc
744 * @mtd: mtd info structure
745 * @chip: nand chip info structure
746 * @buf: buffer to store read data
747 */
748 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
749 uint8_t *buf)
750 {
751 chip->read_buf(mtd, buf, mtd->writesize);
752 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
753 return 0;
754 }
755
756 /**
757 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
758 * @mtd: mtd info structure
759 * @chip: nand chip info structure
760 * @buf: buffer to store read data
761 */
762 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
763 uint8_t *buf)
764 {
765 int i, eccsize = chip->ecc.size;
766 int eccbytes = chip->ecc.bytes;
767 int eccsteps = chip->ecc.steps;
768 uint8_t *p = buf;
769 uint8_t *ecc_calc = chip->buffers.ecccalc;
770 uint8_t *ecc_code = chip->buffers.ecccode;
771 int *eccpos = chip->ecc.layout->eccpos;
772
773 nand_read_page_raw(mtd, chip, buf);
774
775 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
776 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
777
778 for (i = 0; i < chip->ecc.total; i++)
779 ecc_code[i] = chip->oob_poi[eccpos[i]];
780
781 eccsteps = chip->ecc.steps;
782 p = buf;
783
784 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
785 int stat;
786
787 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
788 if (stat == -1)
789 mtd->ecc_stats.failed++;
790 else
791 mtd->ecc_stats.corrected += stat;
792 }
793 return 0;
794 }
795
796 /**
797 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
798 * @mtd: mtd info structure
799 * @chip: nand chip info structure
800 * @buf: buffer to store read data
801 *
802 * Not for syndrome calculating ecc controllers which need a special oob layout
803 */
804 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
805 uint8_t *buf)
806 {
807 int i, eccsize = chip->ecc.size;
808 int eccbytes = chip->ecc.bytes;
809 int eccsteps = chip->ecc.steps;
810 uint8_t *p = buf;
811 uint8_t *ecc_calc = chip->buffers.ecccalc;
812 uint8_t *ecc_code = chip->buffers.ecccode;
813 int *eccpos = chip->ecc.layout->eccpos;
814
815 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
816 chip->ecc.hwctl(mtd, NAND_ECC_READ);
817 chip->read_buf(mtd, p, eccsize);
818 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
819 }
820 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
821
822 for (i = 0; i < chip->ecc.total; i++)
823 ecc_code[i] = chip->oob_poi[eccpos[i]];
824
825 eccsteps = chip->ecc.steps;
826 p = buf;
827
828 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
829 int stat;
830
831 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
832 if (stat == -1)
833 mtd->ecc_stats.failed++;
834 else
835 mtd->ecc_stats.corrected += stat;
836 }
837 return 0;
838 }
839
840 /**
841 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
842 * @mtd: mtd info structure
843 * @chip: nand chip info structure
844 * @buf: buffer to store read data
845 *
846 * The hw generator calculates the error syndrome automatically. Therefor
847 * we need a special oob layout and handling.
848 */
849 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
850 uint8_t *buf)
851 {
852 int i, eccsize = chip->ecc.size;
853 int eccbytes = chip->ecc.bytes;
854 int eccsteps = chip->ecc.steps;
855 uint8_t *p = buf;
856 uint8_t *oob = chip->oob_poi;
857
858 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
859 int stat;
860
861 chip->ecc.hwctl(mtd, NAND_ECC_READ);
862 chip->read_buf(mtd, p, eccsize);
863
864 if (chip->ecc.prepad) {
865 chip->read_buf(mtd, oob, chip->ecc.prepad);
866 oob += chip->ecc.prepad;
867 }
868
869 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
870 chip->read_buf(mtd, oob, eccbytes);
871 stat = chip->ecc.correct(mtd, p, oob, NULL);
872
873 if (stat == -1)
874 mtd->ecc_stats.failed++;
875 else
876 mtd->ecc_stats.corrected += stat;
877
878 oob += eccbytes;
879
880 if (chip->ecc.postpad) {
881 chip->read_buf(mtd, oob, chip->ecc.postpad);
882 oob += chip->ecc.postpad;
883 }
884 }
885
886 /* Calculate remaining oob bytes */
887 i = mtd->oobsize - (oob - chip->oob_poi);
888 if (i)
889 chip->read_buf(mtd, oob, i);
890
891 return 0;
892 }
893
894 /**
895 * nand_transfer_oob - [Internal] Transfer oob to client buffer
896 * @chip: nand chip structure
897 * @oob: oob destination address
898 * @ops: oob ops structure
899 */
900 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
901 struct mtd_oob_ops *ops)
902 {
903 size_t len = ops->ooblen;
904
905 switch(ops->mode) {
906
907 case MTD_OOB_PLACE:
908 case MTD_OOB_RAW:
909 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
910 return oob + len;
911
912 case MTD_OOB_AUTO: {
913 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914 uint32_t boffs = 0, roffs = ops->ooboffs;
915 size_t bytes = 0;
916
917 for(; free->length && len; free++, len -= bytes) {
918 /* Read request not from offset 0 ? */
919 if (unlikely(roffs)) {
920 if (roffs >= free->length) {
921 roffs -= free->length;
922 continue;
923 }
924 boffs = free->offset + roffs;
925 bytes = min_t(size_t, len,
926 (free->length - roffs));
927 roffs = 0;
928 } else {
929 bytes = min_t(size_t, len, free->length);
930 boffs = free->offset;
931 }
932 memcpy(oob, chip->oob_poi + boffs, bytes);
933 oob += bytes;
934 }
935 return oob;
936 }
937 default:
938 BUG();
939 }
940 return NULL;
941 }
942
943 /**
944 * nand_do_read_ops - [Internal] Read data with ECC
945 *
946 * @mtd: MTD device structure
947 * @from: offset to read from
948 * @ops: oob ops structure
949 *
950 * Internal function. Called with chip held.
951 */
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953 struct mtd_oob_ops *ops)
954 {
955 int chipnr, page, realpage, col, bytes, aligned;
956 struct nand_chip *chip = mtd->priv;
957 struct mtd_ecc_stats stats;
958 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
959 int sndcmd = 1;
960 int ret = 0;
961 uint32_t readlen = ops->len;
962 uint8_t *bufpoi, *oob, *buf;
963
964 stats = mtd->ecc_stats;
965
966 chipnr = (int)(from >> chip->chip_shift);
967 chip->select_chip(mtd, chipnr);
968
969 realpage = (int)(from >> chip->page_shift);
970 page = realpage & chip->pagemask;
971
972 col = (int)(from & (mtd->writesize - 1));
973 chip->oob_poi = chip->buffers.oobrbuf;
974
975 buf = ops->datbuf;
976 oob = ops->oobbuf;
977
978 while(1) {
979 bytes = min(mtd->writesize - col, readlen);
980 aligned = (bytes == mtd->writesize);
981
982 /* Is the current page in the buffer ? */
983 if (realpage != chip->pagebuf || oob) {
984 bufpoi = aligned ? buf : chip->buffers.databuf;
985
986 if (likely(sndcmd)) {
987 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
988 sndcmd = 0;
989 }
990
991 /* Now read the page into the buffer */
992 ret = chip->ecc.read_page(mtd, chip, bufpoi);
993 if (ret < 0)
994 break;
995
996 /* Transfer not aligned data */
997 if (!aligned) {
998 chip->pagebuf = realpage;
999 memcpy(buf, chip->buffers.databuf + col, bytes);
1000 }
1001
1002 buf += bytes;
1003
1004 if (unlikely(oob)) {
1005 /* Raw mode does data:oob:data:oob */
1006 if (ops->mode != MTD_OOB_RAW)
1007 oob = nand_transfer_oob(chip, oob, ops);
1008 else
1009 buf = nand_transfer_oob(chip, buf, ops);
1010 }
1011
1012 if (!(chip->options & NAND_NO_READRDY)) {
1013 /*
1014 * Apply delay or wait for ready/busy pin. Do
1015 * this before the AUTOINCR check, so no
1016 * problems arise if a chip which does auto
1017 * increment is marked as NOAUTOINCR by the
1018 * board driver.
1019 */
1020 if (!chip->dev_ready)
1021 udelay(chip->chip_delay);
1022 else
1023 nand_wait_ready(mtd);
1024 }
1025 } else {
1026 memcpy(buf, chip->buffers.databuf + col, bytes);
1027 buf += bytes;
1028 }
1029
1030 readlen -= bytes;
1031
1032 if (!readlen)
1033 break;
1034
1035 /* For subsequent reads align to page boundary. */
1036 col = 0;
1037 /* Increment page address */
1038 realpage++;
1039
1040 page = realpage & chip->pagemask;
1041 /* Check, if we cross a chip boundary */
1042 if (!page) {
1043 chipnr++;
1044 chip->select_chip(mtd, -1);
1045 chip->select_chip(mtd, chipnr);
1046 }
1047
1048 /* Check, if the chip supports auto page increment
1049 * or if we have hit a block boundary.
1050 */
1051 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1052 sndcmd = 1;
1053 }
1054
1055 ops->retlen = ops->len - (size_t) readlen;
1056
1057 if (ret)
1058 return ret;
1059
1060 if (mtd->ecc_stats.failed - stats.failed)
1061 return -EBADMSG;
1062
1063 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1064 }
1065
1066 /**
1067 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1068 * @mtd: MTD device structure
1069 * @from: offset to read from
1070 * @len: number of bytes to read
1071 * @retlen: pointer to variable to store the number of read bytes
1072 * @buf: the databuffer to put data
1073 *
1074 * Get hold of the chip and call nand_do_read
1075 */
1076 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1077 size_t *retlen, uint8_t *buf)
1078 {
1079 struct nand_chip *chip = mtd->priv;
1080 int ret;
1081
1082 /* Do not allow reads past end of device */
1083 if ((from + len) > mtd->size)
1084 return -EINVAL;
1085 if (!len)
1086 return 0;
1087
1088 nand_get_device(chip, mtd, FL_READING);
1089
1090 chip->ops.len = len;
1091 chip->ops.datbuf = buf;
1092 chip->ops.oobbuf = NULL;
1093
1094 ret = nand_do_read_ops(mtd, from, &chip->ops);
1095
1096 *retlen = chip->ops.retlen;
1097
1098 nand_release_device(mtd);
1099
1100 return ret;
1101 }
1102
1103 /**
1104 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1105 * @mtd: mtd info structure
1106 * @chip: nand chip info structure
1107 * @page: page number to read
1108 * @sndcmd: flag whether to issue read command or not
1109 */
1110 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1111 int page, int sndcmd)
1112 {
1113 if (sndcmd) {
1114 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1115 sndcmd = 0;
1116 }
1117 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1118 return sndcmd;
1119 }
1120
1121 /**
1122 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1123 * with syndromes
1124 * @mtd: mtd info structure
1125 * @chip: nand chip info structure
1126 * @page: page number to read
1127 * @sndcmd: flag whether to issue read command or not
1128 */
1129 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1130 int page, int sndcmd)
1131 {
1132 uint8_t *buf = chip->oob_poi;
1133 int length = mtd->oobsize;
1134 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1135 int eccsize = chip->ecc.size;
1136 uint8_t *bufpoi = buf;
1137 int i, toread, sndrnd = 0, pos;
1138
1139 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1140 for (i = 0; i < chip->ecc.steps; i++) {
1141 if (sndrnd) {
1142 pos = eccsize + i * (eccsize + chunk);
1143 if (mtd->writesize > 512)
1144 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1145 else
1146 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1147 } else
1148 sndrnd = 1;
1149 toread = min_t(int, length, chunk);
1150 chip->read_buf(mtd, bufpoi, toread);
1151 bufpoi += toread;
1152 length -= toread;
1153 }
1154 if (length > 0)
1155 chip->read_buf(mtd, bufpoi, length);
1156
1157 return 1;
1158 }
1159
1160 /**
1161 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1162 * @mtd: mtd info structure
1163 * @chip: nand chip info structure
1164 * @page: page number to write
1165 */
1166 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1167 int page)
1168 {
1169 int status = 0;
1170 const uint8_t *buf = chip->oob_poi;
1171 int length = mtd->oobsize;
1172
1173 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1174 chip->write_buf(mtd, buf, length);
1175 /* Send command to program the OOB data */
1176 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1177
1178 status = chip->waitfunc(mtd, chip);
1179
1180 return status & NAND_STATUS_FAIL ? -EIO : 0;
1181 }
1182
1183 /**
1184 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1185 * with syndrome - only for large page flash !
1186 * @mtd: mtd info structure
1187 * @chip: nand chip info structure
1188 * @page: page number to write
1189 */
1190 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1191 struct nand_chip *chip, int page)
1192 {
1193 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1194 int eccsize = chip->ecc.size, length = mtd->oobsize;
1195 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1196 const uint8_t *bufpoi = chip->oob_poi;
1197
1198 /*
1199 * data-ecc-data-ecc ... ecc-oob
1200 * or
1201 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1202 */
1203 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1204 pos = steps * (eccsize + chunk);
1205 steps = 0;
1206 } else
1207 pos = eccsize;
1208
1209 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1210 for (i = 0; i < steps; i++) {
1211 if (sndcmd) {
1212 if (mtd->writesize <= 512) {
1213 uint32_t fill = 0xFFFFFFFF;
1214
1215 len = eccsize;
1216 while (len > 0) {
1217 int num = min_t(int, len, 4);
1218 chip->write_buf(mtd, (uint8_t *)&fill,
1219 num);
1220 len -= num;
1221 }
1222 } else {
1223 pos = eccsize + i * (eccsize + chunk);
1224 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1225 }
1226 } else
1227 sndcmd = 1;
1228 len = min_t(int, length, chunk);
1229 chip->write_buf(mtd, bufpoi, len);
1230 bufpoi += len;
1231 length -= len;
1232 }
1233 if (length > 0)
1234 chip->write_buf(mtd, bufpoi, length);
1235
1236 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1237 status = chip->waitfunc(mtd, chip);
1238
1239 return status & NAND_STATUS_FAIL ? -EIO : 0;
1240 }
1241
1242 /**
1243 * nand_do_read_oob - [Intern] NAND read out-of-band
1244 * @mtd: MTD device structure
1245 * @from: offset to read from
1246 * @ops: oob operations description structure
1247 *
1248 * NAND read out-of-band data from the spare area
1249 */
1250 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1251 struct mtd_oob_ops *ops)
1252 {
1253 int page, realpage, chipnr, sndcmd = 1;
1254 struct nand_chip *chip = mtd->priv;
1255 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1256 int readlen = ops->len;
1257 uint8_t *buf = ops->oobbuf;
1258
1259 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1260 (unsigned long long)from, readlen);
1261
1262 chipnr = (int)(from >> chip->chip_shift);
1263 chip->select_chip(mtd, chipnr);
1264
1265 /* Shift to get page */
1266 realpage = (int)(from >> chip->page_shift);
1267 page = realpage & chip->pagemask;
1268
1269 chip->oob_poi = chip->buffers.oobrbuf;
1270
1271 while(1) {
1272 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1273 buf = nand_transfer_oob(chip, buf, ops);
1274
1275 if (!(chip->options & NAND_NO_READRDY)) {
1276 /*
1277 * Apply delay or wait for ready/busy pin. Do this
1278 * before the AUTOINCR check, so no problems arise if a
1279 * chip which does auto increment is marked as
1280 * NOAUTOINCR by the board driver.
1281 */
1282 if (!chip->dev_ready)
1283 udelay(chip->chip_delay);
1284 else
1285 nand_wait_ready(mtd);
1286 }
1287
1288 readlen -= ops->ooblen;
1289 if (!readlen)
1290 break;
1291
1292 /* Increment page address */
1293 realpage++;
1294
1295 page = realpage & chip->pagemask;
1296 /* Check, if we cross a chip boundary */
1297 if (!page) {
1298 chipnr++;
1299 chip->select_chip(mtd, -1);
1300 chip->select_chip(mtd, chipnr);
1301 }
1302
1303 /* Check, if the chip supports auto page increment
1304 * or if we have hit a block boundary.
1305 */
1306 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1307 sndcmd = 1;
1308 }
1309
1310 ops->retlen = ops->len;
1311 return 0;
1312 }
1313
1314 /**
1315 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1316 * @mtd: MTD device structure
1317 * @from: offset to read from
1318 * @ops: oob operation description structure
1319 *
1320 * NAND read data and/or out-of-band data
1321 */
1322 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1323 struct mtd_oob_ops *ops)
1324 {
1325 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1326 uint8_t *buf) = NULL;
1327 struct nand_chip *chip = mtd->priv;
1328 int ret = -ENOTSUPP;
1329
1330 ops->retlen = 0;
1331
1332 /* Do not allow reads past end of device */
1333 if ((from + ops->len) > mtd->size) {
1334 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1335 "Attempt read beyond end of device\n");
1336 return -EINVAL;
1337 }
1338
1339 nand_get_device(chip, mtd, FL_READING);
1340
1341 switch(ops->mode) {
1342 case MTD_OOB_PLACE:
1343 case MTD_OOB_AUTO:
1344 break;
1345
1346 case MTD_OOB_RAW:
1347 /* Replace the read_page algorithm temporary */
1348 read_page = chip->ecc.read_page;
1349 chip->ecc.read_page = nand_read_page_raw;
1350 break;
1351
1352 default:
1353 goto out;
1354 }
1355
1356 if (!ops->datbuf)
1357 ret = nand_do_read_oob(mtd, from, ops);
1358 else
1359 ret = nand_do_read_ops(mtd, from, ops);
1360
1361 if (unlikely(ops->mode == MTD_OOB_RAW))
1362 chip->ecc.read_page = read_page;
1363 out:
1364 nand_release_device(mtd);
1365 return ret;
1366 }
1367
1368
1369 /**
1370 * nand_write_page_raw - [Intern] raw page write function
1371 * @mtd: mtd info structure
1372 * @chip: nand chip info structure
1373 * @buf: data buffer
1374 */
1375 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1376 const uint8_t *buf)
1377 {
1378 chip->write_buf(mtd, buf, mtd->writesize);
1379 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1380 }
1381
1382 /**
1383 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1384 * @mtd: mtd info structure
1385 * @chip: nand chip info structure
1386 * @buf: data buffer
1387 */
1388 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1389 const uint8_t *buf)
1390 {
1391 int i, eccsize = chip->ecc.size;
1392 int eccbytes = chip->ecc.bytes;
1393 int eccsteps = chip->ecc.steps;
1394 uint8_t *ecc_calc = chip->buffers.ecccalc;
1395 const uint8_t *p = buf;
1396 int *eccpos = chip->ecc.layout->eccpos;
1397
1398 /* Software ecc calculation */
1399 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1400 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1401
1402 for (i = 0; i < chip->ecc.total; i++)
1403 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1404
1405 nand_write_page_raw(mtd, chip, buf);
1406 }
1407
1408 /**
1409 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1410 * @mtd: mtd info structure
1411 * @chip: nand chip info structure
1412 * @buf: data buffer
1413 */
1414 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1415 const uint8_t *buf)
1416 {
1417 int i, eccsize = chip->ecc.size;
1418 int eccbytes = chip->ecc.bytes;
1419 int eccsteps = chip->ecc.steps;
1420 uint8_t *ecc_calc = chip->buffers.ecccalc;
1421 const uint8_t *p = buf;
1422 int *eccpos = chip->ecc.layout->eccpos;
1423
1424 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1425 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1426 chip->write_buf(mtd, p, eccsize);
1427 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1428 }
1429
1430 for (i = 0; i < chip->ecc.total; i++)
1431 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1432
1433 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1434 }
1435
1436 /**
1437 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1438 * @mtd: mtd info structure
1439 * @chip: nand chip info structure
1440 * @buf: data buffer
1441 *
1442 * The hw generator calculates the error syndrome automatically. Therefor
1443 * we need a special oob layout and handling.
1444 */
1445 static void nand_write_page_syndrome(struct mtd_info *mtd,
1446 struct nand_chip *chip, const uint8_t *buf)
1447 {
1448 int i, eccsize = chip->ecc.size;
1449 int eccbytes = chip->ecc.bytes;
1450 int eccsteps = chip->ecc.steps;
1451 const uint8_t *p = buf;
1452 uint8_t *oob = chip->oob_poi;
1453
1454 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455
1456 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1457 chip->write_buf(mtd, p, eccsize);
1458
1459 if (chip->ecc.prepad) {
1460 chip->write_buf(mtd, oob, chip->ecc.prepad);
1461 oob += chip->ecc.prepad;
1462 }
1463
1464 chip->ecc.calculate(mtd, p, oob);
1465 chip->write_buf(mtd, oob, eccbytes);
1466 oob += eccbytes;
1467
1468 if (chip->ecc.postpad) {
1469 chip->write_buf(mtd, oob, chip->ecc.postpad);
1470 oob += chip->ecc.postpad;
1471 }
1472 }
1473
1474 /* Calculate remaining oob bytes */
1475 i = mtd->oobsize - (oob - chip->oob_poi);
1476 if (i)
1477 chip->write_buf(mtd, oob, i);
1478 }
1479
1480 /**
1481 * nand_write_page - [INTERNAL] write one page
1482 * @mtd: MTD device structure
1483 * @chip: NAND chip descriptor
1484 * @buf: the data to write
1485 * @page: page number to write
1486 * @cached: cached programming
1487 */
1488 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1489 const uint8_t *buf, int page, int cached)
1490 {
1491 int status;
1492
1493 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1494
1495 chip->ecc.write_page(mtd, chip, buf);
1496
1497 /*
1498 * Cached progamming disabled for now, Not sure if its worth the
1499 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1500 */
1501 cached = 0;
1502
1503 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1504
1505 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1506 status = chip->waitfunc(mtd, chip);
1507 /*
1508 * See if operation failed and additional status checks are
1509 * available
1510 */
1511 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1512 status = chip->errstat(mtd, chip, FL_WRITING, status,
1513 page);
1514
1515 if (status & NAND_STATUS_FAIL)
1516 return -EIO;
1517 } else {
1518 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1519 status = chip->waitfunc(mtd, chip);
1520 }
1521
1522 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1523 /* Send command to read back the data */
1524 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1525
1526 if (chip->verify_buf(mtd, buf, mtd->writesize))
1527 return -EIO;
1528 #endif
1529 return 0;
1530 }
1531
1532 /**
1533 * nand_fill_oob - [Internal] Transfer client buffer to oob
1534 * @chip: nand chip structure
1535 * @oob: oob data buffer
1536 * @ops: oob ops structure
1537 */
1538 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1539 struct mtd_oob_ops *ops)
1540 {
1541 size_t len = ops->ooblen;
1542
1543 switch(ops->mode) {
1544
1545 case MTD_OOB_PLACE:
1546 case MTD_OOB_RAW:
1547 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1548 return oob + len;
1549
1550 case MTD_OOB_AUTO: {
1551 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1552 uint32_t boffs = 0, woffs = ops->ooboffs;
1553 size_t bytes = 0;
1554
1555 for(; free->length && len; free++, len -= bytes) {
1556 /* Write request not from offset 0 ? */
1557 if (unlikely(woffs)) {
1558 if (woffs >= free->length) {
1559 woffs -= free->length;
1560 continue;
1561 }
1562 boffs = free->offset + woffs;
1563 bytes = min_t(size_t, len,
1564 (free->length - woffs));
1565 woffs = 0;
1566 } else {
1567 bytes = min_t(size_t, len, free->length);
1568 boffs = free->offset;
1569 }
1570 memcpy(chip->oob_poi + boffs, oob, bytes);
1571 oob += bytes;
1572 }
1573 return oob;
1574 }
1575 default:
1576 BUG();
1577 }
1578 return NULL;
1579 }
1580
1581 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1582
1583 /**
1584 * nand_do_write_ops - [Internal] NAND write with ECC
1585 * @mtd: MTD device structure
1586 * @to: offset to write to
1587 * @ops: oob operations description structure
1588 *
1589 * NAND write with ECC
1590 */
1591 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1592 struct mtd_oob_ops *ops)
1593 {
1594 int chipnr, realpage, page, blockmask;
1595 struct nand_chip *chip = mtd->priv;
1596 uint32_t writelen = ops->len;
1597 uint8_t *oob = ops->oobbuf;
1598 uint8_t *buf = ops->datbuf;
1599 int bytes = mtd->writesize;
1600 int ret;
1601
1602 ops->retlen = 0;
1603
1604 /* reject writes, which are not page aligned */
1605 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1606 printk(KERN_NOTICE "nand_write: "
1607 "Attempt to write not page aligned data\n");
1608 return -EINVAL;
1609 }
1610
1611 if (!writelen)
1612 return 0;
1613
1614 chipnr = (int)(to >> chip->chip_shift);
1615 chip->select_chip(mtd, chipnr);
1616
1617 /* Check, if it is write protected */
1618 if (nand_check_wp(mtd))
1619 return -EIO;
1620
1621 realpage = (int)(to >> chip->page_shift);
1622 page = realpage & chip->pagemask;
1623 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1624
1625 /* Invalidate the page cache, when we write to the cached page */
1626 if (to <= (chip->pagebuf << chip->page_shift) &&
1627 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1628 chip->pagebuf = -1;
1629
1630 chip->oob_poi = chip->buffers.oobwbuf;
1631
1632 while(1) {
1633 int cached = writelen > bytes && page != blockmask;
1634
1635 if (unlikely(oob))
1636 oob = nand_fill_oob(chip, oob, ops);
1637
1638 ret = nand_write_page(mtd, chip, buf, page, cached);
1639 if (ret)
1640 break;
1641
1642 writelen -= bytes;
1643 if (!writelen)
1644 break;
1645
1646 buf += bytes;
1647 realpage++;
1648
1649 page = realpage & chip->pagemask;
1650 /* Check, if we cross a chip boundary */
1651 if (!page) {
1652 chipnr++;
1653 chip->select_chip(mtd, -1);
1654 chip->select_chip(mtd, chipnr);
1655 }
1656 }
1657
1658 if (unlikely(oob))
1659 memset(chip->oob_poi, 0xff, mtd->oobsize);
1660
1661 ops->retlen = ops->len - writelen;
1662 return ret;
1663 }
1664
1665 /**
1666 * nand_write - [MTD Interface] NAND write with ECC
1667 * @mtd: MTD device structure
1668 * @to: offset to write to
1669 * @len: number of bytes to write
1670 * @retlen: pointer to variable to store the number of written bytes
1671 * @buf: the data to write
1672 *
1673 * NAND write with ECC
1674 */
1675 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1676 size_t *retlen, const uint8_t *buf)
1677 {
1678 struct nand_chip *chip = mtd->priv;
1679 int ret;
1680
1681 /* Do not allow reads past end of device */
1682 if ((to + len) > mtd->size)
1683 return -EINVAL;
1684 if (!len)
1685 return 0;
1686
1687 nand_get_device(chip, mtd, FL_WRITING);
1688
1689 chip->ops.len = len;
1690 chip->ops.datbuf = (uint8_t *)buf;
1691 chip->ops.oobbuf = NULL;
1692
1693 ret = nand_do_write_ops(mtd, to, &chip->ops);
1694
1695 *retlen = chip->ops.retlen;
1696
1697 nand_release_device(mtd);
1698
1699 return ret;
1700 }
1701
1702 /**
1703 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1704 * @mtd: MTD device structure
1705 * @to: offset to write to
1706 * @ops: oob operation description structure
1707 *
1708 * NAND write out-of-band
1709 */
1710 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1711 struct mtd_oob_ops *ops)
1712 {
1713 int chipnr, page, status;
1714 struct nand_chip *chip = mtd->priv;
1715
1716 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1717 (unsigned int)to, (int)ops->len);
1718
1719 /* Do not allow write past end of page */
1720 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1721 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1722 "Attempt to write past end of page\n");
1723 return -EINVAL;
1724 }
1725
1726 chipnr = (int)(to >> chip->chip_shift);
1727 chip->select_chip(mtd, chipnr);
1728
1729 /* Shift to get page */
1730 page = (int)(to >> chip->page_shift);
1731
1732 /*
1733 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1734 * of my DiskOnChip 2000 test units) will clear the whole data page too
1735 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1736 * it in the doc2000 driver in August 1999. dwmw2.
1737 */
1738 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1739
1740 /* Check, if it is write protected */
1741 if (nand_check_wp(mtd))
1742 return -EROFS;
1743
1744 /* Invalidate the page cache, if we write to the cached page */
1745 if (page == chip->pagebuf)
1746 chip->pagebuf = -1;
1747
1748 chip->oob_poi = chip->buffers.oobwbuf;
1749 memset(chip->oob_poi, 0xff, mtd->oobsize);
1750 nand_fill_oob(chip, ops->oobbuf, ops);
1751 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1752 memset(chip->oob_poi, 0xff, mtd->oobsize);
1753
1754 if (status)
1755 return status;
1756
1757 ops->retlen = ops->len;
1758
1759 return 0;
1760 }
1761
1762 /**
1763 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1764 * @mtd: MTD device structure
1765 * @to: offset to write to
1766 * @ops: oob operation description structure
1767 */
1768 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1769 struct mtd_oob_ops *ops)
1770 {
1771 void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1772 const uint8_t *buf) = NULL;
1773 struct nand_chip *chip = mtd->priv;
1774 int ret = -ENOTSUPP;
1775
1776 ops->retlen = 0;
1777
1778 /* Do not allow writes past end of device */
1779 if ((to + ops->len) > mtd->size) {
1780 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1781 "Attempt read beyond end of device\n");
1782 return -EINVAL;
1783 }
1784
1785 nand_get_device(chip, mtd, FL_WRITING);
1786
1787 switch(ops->mode) {
1788 case MTD_OOB_PLACE:
1789 case MTD_OOB_AUTO:
1790 break;
1791
1792 case MTD_OOB_RAW:
1793 /* Replace the write_page algorithm temporary */
1794 write_page = chip->ecc.write_page;
1795 chip->ecc.write_page = nand_write_page_raw;
1796 break;
1797
1798 default:
1799 goto out;
1800 }
1801
1802 if (!ops->datbuf)
1803 ret = nand_do_write_oob(mtd, to, ops);
1804 else
1805 ret = nand_do_write_ops(mtd, to, ops);
1806
1807 if (unlikely(ops->mode == MTD_OOB_RAW))
1808 chip->ecc.write_page = write_page;
1809 out:
1810 nand_release_device(mtd);
1811 return ret;
1812 }
1813
1814 /**
1815 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1816 * @mtd: MTD device structure
1817 * @page: the page address of the block which will be erased
1818 *
1819 * Standard erase command for NAND chips
1820 */
1821 static void single_erase_cmd(struct mtd_info *mtd, int page)
1822 {
1823 struct nand_chip *chip = mtd->priv;
1824 /* Send commands to erase a block */
1825 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1826 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1827 }
1828
1829 /**
1830 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1831 * @mtd: MTD device structure
1832 * @page: the page address of the block which will be erased
1833 *
1834 * AND multi block erase command function
1835 * Erase 4 consecutive blocks
1836 */
1837 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1838 {
1839 struct nand_chip *chip = mtd->priv;
1840 /* Send commands to erase a block */
1841 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1842 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1843 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1844 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1845 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1846 }
1847
1848 /**
1849 * nand_erase - [MTD Interface] erase block(s)
1850 * @mtd: MTD device structure
1851 * @instr: erase instruction
1852 *
1853 * Erase one ore more blocks
1854 */
1855 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1856 {
1857 return nand_erase_nand(mtd, instr, 0);
1858 }
1859
1860 #define BBT_PAGE_MASK 0xffffff3f
1861 /**
1862 * nand_erase_nand - [Internal] erase block(s)
1863 * @mtd: MTD device structure
1864 * @instr: erase instruction
1865 * @allowbbt: allow erasing the bbt area
1866 *
1867 * Erase one ore more blocks
1868 */
1869 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1870 int allowbbt)
1871 {
1872 int page, len, status, pages_per_block, ret, chipnr;
1873 struct nand_chip *chip = mtd->priv;
1874 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1875 unsigned int bbt_masked_page = 0xffffffff;
1876
1877 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1878 (unsigned int)instr->addr, (unsigned int)instr->len);
1879
1880 /* Start address must align on block boundary */
1881 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1882 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1883 return -EINVAL;
1884 }
1885
1886 /* Length must align on block boundary */
1887 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1888 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1889 "Length not block aligned\n");
1890 return -EINVAL;
1891 }
1892
1893 /* Do not allow erase past end of device */
1894 if ((instr->len + instr->addr) > mtd->size) {
1895 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1896 "Erase past end of device\n");
1897 return -EINVAL;
1898 }
1899
1900 instr->fail_addr = 0xffffffff;
1901
1902 /* Grab the lock and see if the device is available */
1903 nand_get_device(chip, mtd, FL_ERASING);
1904
1905 /* Shift to get first page */
1906 page = (int)(instr->addr >> chip->page_shift);
1907 chipnr = (int)(instr->addr >> chip->chip_shift);
1908
1909 /* Calculate pages in each block */
1910 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1911
1912 /* Select the NAND device */
1913 chip->select_chip(mtd, chipnr);
1914
1915 /* Check, if it is write protected */
1916 if (nand_check_wp(mtd)) {
1917 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1918 "Device is write protected!!!\n");
1919 instr->state = MTD_ERASE_FAILED;
1920 goto erase_exit;
1921 }
1922
1923 /*
1924 * If BBT requires refresh, set the BBT page mask to see if the BBT
1925 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1926 * can not be matched. This is also done when the bbt is actually
1927 * erased to avoid recusrsive updates
1928 */
1929 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1930 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1931
1932 /* Loop through the pages */
1933 len = instr->len;
1934
1935 instr->state = MTD_ERASING;
1936
1937 while (len) {
1938 /*
1939 * heck if we have a bad block, we do not erase bad blocks !
1940 */
1941 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1942 chip->page_shift, 0, allowbbt)) {
1943 printk(KERN_WARNING "nand_erase: attempt to erase a "
1944 "bad block at page 0x%08x\n", page);
1945 instr->state = MTD_ERASE_FAILED;
1946 goto erase_exit;
1947 }
1948
1949 /*
1950 * Invalidate the page cache, if we erase the block which
1951 * contains the current cached page
1952 */
1953 if (page <= chip->pagebuf && chip->pagebuf <
1954 (page + pages_per_block))
1955 chip->pagebuf = -1;
1956
1957 chip->erase_cmd(mtd, page & chip->pagemask);
1958
1959 status = chip->waitfunc(mtd, chip);
1960
1961 /*
1962 * See if operation failed and additional status checks are
1963 * available
1964 */
1965 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1966 status = chip->errstat(mtd, chip, FL_ERASING,
1967 status, page);
1968
1969 /* See if block erase succeeded */
1970 if (status & NAND_STATUS_FAIL) {
1971 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1972 "Failed erase, page 0x%08x\n", page);
1973 instr->state = MTD_ERASE_FAILED;
1974 instr->fail_addr = (page << chip->page_shift);
1975 goto erase_exit;
1976 }
1977
1978 /*
1979 * If BBT requires refresh, set the BBT rewrite flag to the
1980 * page being erased
1981 */
1982 if (bbt_masked_page != 0xffffffff &&
1983 (page & BBT_PAGE_MASK) == bbt_masked_page)
1984 rewrite_bbt[chipnr] = (page << chip->page_shift);
1985
1986 /* Increment page address and decrement length */
1987 len -= (1 << chip->phys_erase_shift);
1988 page += pages_per_block;
1989
1990 /* Check, if we cross a chip boundary */
1991 if (len && !(page & chip->pagemask)) {
1992 chipnr++;
1993 chip->select_chip(mtd, -1);
1994 chip->select_chip(mtd, chipnr);
1995
1996 /*
1997 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1998 * page mask to see if this BBT should be rewritten
1999 */
2000 if (bbt_masked_page != 0xffffffff &&
2001 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2002 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2003 BBT_PAGE_MASK;
2004 }
2005 }
2006 instr->state = MTD_ERASE_DONE;
2007
2008 erase_exit:
2009
2010 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2011 /* Do call back function */
2012 if (!ret)
2013 mtd_erase_callback(instr);
2014
2015 /* Deselect and wake up anyone waiting on the device */
2016 nand_release_device(mtd);
2017
2018 /*
2019 * If BBT requires refresh and erase was successful, rewrite any
2020 * selected bad block tables
2021 */
2022 if (bbt_masked_page == 0xffffffff || ret)
2023 return ret;
2024
2025 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2026 if (!rewrite_bbt[chipnr])
2027 continue;
2028 /* update the BBT for chip */
2029 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2030 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2031 chip->bbt_td->pages[chipnr]);
2032 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2033 }
2034
2035 /* Return more or less happy */
2036 return ret;
2037 }
2038
2039 /**
2040 * nand_sync - [MTD Interface] sync
2041 * @mtd: MTD device structure
2042 *
2043 * Sync is actually a wait for chip ready function
2044 */
2045 static void nand_sync(struct mtd_info *mtd)
2046 {
2047 struct nand_chip *chip = mtd->priv;
2048
2049 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2050
2051 /* Grab the lock and see if the device is available */
2052 nand_get_device(chip, mtd, FL_SYNCING);
2053 /* Release it and go back */
2054 nand_release_device(mtd);
2055 }
2056
2057 /**
2058 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2059 * @mtd: MTD device structure
2060 * @offs: offset relative to mtd start
2061 */
2062 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2063 {
2064 /* Check for invalid offset */
2065 if (offs > mtd->size)
2066 return -EINVAL;
2067
2068 return nand_block_checkbad(mtd, offs, 1, 0);
2069 }
2070
2071 /**
2072 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2073 * @mtd: MTD device structure
2074 * @ofs: offset relative to mtd start
2075 */
2076 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2077 {
2078 struct nand_chip *chip = mtd->priv;
2079 int ret;
2080
2081 if ((ret = nand_block_isbad(mtd, ofs))) {
2082 /* If it was bad already, return success and do nothing. */
2083 if (ret > 0)
2084 return 0;
2085 return ret;
2086 }
2087
2088 return chip->block_markbad(mtd, ofs);
2089 }
2090
2091 /**
2092 * nand_suspend - [MTD Interface] Suspend the NAND flash
2093 * @mtd: MTD device structure
2094 */
2095 static int nand_suspend(struct mtd_info *mtd)
2096 {
2097 struct nand_chip *chip = mtd->priv;
2098
2099 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2100 }
2101
2102 /**
2103 * nand_resume - [MTD Interface] Resume the NAND flash
2104 * @mtd: MTD device structure
2105 */
2106 static void nand_resume(struct mtd_info *mtd)
2107 {
2108 struct nand_chip *chip = mtd->priv;
2109
2110 if (chip->state == FL_PM_SUSPENDED)
2111 nand_release_device(mtd);
2112 else
2113 printk(KERN_ERR "nand_resume() called for a chip which is not "
2114 "in suspended state\n");
2115 }
2116
2117 /*
2118 * Set default functions
2119 */
2120 static void nand_set_defaults(struct nand_chip *chip, int busw)
2121 {
2122 /* check for proper chip_delay setup, set 20us if not */
2123 if (!chip->chip_delay)
2124 chip->chip_delay = 20;
2125
2126 /* check, if a user supplied command function given */
2127 if (chip->cmdfunc == NULL)
2128 chip->cmdfunc = nand_command;
2129
2130 /* check, if a user supplied wait function given */
2131 if (chip->waitfunc == NULL)
2132 chip->waitfunc = nand_wait;
2133
2134 if (!chip->select_chip)
2135 chip->select_chip = nand_select_chip;
2136 if (!chip->read_byte)
2137 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2138 if (!chip->read_word)
2139 chip->read_word = nand_read_word;
2140 if (!chip->block_bad)
2141 chip->block_bad = nand_block_bad;
2142 if (!chip->block_markbad)
2143 chip->block_markbad = nand_default_block_markbad;
2144 if (!chip->write_buf)
2145 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2146 if (!chip->read_buf)
2147 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2148 if (!chip->verify_buf)
2149 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2150 if (!chip->scan_bbt)
2151 chip->scan_bbt = nand_default_bbt;
2152
2153 if (!chip->controller) {
2154 chip->controller = &chip->hwcontrol;
2155 spin_lock_init(&chip->controller->lock);
2156 init_waitqueue_head(&chip->controller->wq);
2157 }
2158
2159 }
2160
2161 /*
2162 * Get the flash and manufacturer id and lookup if the type is supported
2163 */
2164 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2165 struct nand_chip *chip,
2166 int busw, int *maf_id)
2167 {
2168 struct nand_flash_dev *type = NULL;
2169 int i, dev_id, maf_idx;
2170
2171 /* Select the device */
2172 chip->select_chip(mtd, 0);
2173
2174 /* Send the command for reading device ID */
2175 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2176
2177 /* Read manufacturer and device IDs */
2178 *maf_id = chip->read_byte(mtd);
2179 dev_id = chip->read_byte(mtd);
2180
2181 /* Lookup the flash id */
2182 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2183 if (dev_id == nand_flash_ids[i].id) {
2184 type = &nand_flash_ids[i];
2185 break;
2186 }
2187 }
2188
2189 if (!type)
2190 return ERR_PTR(-ENODEV);
2191
2192 if (!mtd->name)
2193 mtd->name = type->name;
2194
2195 chip->chipsize = type->chipsize << 20;
2196
2197 /* Newer devices have all the information in additional id bytes */
2198 if (!type->pagesize) {
2199 int extid;
2200 /* The 3rd id byte contains non relevant data ATM */
2201 extid = chip->read_byte(mtd);
2202 /* The 4th id byte is the important one */
2203 extid = chip->read_byte(mtd);
2204 /* Calc pagesize */
2205 mtd->writesize = 1024 << (extid & 0x3);
2206 extid >>= 2;
2207 /* Calc oobsize */
2208 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2209 extid >>= 2;
2210 /* Calc blocksize. Blocksize is multiples of 64KiB */
2211 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2212 extid >>= 2;
2213 /* Get buswidth information */
2214 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2215
2216 } else {
2217 /*
2218 * Old devices have chip data hardcoded in the device id table
2219 */
2220 mtd->erasesize = type->erasesize;
2221 mtd->writesize = type->pagesize;
2222 mtd->oobsize = mtd->writesize / 32;
2223 busw = type->options & NAND_BUSWIDTH_16;
2224 }
2225
2226 /* Try to identify manufacturer */
2227 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2228 if (nand_manuf_ids[maf_idx].id == *maf_id)
2229 break;
2230 }
2231
2232 /*
2233 * Check, if buswidth is correct. Hardware drivers should set
2234 * chip correct !
2235 */
2236 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2237 printk(KERN_INFO "NAND device: Manufacturer ID:"
2238 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2239 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2240 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2241 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2242 busw ? 16 : 8);
2243 return ERR_PTR(-EINVAL);
2244 }
2245
2246 /* Calculate the address shift from the page size */
2247 chip->page_shift = ffs(mtd->writesize) - 1;
2248 /* Convert chipsize to number of pages per chip -1. */
2249 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2250
2251 chip->bbt_erase_shift = chip->phys_erase_shift =
2252 ffs(mtd->erasesize) - 1;
2253 chip->chip_shift = ffs(chip->chipsize) - 1;
2254
2255 /* Set the bad block position */
2256 chip->badblockpos = mtd->writesize > 512 ?
2257 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2258
2259 /* Get chip options, preserve non chip based options */
2260 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2261 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2262
2263 /*
2264 * Set chip as a default. Board drivers can override it, if necessary
2265 */
2266 chip->options |= NAND_NO_AUTOINCR;
2267
2268 /* Check if chip is a not a samsung device. Do not clear the
2269 * options for chips which are not having an extended id.
2270 */
2271 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2272 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2273
2274 /* Check for AND chips with 4 page planes */
2275 if (chip->options & NAND_4PAGE_ARRAY)
2276 chip->erase_cmd = multi_erase_cmd;
2277 else
2278 chip->erase_cmd = single_erase_cmd;
2279
2280 /* Do not replace user supplied command function ! */
2281 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2282 chip->cmdfunc = nand_command_lp;
2283
2284 printk(KERN_INFO "NAND device: Manufacturer ID:"
2285 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2286 nand_manuf_ids[maf_idx].name, type->name);
2287
2288 return type;
2289 }
2290
2291 /* module_text_address() isn't exported, and it's mostly a pointless
2292 test if this is a module _anyway_ -- they'd have to try _really_ hard
2293 to call us from in-kernel code if the core NAND support is modular. */
2294 #ifdef MODULE
2295 #define caller_is_module() (1)
2296 #else
2297 #define caller_is_module() \
2298 module_text_address((unsigned long)__builtin_return_address(0))
2299 #endif
2300
2301 /**
2302 * nand_scan - [NAND Interface] Scan for the NAND device
2303 * @mtd: MTD device structure
2304 * @maxchips: Number of chips to scan for
2305 *
2306 * This fills out all the uninitialized function pointers
2307 * with the defaults.
2308 * The flash ID is read and the mtd/chip structures are
2309 * filled with the appropriate values.
2310 * The mtd->owner field must be set to the module of the caller
2311 *
2312 */
2313 int nand_scan(struct mtd_info *mtd, int maxchips)
2314 {
2315 int i, busw, nand_maf_id;
2316 struct nand_chip *chip = mtd->priv;
2317 struct nand_flash_dev *type;
2318
2319 /* Many callers got this wrong, so check for it for a while... */
2320 if (!mtd->owner && caller_is_module()) {
2321 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2322 BUG();
2323 }
2324
2325 /* Get buswidth to select the correct functions */
2326 busw = chip->options & NAND_BUSWIDTH_16;
2327 /* Set the default functions */
2328 nand_set_defaults(chip, busw);
2329
2330 /* Read the flash type */
2331 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2332
2333 if (IS_ERR(type)) {
2334 printk(KERN_WARNING "No NAND device found!!!\n");
2335 chip->select_chip(mtd, -1);
2336 return PTR_ERR(type);
2337 }
2338
2339 /* Check for a chip array */
2340 for (i = 1; i < maxchips; i++) {
2341 chip->select_chip(mtd, i);
2342 /* Send the command for reading device ID */
2343 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2344 /* Read manufacturer and device IDs */
2345 if (nand_maf_id != chip->read_byte(mtd) ||
2346 type->id != chip->read_byte(mtd))
2347 break;
2348 }
2349 if (i > 1)
2350 printk(KERN_INFO "%d NAND chips detected\n", i);
2351
2352 /* Store the number of chips and calc total size for mtd */
2353 chip->numchips = i;
2354 mtd->size = i * chip->chipsize;
2355
2356 /* Preset the internal oob write buffer */
2357 memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2358
2359 /*
2360 * If no default placement scheme is given, select an appropriate one
2361 */
2362 if (!chip->ecc.layout) {
2363 switch (mtd->oobsize) {
2364 case 8:
2365 chip->ecc.layout = &nand_oob_8;
2366 break;
2367 case 16:
2368 chip->ecc.layout = &nand_oob_16;
2369 break;
2370 case 64:
2371 chip->ecc.layout = &nand_oob_64;
2372 break;
2373 default:
2374 printk(KERN_WARNING "No oob scheme defined for "
2375 "oobsize %d\n", mtd->oobsize);
2376 BUG();
2377 }
2378 }
2379
2380 /*
2381 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2382 * selected and we have 256 byte pagesize fallback to software ECC
2383 */
2384 switch (chip->ecc.mode) {
2385 case NAND_ECC_HW:
2386 /* Use standard hwecc read page function ? */
2387 if (!chip->ecc.read_page)
2388 chip->ecc.read_page = nand_read_page_hwecc;
2389 if (!chip->ecc.write_page)
2390 chip->ecc.write_page = nand_write_page_hwecc;
2391 if (!chip->ecc.read_oob)
2392 chip->ecc.read_oob = nand_read_oob_std;
2393 if (!chip->ecc.write_oob)
2394 chip->ecc.write_oob = nand_write_oob_std;
2395
2396 case NAND_ECC_HW_SYNDROME:
2397 if (!chip->ecc.calculate || !chip->ecc.correct ||
2398 !chip->ecc.hwctl) {
2399 printk(KERN_WARNING "No ECC functions supplied, "
2400 "Hardware ECC not possible\n");
2401 BUG();
2402 }
2403 /* Use standard syndrome read/write page function ? */
2404 if (!chip->ecc.read_page)
2405 chip->ecc.read_page = nand_read_page_syndrome;
2406 if (!chip->ecc.write_page)
2407 chip->ecc.write_page = nand_write_page_syndrome;
2408 if (!chip->ecc.read_oob)
2409 chip->ecc.read_oob = nand_read_oob_syndrome;
2410 if (!chip->ecc.write_oob)
2411 chip->ecc.write_oob = nand_write_oob_syndrome;
2412
2413 if (mtd->writesize >= chip->ecc.size)
2414 break;
2415 printk(KERN_WARNING "%d byte HW ECC not possible on "
2416 "%d byte page size, fallback to SW ECC\n",
2417 chip->ecc.size, mtd->writesize);
2418 chip->ecc.mode = NAND_ECC_SOFT;
2419
2420 case NAND_ECC_SOFT:
2421 chip->ecc.calculate = nand_calculate_ecc;
2422 chip->ecc.correct = nand_correct_data;
2423 chip->ecc.read_page = nand_read_page_swecc;
2424 chip->ecc.write_page = nand_write_page_swecc;
2425 chip->ecc.read_oob = nand_read_oob_std;
2426 chip->ecc.write_oob = nand_write_oob_std;
2427 chip->ecc.size = 256;
2428 chip->ecc.bytes = 3;
2429 break;
2430
2431 case NAND_ECC_NONE:
2432 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2433 "This is not recommended !!\n");
2434 chip->ecc.read_page = nand_read_page_raw;
2435 chip->ecc.write_page = nand_write_page_raw;
2436 chip->ecc.read_oob = nand_read_oob_std;
2437 chip->ecc.write_oob = nand_write_oob_std;
2438 chip->ecc.size = mtd->writesize;
2439 chip->ecc.bytes = 0;
2440 break;
2441 default:
2442 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2443 chip->ecc.mode);
2444 BUG();
2445 }
2446
2447 /*
2448 * The number of bytes available for a client to place data into
2449 * the out of band area
2450 */
2451 chip->ecc.layout->oobavail = 0;
2452 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2453 chip->ecc.layout->oobavail +=
2454 chip->ecc.layout->oobfree[i].length;
2455
2456 /*
2457 * Set the number of read / write steps for one page depending on ECC
2458 * mode
2459 */
2460 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2461 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2462 printk(KERN_WARNING "Invalid ecc parameters\n");
2463 BUG();
2464 }
2465 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2466
2467 /* Initialize state */
2468 chip->state = FL_READY;
2469
2470 /* De-select the device */
2471 chip->select_chip(mtd, -1);
2472
2473 /* Invalidate the pagebuffer reference */
2474 chip->pagebuf = -1;
2475
2476 /* Fill in remaining MTD driver data */
2477 mtd->type = MTD_NANDFLASH;
2478 mtd->flags = MTD_CAP_NANDFLASH;
2479 mtd->ecctype = MTD_ECC_SW;
2480 mtd->erase = nand_erase;
2481 mtd->point = NULL;
2482 mtd->unpoint = NULL;
2483 mtd->read = nand_read;
2484 mtd->write = nand_write;
2485 mtd->read_oob = nand_read_oob;
2486 mtd->write_oob = nand_write_oob;
2487 mtd->sync = nand_sync;
2488 mtd->lock = NULL;
2489 mtd->unlock = NULL;
2490 mtd->suspend = nand_suspend;
2491 mtd->resume = nand_resume;
2492 mtd->block_isbad = nand_block_isbad;
2493 mtd->block_markbad = nand_block_markbad;
2494
2495 /* propagate ecc.layout to mtd_info */
2496 mtd->ecclayout = chip->ecc.layout;
2497
2498 /* Check, if we should skip the bad block table scan */
2499 if (chip->options & NAND_SKIP_BBTSCAN)
2500 return 0;
2501
2502 /* Build bad block table */
2503 return chip->scan_bbt(mtd);
2504 }
2505
2506 /**
2507 * nand_release - [NAND Interface] Free resources held by the NAND device
2508 * @mtd: MTD device structure
2509 */
2510 void nand_release(struct mtd_info *mtd)
2511 {
2512 struct nand_chip *chip = mtd->priv;
2513
2514 #ifdef CONFIG_MTD_PARTITIONS
2515 /* Deregister partitions */
2516 del_mtd_partitions(mtd);
2517 #endif
2518 /* Deregister the device */
2519 del_mtd_device(mtd);
2520
2521 /* Free bad block table memory */
2522 kfree(chip->bbt);
2523 }
2524
2525 EXPORT_SYMBOL_GPL(nand_scan);
2526 EXPORT_SYMBOL_GPL(nand_release);
2527
2528 static int __init nand_base_init(void)
2529 {
2530 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2531 return 0;
2532 }
2533
2534 static void __exit nand_base_exit(void)
2535 {
2536 led_trigger_unregister_simple(nand_led_trigger);
2537 }
2538
2539 module_init(nand_base_init);
2540 module_exit(nand_base_exit);
2541
2542 MODULE_LICENSE("GPL");
2543 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2544 MODULE_DESCRIPTION("Generic NAND flash driver code");