]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
89
90 /*
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
93 */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
99 *
100 * Deselect, release chip lock and wake up anyone waiting on the device
101 */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104 struct nand_chip *chip = mtd->priv;
105
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
108
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
120 *
121 * Default read function for 8bit buswith
122 */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
132 *
133 * Default read function for 16bit buswith with
134 * endianess conversion
135 */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 16bit buswith without
147 * endianess conversion
148 */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
159 *
160 * Default select function for 1 chip devices.
161 */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164 struct nand_chip *chip = mtd->priv;
165
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
172
173 default:
174 BUG();
175 }
176 }
177
178 /**
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
183 *
184 * Default write function for 8bit buswith
185 */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188 int i;
189 struct nand_chip *chip = mtd->priv;
190
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
200 *
201 * Default read function for 8bit buswith
202 */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205 int i;
206 struct nand_chip *chip = mtd->priv;
207
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
217 *
218 * Default verify function for 8bit buswith
219 */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222 int i;
223 struct nand_chip *chip = mtd->priv;
224
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
229 }
230
231 /**
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 16bit buswith
238 */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
245
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
256 *
257 * Default read function for 16bit buswith
258 */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
265
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
275 *
276 * Default verify function for 16bit buswith
277 */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
288
289 return 0;
290 }
291
292 /**
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
297 *
298 * Check, if the block is bad.
299 */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
305
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
309
310 nand_get_device(chip, mtd, FL_READING);
311
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
316
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
330 }
331
332 if (getchip)
333 nand_release_device(mtd);
334
335 return res;
336 }
337
338 /**
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
342 *
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
351
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
363 */
364 ofs += mtd->oobsize;
365 chip->ops.len = chip->ops.ooblen = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371 }
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
375 }
376
377 /**
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
381 *
382 * The function expects, that the device is already selected
383 */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
398 *
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
401 */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
404 {
405 struct nand_chip *chip = mtd->priv;
406
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
409
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
417 */
418 void nand_wait_ready(struct mtd_info *mtd)
419 {
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
422
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
433
434 /**
435 * nand_command - [DEFAULT] Send command to NAND device
436 * @mtd: MTD device structure
437 * @command: the command to be sent
438 * @column: the column address for this command, -1 if none
439 * @page_addr: the page address for this command, -1 if none
440 *
441 * Send command to NAND device. This function is used for small page
442 * devices (256/512 Bytes per page)
443 */
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445 int column, int page_addr)
446 {
447 register struct nand_chip *chip = mtd->priv;
448 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
449
450 /*
451 * Write out the command to the device.
452 */
453 if (command == NAND_CMD_SEQIN) {
454 int readcmd;
455
456 if (column >= mtd->writesize) {
457 /* OOB area */
458 column -= mtd->writesize;
459 readcmd = NAND_CMD_READOOB;
460 } else if (column < 256) {
461 /* First 256 bytes --> READ0 */
462 readcmd = NAND_CMD_READ0;
463 } else {
464 column -= 256;
465 readcmd = NAND_CMD_READ1;
466 }
467 chip->cmd_ctrl(mtd, readcmd, ctrl);
468 ctrl &= ~NAND_CTRL_CHANGE;
469 }
470 chip->cmd_ctrl(mtd, command, ctrl);
471
472 /*
473 * Address cycle, when necessary
474 */
475 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476 /* Serially input address */
477 if (column != -1) {
478 /* Adjust columns for 16 bit buswidth */
479 if (chip->options & NAND_BUSWIDTH_16)
480 column >>= 1;
481 chip->cmd_ctrl(mtd, column, ctrl);
482 ctrl &= ~NAND_CTRL_CHANGE;
483 }
484 if (page_addr != -1) {
485 chip->cmd_ctrl(mtd, page_addr, ctrl);
486 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488 /* One more address cycle for devices > 32MiB */
489 if (chip->chipsize > (32 << 20))
490 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
491 }
492 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
493
494 /*
495 * program and erase have their own busy handlers
496 * status and sequential in needs no delay
497 */
498 switch (command) {
499
500 case NAND_CMD_PAGEPROG:
501 case NAND_CMD_ERASE1:
502 case NAND_CMD_ERASE2:
503 case NAND_CMD_SEQIN:
504 case NAND_CMD_STATUS:
505 return;
506
507 case NAND_CMD_RESET:
508 if (chip->dev_ready)
509 break;
510 udelay(chip->chip_delay);
511 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 chip->cmd_ctrl(mtd,
514 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516 return;
517
518 /* This applies to read commands */
519 default:
520 /*
521 * If we don't have access to the busy pin, we apply the given
522 * command delay
523 */
524 if (!chip->dev_ready) {
525 udelay(chip->chip_delay);
526 return;
527 }
528 }
529 /* Apply this short delay always to ensure that we do wait tWB in
530 * any case on any machine. */
531 ndelay(100);
532
533 nand_wait_ready(mtd);
534 }
535
536 /**
537 * nand_command_lp - [DEFAULT] Send command to NAND large page device
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
542 *
543 * Send command to NAND device. This is the version for the new large page
544 * devices We dont have the separate regions as we have in the small page
545 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
546 */
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548 int column, int page_addr)
549 {
550 register struct nand_chip *chip = mtd->priv;
551
552 /* Emulate NAND_CMD_READOOB */
553 if (command == NAND_CMD_READOOB) {
554 column += mtd->writesize;
555 command = NAND_CMD_READ0;
556 }
557
558 /* Command latch cycle */
559 chip->cmd_ctrl(mtd, command & 0xff,
560 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
561
562 if (column != -1 || page_addr != -1) {
563 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
564
565 /* Serially input address */
566 if (column != -1) {
567 /* Adjust columns for 16 bit buswidth */
568 if (chip->options & NAND_BUSWIDTH_16)
569 column >>= 1;
570 chip->cmd_ctrl(mtd, column, ctrl);
571 ctrl &= ~NAND_CTRL_CHANGE;
572 chip->cmd_ctrl(mtd, column >> 8, ctrl);
573 }
574 if (page_addr != -1) {
575 chip->cmd_ctrl(mtd, page_addr, ctrl);
576 chip->cmd_ctrl(mtd, page_addr >> 8,
577 NAND_NCE | NAND_ALE);
578 /* One more address cycle for devices > 128MiB */
579 if (chip->chipsize > (128 << 20))
580 chip->cmd_ctrl(mtd, page_addr >> 16,
581 NAND_NCE | NAND_ALE);
582 }
583 }
584 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
585
586 /*
587 * program and erase have their own busy handlers
588 * status, sequential in, and deplete1 need no delay
589 */
590 switch (command) {
591
592 case NAND_CMD_CACHEDPROG:
593 case NAND_CMD_PAGEPROG:
594 case NAND_CMD_ERASE1:
595 case NAND_CMD_ERASE2:
596 case NAND_CMD_SEQIN:
597 case NAND_CMD_RNDIN:
598 case NAND_CMD_STATUS:
599 case NAND_CMD_DEPLETE1:
600 return;
601
602 /*
603 * read error status commands require only a short delay
604 */
605 case NAND_CMD_STATUS_ERROR:
606 case NAND_CMD_STATUS_ERROR0:
607 case NAND_CMD_STATUS_ERROR1:
608 case NAND_CMD_STATUS_ERROR2:
609 case NAND_CMD_STATUS_ERROR3:
610 udelay(chip->chip_delay);
611 return;
612
613 case NAND_CMD_RESET:
614 if (chip->dev_ready)
615 break;
616 udelay(chip->chip_delay);
617 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620 NAND_NCE | NAND_CTRL_CHANGE);
621 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622 return;
623
624 case NAND_CMD_RNDOUT:
625 /* No ready / busy check necessary */
626 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629 NAND_NCE | NAND_CTRL_CHANGE);
630 return;
631
632 case NAND_CMD_READ0:
633 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636 NAND_NCE | NAND_CTRL_CHANGE);
637
638 /* This applies to read commands */
639 default:
640 /*
641 * If we don't have access to the busy pin, we apply the given
642 * command delay
643 */
644 if (!chip->dev_ready) {
645 udelay(chip->chip_delay);
646 return;
647 }
648 }
649
650 /* Apply this short delay always to ensure that we do wait tWB in
651 * any case on any machine. */
652 ndelay(100);
653
654 nand_wait_ready(mtd);
655 }
656
657 /**
658 * nand_get_device - [GENERIC] Get chip for selected access
659 * @chip: the nand chip descriptor
660 * @mtd: MTD device structure
661 * @new_state: the state which is requested
662 *
663 * Get the device and lock it for exclusive access
664 */
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
667 {
668 spinlock_t *lock = &chip->controller->lock;
669 wait_queue_head_t *wq = &chip->controller->wq;
670 DECLARE_WAITQUEUE(wait, current);
671 retry:
672 spin_lock(lock);
673
674 /* Hardware controller shared among independend devices */
675 /* Hardware controller shared among independend devices */
676 if (!chip->controller->active)
677 chip->controller->active = chip;
678
679 if (chip->controller->active == chip && chip->state == FL_READY) {
680 chip->state = new_state;
681 spin_unlock(lock);
682 return 0;
683 }
684 if (new_state == FL_PM_SUSPENDED) {
685 spin_unlock(lock);
686 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
687 }
688 set_current_state(TASK_UNINTERRUPTIBLE);
689 add_wait_queue(wq, &wait);
690 spin_unlock(lock);
691 schedule();
692 remove_wait_queue(wq, &wait);
693 goto retry;
694 }
695
696 /**
697 * nand_wait - [DEFAULT] wait until the command is done
698 * @mtd: MTD device structure
699 * @chip: NAND chip structure
700 *
701 * Wait for command done. This applies to erase and program only
702 * Erase can take up to 400ms and program up to 20ms according to
703 * general NAND and SmartMedia specs
704 */
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
706 {
707
708 unsigned long timeo = jiffies;
709 int status, state = chip->state;
710
711 if (state == FL_ERASING)
712 timeo += (HZ * 400) / 1000;
713 else
714 timeo += (HZ * 20) / 1000;
715
716 led_trigger_event(nand_led_trigger, LED_FULL);
717
718 /* Apply this short delay always to ensure that we do wait tWB in
719 * any case on any machine. */
720 ndelay(100);
721
722 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724 else
725 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
726
727 while (time_before(jiffies, timeo)) {
728 if (chip->dev_ready) {
729 if (chip->dev_ready(mtd))
730 break;
731 } else {
732 if (chip->read_byte(mtd) & NAND_STATUS_READY)
733 break;
734 }
735 cond_resched();
736 }
737 led_trigger_event(nand_led_trigger, LED_OFF);
738
739 status = (int)chip->read_byte(mtd);
740 return status;
741 }
742
743 /**
744 * nand_read_page_raw - [Intern] read raw page data without ecc
745 * @mtd: mtd info structure
746 * @chip: nand chip info structure
747 * @buf: buffer to store read data
748 */
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750 uint8_t *buf)
751 {
752 chip->read_buf(mtd, buf, mtd->writesize);
753 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754 return 0;
755 }
756
757 /**
758 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
759 * @mtd: mtd info structure
760 * @chip: nand chip info structure
761 * @buf: buffer to store read data
762 */
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764 uint8_t *buf)
765 {
766 int i, eccsize = chip->ecc.size;
767 int eccbytes = chip->ecc.bytes;
768 int eccsteps = chip->ecc.steps;
769 uint8_t *p = buf;
770 uint8_t *ecc_calc = chip->buffers->ecccalc;
771 uint8_t *ecc_code = chip->buffers->ecccode;
772 int *eccpos = chip->ecc.layout->eccpos;
773
774 nand_read_page_raw(mtd, chip, buf);
775
776 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
778
779 for (i = 0; i < chip->ecc.total; i++)
780 ecc_code[i] = chip->oob_poi[eccpos[i]];
781
782 eccsteps = chip->ecc.steps;
783 p = buf;
784
785 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786 int stat;
787
788 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789 if (stat == -1)
790 mtd->ecc_stats.failed++;
791 else
792 mtd->ecc_stats.corrected += stat;
793 }
794 return 0;
795 }
796
797 /**
798 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
799 * @mtd: mtd info structure
800 * @chip: nand chip info structure
801 * @buf: buffer to store read data
802 *
803 * Not for syndrome calculating ecc controllers which need a special oob layout
804 */
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806 uint8_t *buf)
807 {
808 int i, eccsize = chip->ecc.size;
809 int eccbytes = chip->ecc.bytes;
810 int eccsteps = chip->ecc.steps;
811 uint8_t *p = buf;
812 uint8_t *ecc_calc = chip->buffers->ecccalc;
813 uint8_t *ecc_code = chip->buffers->ecccode;
814 int *eccpos = chip->ecc.layout->eccpos;
815
816 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818 chip->read_buf(mtd, p, eccsize);
819 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
820 }
821 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
822
823 for (i = 0; i < chip->ecc.total; i++)
824 ecc_code[i] = chip->oob_poi[eccpos[i]];
825
826 eccsteps = chip->ecc.steps;
827 p = buf;
828
829 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830 int stat;
831
832 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833 if (stat == -1)
834 mtd->ecc_stats.failed++;
835 else
836 mtd->ecc_stats.corrected += stat;
837 }
838 return 0;
839 }
840
841 /**
842 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
843 * @mtd: mtd info structure
844 * @chip: nand chip info structure
845 * @buf: buffer to store read data
846 *
847 * The hw generator calculates the error syndrome automatically. Therefor
848 * we need a special oob layout and handling.
849 */
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851 uint8_t *buf)
852 {
853 int i, eccsize = chip->ecc.size;
854 int eccbytes = chip->ecc.bytes;
855 int eccsteps = chip->ecc.steps;
856 uint8_t *p = buf;
857 uint8_t *oob = chip->oob_poi;
858
859 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860 int stat;
861
862 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863 chip->read_buf(mtd, p, eccsize);
864
865 if (chip->ecc.prepad) {
866 chip->read_buf(mtd, oob, chip->ecc.prepad);
867 oob += chip->ecc.prepad;
868 }
869
870 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871 chip->read_buf(mtd, oob, eccbytes);
872 stat = chip->ecc.correct(mtd, p, oob, NULL);
873
874 if (stat == -1)
875 mtd->ecc_stats.failed++;
876 else
877 mtd->ecc_stats.corrected += stat;
878
879 oob += eccbytes;
880
881 if (chip->ecc.postpad) {
882 chip->read_buf(mtd, oob, chip->ecc.postpad);
883 oob += chip->ecc.postpad;
884 }
885 }
886
887 /* Calculate remaining oob bytes */
888 i = mtd->oobsize - (oob - chip->oob_poi);
889 if (i)
890 chip->read_buf(mtd, oob, i);
891
892 return 0;
893 }
894
895 /**
896 * nand_transfer_oob - [Internal] Transfer oob to client buffer
897 * @chip: nand chip structure
898 * @oob: oob destination address
899 * @ops: oob ops structure
900 * @len: size of oob to transfer
901 */
902 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
903 struct mtd_oob_ops *ops, size_t len)
904 {
905 switch(ops->mode) {
906
907 case MTD_OOB_PLACE:
908 case MTD_OOB_RAW:
909 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
910 return oob + len;
911
912 case MTD_OOB_AUTO: {
913 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914 uint32_t boffs = 0, roffs = ops->ooboffs;
915 size_t bytes = 0;
916
917 for(; free->length && len; free++, len -= bytes) {
918 /* Read request not from offset 0 ? */
919 if (unlikely(roffs)) {
920 if (roffs >= free->length) {
921 roffs -= free->length;
922 continue;
923 }
924 boffs = free->offset + roffs;
925 bytes = min_t(size_t, len,
926 (free->length - roffs));
927 roffs = 0;
928 } else {
929 bytes = min_t(size_t, len, free->length);
930 boffs = free->offset;
931 }
932 memcpy(oob, chip->oob_poi + boffs, bytes);
933 oob += bytes;
934 }
935 return oob;
936 }
937 default:
938 BUG();
939 }
940 return NULL;
941 }
942
943 /**
944 * nand_do_read_ops - [Internal] Read data with ECC
945 *
946 * @mtd: MTD device structure
947 * @from: offset to read from
948 * @ops: oob ops structure
949 *
950 * Internal function. Called with chip held.
951 */
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953 struct mtd_oob_ops *ops)
954 {
955 int chipnr, page, realpage, col, bytes, aligned;
956 struct nand_chip *chip = mtd->priv;
957 struct mtd_ecc_stats stats;
958 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
959 int sndcmd = 1;
960 int ret = 0;
961 uint32_t readlen = ops->len;
962 uint32_t oobreadlen = ops->ooblen;
963 uint8_t *bufpoi, *oob, *buf;
964
965 stats = mtd->ecc_stats;
966
967 chipnr = (int)(from >> chip->chip_shift);
968 chip->select_chip(mtd, chipnr);
969
970 realpage = (int)(from >> chip->page_shift);
971 page = realpage & chip->pagemask;
972
973 col = (int)(from & (mtd->writesize - 1));
974
975 buf = ops->datbuf;
976 oob = ops->oobbuf;
977
978 while(1) {
979 bytes = min(mtd->writesize - col, readlen);
980 aligned = (bytes == mtd->writesize);
981
982 /* Is the current page in the buffer ? */
983 if (realpage != chip->pagebuf || oob) {
984 bufpoi = aligned ? buf : chip->buffers->databuf;
985
986 if (likely(sndcmd)) {
987 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
988 sndcmd = 0;
989 }
990
991 /* Now read the page into the buffer */
992 if (unlikely(ops->mode == MTD_OOB_RAW))
993 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
994 else
995 ret = chip->ecc.read_page(mtd, chip, bufpoi);
996 if (ret < 0)
997 break;
998
999 /* Transfer not aligned data */
1000 if (!aligned) {
1001 chip->pagebuf = realpage;
1002 memcpy(buf, chip->buffers->databuf + col, bytes);
1003 }
1004
1005 buf += bytes;
1006
1007 if (unlikely(oob)) {
1008 /* Raw mode does data:oob:data:oob */
1009 if (ops->mode != MTD_OOB_RAW) {
1010 int toread = min(oobreadlen,
1011 chip->ecc.layout->oobavail);
1012 if (toread) {
1013 oob = nand_transfer_oob(chip,
1014 oob, ops, toread);
1015 oobreadlen -= toread;
1016 }
1017 } else
1018 buf = nand_transfer_oob(chip,
1019 buf, ops, mtd->oobsize);
1020 }
1021
1022 if (!(chip->options & NAND_NO_READRDY)) {
1023 /*
1024 * Apply delay or wait for ready/busy pin. Do
1025 * this before the AUTOINCR check, so no
1026 * problems arise if a chip which does auto
1027 * increment is marked as NOAUTOINCR by the
1028 * board driver.
1029 */
1030 if (!chip->dev_ready)
1031 udelay(chip->chip_delay);
1032 else
1033 nand_wait_ready(mtd);
1034 }
1035 } else {
1036 memcpy(buf, chip->buffers->databuf + col, bytes);
1037 buf += bytes;
1038 }
1039
1040 readlen -= bytes;
1041
1042 if (!readlen)
1043 break;
1044
1045 /* For subsequent reads align to page boundary. */
1046 col = 0;
1047 /* Increment page address */
1048 realpage++;
1049
1050 page = realpage & chip->pagemask;
1051 /* Check, if we cross a chip boundary */
1052 if (!page) {
1053 chipnr++;
1054 chip->select_chip(mtd, -1);
1055 chip->select_chip(mtd, chipnr);
1056 }
1057
1058 /* Check, if the chip supports auto page increment
1059 * or if we have hit a block boundary.
1060 */
1061 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1062 sndcmd = 1;
1063 }
1064
1065 ops->retlen = ops->len - (size_t) readlen;
1066 if (oob)
1067 ops->oobretlen = ops->ooblen - oobreadlen;
1068
1069 if (ret)
1070 return ret;
1071
1072 if (mtd->ecc_stats.failed - stats.failed)
1073 return -EBADMSG;
1074
1075 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1076 }
1077
1078 /**
1079 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1080 * @mtd: MTD device structure
1081 * @from: offset to read from
1082 * @len: number of bytes to read
1083 * @retlen: pointer to variable to store the number of read bytes
1084 * @buf: the databuffer to put data
1085 *
1086 * Get hold of the chip and call nand_do_read
1087 */
1088 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089 size_t *retlen, uint8_t *buf)
1090 {
1091 struct nand_chip *chip = mtd->priv;
1092 int ret;
1093
1094 /* Do not allow reads past end of device */
1095 if ((from + len) > mtd->size)
1096 return -EINVAL;
1097 if (!len)
1098 return 0;
1099
1100 nand_get_device(chip, mtd, FL_READING);
1101
1102 chip->ops.len = len;
1103 chip->ops.datbuf = buf;
1104 chip->ops.oobbuf = NULL;
1105
1106 ret = nand_do_read_ops(mtd, from, &chip->ops);
1107
1108 *retlen = chip->ops.retlen;
1109
1110 nand_release_device(mtd);
1111
1112 return ret;
1113 }
1114
1115 /**
1116 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1117 * @mtd: mtd info structure
1118 * @chip: nand chip info structure
1119 * @page: page number to read
1120 * @sndcmd: flag whether to issue read command or not
1121 */
1122 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1123 int page, int sndcmd)
1124 {
1125 if (sndcmd) {
1126 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1127 sndcmd = 0;
1128 }
1129 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1130 return sndcmd;
1131 }
1132
1133 /**
1134 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1135 * with syndromes
1136 * @mtd: mtd info structure
1137 * @chip: nand chip info structure
1138 * @page: page number to read
1139 * @sndcmd: flag whether to issue read command or not
1140 */
1141 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1142 int page, int sndcmd)
1143 {
1144 uint8_t *buf = chip->oob_poi;
1145 int length = mtd->oobsize;
1146 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1147 int eccsize = chip->ecc.size;
1148 uint8_t *bufpoi = buf;
1149 int i, toread, sndrnd = 0, pos;
1150
1151 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1152 for (i = 0; i < chip->ecc.steps; i++) {
1153 if (sndrnd) {
1154 pos = eccsize + i * (eccsize + chunk);
1155 if (mtd->writesize > 512)
1156 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1157 else
1158 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1159 } else
1160 sndrnd = 1;
1161 toread = min_t(int, length, chunk);
1162 chip->read_buf(mtd, bufpoi, toread);
1163 bufpoi += toread;
1164 length -= toread;
1165 }
1166 if (length > 0)
1167 chip->read_buf(mtd, bufpoi, length);
1168
1169 return 1;
1170 }
1171
1172 /**
1173 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1174 * @mtd: mtd info structure
1175 * @chip: nand chip info structure
1176 * @page: page number to write
1177 */
1178 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1179 int page)
1180 {
1181 int status = 0;
1182 const uint8_t *buf = chip->oob_poi;
1183 int length = mtd->oobsize;
1184
1185 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1186 chip->write_buf(mtd, buf, length);
1187 /* Send command to program the OOB data */
1188 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1189
1190 status = chip->waitfunc(mtd, chip);
1191
1192 return status & NAND_STATUS_FAIL ? -EIO : 0;
1193 }
1194
1195 /**
1196 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1197 * with syndrome - only for large page flash !
1198 * @mtd: mtd info structure
1199 * @chip: nand chip info structure
1200 * @page: page number to write
1201 */
1202 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1203 struct nand_chip *chip, int page)
1204 {
1205 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1206 int eccsize = chip->ecc.size, length = mtd->oobsize;
1207 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1208 const uint8_t *bufpoi = chip->oob_poi;
1209
1210 /*
1211 * data-ecc-data-ecc ... ecc-oob
1212 * or
1213 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1214 */
1215 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1216 pos = steps * (eccsize + chunk);
1217 steps = 0;
1218 } else
1219 pos = eccsize;
1220
1221 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1222 for (i = 0; i < steps; i++) {
1223 if (sndcmd) {
1224 if (mtd->writesize <= 512) {
1225 uint32_t fill = 0xFFFFFFFF;
1226
1227 len = eccsize;
1228 while (len > 0) {
1229 int num = min_t(int, len, 4);
1230 chip->write_buf(mtd, (uint8_t *)&fill,
1231 num);
1232 len -= num;
1233 }
1234 } else {
1235 pos = eccsize + i * (eccsize + chunk);
1236 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1237 }
1238 } else
1239 sndcmd = 1;
1240 len = min_t(int, length, chunk);
1241 chip->write_buf(mtd, bufpoi, len);
1242 bufpoi += len;
1243 length -= len;
1244 }
1245 if (length > 0)
1246 chip->write_buf(mtd, bufpoi, length);
1247
1248 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1249 status = chip->waitfunc(mtd, chip);
1250
1251 return status & NAND_STATUS_FAIL ? -EIO : 0;
1252 }
1253
1254 /**
1255 * nand_do_read_oob - [Intern] NAND read out-of-band
1256 * @mtd: MTD device structure
1257 * @from: offset to read from
1258 * @ops: oob operations description structure
1259 *
1260 * NAND read out-of-band data from the spare area
1261 */
1262 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1263 struct mtd_oob_ops *ops)
1264 {
1265 int page, realpage, chipnr, sndcmd = 1;
1266 struct nand_chip *chip = mtd->priv;
1267 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1268 int readlen = ops->ooblen;
1269 int len;
1270 uint8_t *buf = ops->oobbuf;
1271
1272 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1273 (unsigned long long)from, readlen);
1274
1275 if (ops->mode == MTD_OOB_RAW)
1276 len = mtd->oobsize;
1277 else
1278 len = chip->ecc.layout->oobavail;
1279
1280 chipnr = (int)(from >> chip->chip_shift);
1281 chip->select_chip(mtd, chipnr);
1282
1283 /* Shift to get page */
1284 realpage = (int)(from >> chip->page_shift);
1285 page = realpage & chip->pagemask;
1286
1287 while(1) {
1288 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1289
1290 len = min(len, readlen);
1291 buf = nand_transfer_oob(chip, buf, ops, len);
1292
1293 if (!(chip->options & NAND_NO_READRDY)) {
1294 /*
1295 * Apply delay or wait for ready/busy pin. Do this
1296 * before the AUTOINCR check, so no problems arise if a
1297 * chip which does auto increment is marked as
1298 * NOAUTOINCR by the board driver.
1299 */
1300 if (!chip->dev_ready)
1301 udelay(chip->chip_delay);
1302 else
1303 nand_wait_ready(mtd);
1304 }
1305
1306 readlen -= len;
1307 if (!readlen)
1308 break;
1309
1310 /* Increment page address */
1311 realpage++;
1312
1313 page = realpage & chip->pagemask;
1314 /* Check, if we cross a chip boundary */
1315 if (!page) {
1316 chipnr++;
1317 chip->select_chip(mtd, -1);
1318 chip->select_chip(mtd, chipnr);
1319 }
1320
1321 /* Check, if the chip supports auto page increment
1322 * or if we have hit a block boundary.
1323 */
1324 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1325 sndcmd = 1;
1326 }
1327
1328 ops->oobretlen = ops->ooblen;
1329 return 0;
1330 }
1331
1332 /**
1333 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1334 * @mtd: MTD device structure
1335 * @from: offset to read from
1336 * @ops: oob operation description structure
1337 *
1338 * NAND read data and/or out-of-band data
1339 */
1340 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1341 struct mtd_oob_ops *ops)
1342 {
1343 struct nand_chip *chip = mtd->priv;
1344 int ret = -ENOTSUPP;
1345
1346 ops->retlen = 0;
1347
1348 /* Do not allow reads past end of device */
1349 if (ops->datbuf && (from + ops->len) > mtd->size) {
1350 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1351 "Attempt read beyond end of device\n");
1352 return -EINVAL;
1353 }
1354
1355 nand_get_device(chip, mtd, FL_READING);
1356
1357 switch(ops->mode) {
1358 case MTD_OOB_PLACE:
1359 case MTD_OOB_AUTO:
1360 case MTD_OOB_RAW:
1361 break;
1362
1363 default:
1364 goto out;
1365 }
1366
1367 if (!ops->datbuf)
1368 ret = nand_do_read_oob(mtd, from, ops);
1369 else
1370 ret = nand_do_read_ops(mtd, from, ops);
1371
1372 out:
1373 nand_release_device(mtd);
1374 return ret;
1375 }
1376
1377
1378 /**
1379 * nand_write_page_raw - [Intern] raw page write function
1380 * @mtd: mtd info structure
1381 * @chip: nand chip info structure
1382 * @buf: data buffer
1383 */
1384 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1385 const uint8_t *buf)
1386 {
1387 chip->write_buf(mtd, buf, mtd->writesize);
1388 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1389 }
1390
1391 /**
1392 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1393 * @mtd: mtd info structure
1394 * @chip: nand chip info structure
1395 * @buf: data buffer
1396 */
1397 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1398 const uint8_t *buf)
1399 {
1400 int i, eccsize = chip->ecc.size;
1401 int eccbytes = chip->ecc.bytes;
1402 int eccsteps = chip->ecc.steps;
1403 uint8_t *ecc_calc = chip->buffers->ecccalc;
1404 const uint8_t *p = buf;
1405 int *eccpos = chip->ecc.layout->eccpos;
1406
1407 /* Software ecc calculation */
1408 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1409 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1410
1411 for (i = 0; i < chip->ecc.total; i++)
1412 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1413
1414 nand_write_page_raw(mtd, chip, buf);
1415 }
1416
1417 /**
1418 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1419 * @mtd: mtd info structure
1420 * @chip: nand chip info structure
1421 * @buf: data buffer
1422 */
1423 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1424 const uint8_t *buf)
1425 {
1426 int i, eccsize = chip->ecc.size;
1427 int eccbytes = chip->ecc.bytes;
1428 int eccsteps = chip->ecc.steps;
1429 uint8_t *ecc_calc = chip->buffers->ecccalc;
1430 const uint8_t *p = buf;
1431 int *eccpos = chip->ecc.layout->eccpos;
1432
1433 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1434 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1435 chip->write_buf(mtd, p, eccsize);
1436 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1437 }
1438
1439 for (i = 0; i < chip->ecc.total; i++)
1440 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1441
1442 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1443 }
1444
1445 /**
1446 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1447 * @mtd: mtd info structure
1448 * @chip: nand chip info structure
1449 * @buf: data buffer
1450 *
1451 * The hw generator calculates the error syndrome automatically. Therefor
1452 * we need a special oob layout and handling.
1453 */
1454 static void nand_write_page_syndrome(struct mtd_info *mtd,
1455 struct nand_chip *chip, const uint8_t *buf)
1456 {
1457 int i, eccsize = chip->ecc.size;
1458 int eccbytes = chip->ecc.bytes;
1459 int eccsteps = chip->ecc.steps;
1460 const uint8_t *p = buf;
1461 uint8_t *oob = chip->oob_poi;
1462
1463 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1464
1465 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1466 chip->write_buf(mtd, p, eccsize);
1467
1468 if (chip->ecc.prepad) {
1469 chip->write_buf(mtd, oob, chip->ecc.prepad);
1470 oob += chip->ecc.prepad;
1471 }
1472
1473 chip->ecc.calculate(mtd, p, oob);
1474 chip->write_buf(mtd, oob, eccbytes);
1475 oob += eccbytes;
1476
1477 if (chip->ecc.postpad) {
1478 chip->write_buf(mtd, oob, chip->ecc.postpad);
1479 oob += chip->ecc.postpad;
1480 }
1481 }
1482
1483 /* Calculate remaining oob bytes */
1484 i = mtd->oobsize - (oob - chip->oob_poi);
1485 if (i)
1486 chip->write_buf(mtd, oob, i);
1487 }
1488
1489 /**
1490 * nand_write_page - [REPLACEABLE] write one page
1491 * @mtd: MTD device structure
1492 * @chip: NAND chip descriptor
1493 * @buf: the data to write
1494 * @page: page number to write
1495 * @cached: cached programming
1496 * @raw: use _raw version of write_page
1497 */
1498 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1499 const uint8_t *buf, int page, int cached, int raw)
1500 {
1501 int status;
1502
1503 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1504
1505 if (unlikely(raw))
1506 chip->ecc.write_page_raw(mtd, chip, buf);
1507 else
1508 chip->ecc.write_page(mtd, chip, buf);
1509
1510 /*
1511 * Cached progamming disabled for now, Not sure if its worth the
1512 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1513 */
1514 cached = 0;
1515
1516 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1517
1518 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1519 status = chip->waitfunc(mtd, chip);
1520 /*
1521 * See if operation failed and additional status checks are
1522 * available
1523 */
1524 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1525 status = chip->errstat(mtd, chip, FL_WRITING, status,
1526 page);
1527
1528 if (status & NAND_STATUS_FAIL)
1529 return -EIO;
1530 } else {
1531 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1532 status = chip->waitfunc(mtd, chip);
1533 }
1534
1535 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1536 /* Send command to read back the data */
1537 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1538
1539 if (chip->verify_buf(mtd, buf, mtd->writesize))
1540 return -EIO;
1541 #endif
1542 return 0;
1543 }
1544
1545 /**
1546 * nand_fill_oob - [Internal] Transfer client buffer to oob
1547 * @chip: nand chip structure
1548 * @oob: oob data buffer
1549 * @ops: oob ops structure
1550 */
1551 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1552 struct mtd_oob_ops *ops)
1553 {
1554 size_t len = ops->ooblen;
1555
1556 switch(ops->mode) {
1557
1558 case MTD_OOB_PLACE:
1559 case MTD_OOB_RAW:
1560 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1561 return oob + len;
1562
1563 case MTD_OOB_AUTO: {
1564 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1565 uint32_t boffs = 0, woffs = ops->ooboffs;
1566 size_t bytes = 0;
1567
1568 for(; free->length && len; free++, len -= bytes) {
1569 /* Write request not from offset 0 ? */
1570 if (unlikely(woffs)) {
1571 if (woffs >= free->length) {
1572 woffs -= free->length;
1573 continue;
1574 }
1575 boffs = free->offset + woffs;
1576 bytes = min_t(size_t, len,
1577 (free->length - woffs));
1578 woffs = 0;
1579 } else {
1580 bytes = min_t(size_t, len, free->length);
1581 boffs = free->offset;
1582 }
1583 memcpy(chip->oob_poi + boffs, oob, bytes);
1584 oob += bytes;
1585 }
1586 return oob;
1587 }
1588 default:
1589 BUG();
1590 }
1591 return NULL;
1592 }
1593
1594 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1595
1596 /**
1597 * nand_do_write_ops - [Internal] NAND write with ECC
1598 * @mtd: MTD device structure
1599 * @to: offset to write to
1600 * @ops: oob operations description structure
1601 *
1602 * NAND write with ECC
1603 */
1604 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1605 struct mtd_oob_ops *ops)
1606 {
1607 int chipnr, realpage, page, blockmask, column;
1608 struct nand_chip *chip = mtd->priv;
1609 uint32_t writelen = ops->len;
1610 uint8_t *oob = ops->oobbuf;
1611 uint8_t *buf = ops->datbuf;
1612 int ret, subpage;
1613
1614 ops->retlen = 0;
1615 if (!writelen)
1616 return 0;
1617
1618 /* reject writes, which are not page aligned */
1619 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1620 printk(KERN_NOTICE "nand_write: "
1621 "Attempt to write not page aligned data\n");
1622 return -EINVAL;
1623 }
1624
1625 column = to & (mtd->writesize - 1);
1626 subpage = column || (writelen & (mtd->writesize - 1));
1627
1628 if (subpage && oob)
1629 return -EINVAL;
1630
1631 chipnr = (int)(to >> chip->chip_shift);
1632 chip->select_chip(mtd, chipnr);
1633
1634 /* Check, if it is write protected */
1635 if (nand_check_wp(mtd))
1636 return -EIO;
1637
1638 realpage = (int)(to >> chip->page_shift);
1639 page = realpage & chip->pagemask;
1640 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1641
1642 /* Invalidate the page cache, when we write to the cached page */
1643 if (to <= (chip->pagebuf << chip->page_shift) &&
1644 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1645 chip->pagebuf = -1;
1646
1647 /* If we're not given explicit OOB data, let it be 0xFF */
1648 if (likely(!oob))
1649 memset(chip->oob_poi, 0xff, mtd->oobsize);
1650
1651 while(1) {
1652 int bytes = mtd->writesize;
1653 int cached = writelen > bytes && page != blockmask;
1654 uint8_t *wbuf = buf;
1655
1656 /* Partial page write ? */
1657 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1658 cached = 0;
1659 bytes = min_t(int, bytes - column, (int) writelen);
1660 chip->pagebuf = -1;
1661 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1662 memcpy(&chip->buffers->databuf[column], buf, bytes);
1663 wbuf = chip->buffers->databuf;
1664 }
1665
1666 if (unlikely(oob))
1667 oob = nand_fill_oob(chip, oob, ops);
1668
1669 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1670 (ops->mode == MTD_OOB_RAW));
1671 if (ret)
1672 break;
1673
1674 writelen -= bytes;
1675 if (!writelen)
1676 break;
1677
1678 column = 0;
1679 buf += bytes;
1680 realpage++;
1681
1682 page = realpage & chip->pagemask;
1683 /* Check, if we cross a chip boundary */
1684 if (!page) {
1685 chipnr++;
1686 chip->select_chip(mtd, -1);
1687 chip->select_chip(mtd, chipnr);
1688 }
1689 }
1690
1691 ops->retlen = ops->len - writelen;
1692 if (unlikely(oob))
1693 ops->oobretlen = ops->ooblen;
1694 return ret;
1695 }
1696
1697 /**
1698 * nand_write - [MTD Interface] NAND write with ECC
1699 * @mtd: MTD device structure
1700 * @to: offset to write to
1701 * @len: number of bytes to write
1702 * @retlen: pointer to variable to store the number of written bytes
1703 * @buf: the data to write
1704 *
1705 * NAND write with ECC
1706 */
1707 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1708 size_t *retlen, const uint8_t *buf)
1709 {
1710 struct nand_chip *chip = mtd->priv;
1711 int ret;
1712
1713 /* Do not allow reads past end of device */
1714 if ((to + len) > mtd->size)
1715 return -EINVAL;
1716 if (!len)
1717 return 0;
1718
1719 nand_get_device(chip, mtd, FL_WRITING);
1720
1721 chip->ops.len = len;
1722 chip->ops.datbuf = (uint8_t *)buf;
1723 chip->ops.oobbuf = NULL;
1724
1725 ret = nand_do_write_ops(mtd, to, &chip->ops);
1726
1727 *retlen = chip->ops.retlen;
1728
1729 nand_release_device(mtd);
1730
1731 return ret;
1732 }
1733
1734 /**
1735 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1736 * @mtd: MTD device structure
1737 * @to: offset to write to
1738 * @ops: oob operation description structure
1739 *
1740 * NAND write out-of-band
1741 */
1742 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1743 struct mtd_oob_ops *ops)
1744 {
1745 int chipnr, page, status;
1746 struct nand_chip *chip = mtd->priv;
1747
1748 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1749 (unsigned int)to, (int)ops->ooblen);
1750
1751 /* Do not allow write past end of page */
1752 if ((ops->ooboffs + ops->ooblen) > mtd->oobsize) {
1753 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1754 "Attempt to write past end of page\n");
1755 return -EINVAL;
1756 }
1757
1758 chipnr = (int)(to >> chip->chip_shift);
1759 chip->select_chip(mtd, chipnr);
1760
1761 /* Shift to get page */
1762 page = (int)(to >> chip->page_shift);
1763
1764 /*
1765 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1766 * of my DiskOnChip 2000 test units) will clear the whole data page too
1767 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1768 * it in the doc2000 driver in August 1999. dwmw2.
1769 */
1770 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1771
1772 /* Check, if it is write protected */
1773 if (nand_check_wp(mtd))
1774 return -EROFS;
1775
1776 /* Invalidate the page cache, if we write to the cached page */
1777 if (page == chip->pagebuf)
1778 chip->pagebuf = -1;
1779
1780 memset(chip->oob_poi, 0xff, mtd->oobsize);
1781 nand_fill_oob(chip, ops->oobbuf, ops);
1782 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1783 memset(chip->oob_poi, 0xff, mtd->oobsize);
1784
1785 if (status)
1786 return status;
1787
1788 ops->oobretlen = ops->ooblen;
1789
1790 return 0;
1791 }
1792
1793 /**
1794 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1795 * @mtd: MTD device structure
1796 * @to: offset to write to
1797 * @ops: oob operation description structure
1798 */
1799 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1800 struct mtd_oob_ops *ops)
1801 {
1802 struct nand_chip *chip = mtd->priv;
1803 int ret = -ENOTSUPP;
1804
1805 ops->retlen = 0;
1806
1807 /* Do not allow writes past end of device */
1808 if (ops->datbuf && (to + ops->len) > mtd->size) {
1809 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1810 "Attempt read beyond end of device\n");
1811 return -EINVAL;
1812 }
1813
1814 nand_get_device(chip, mtd, FL_WRITING);
1815
1816 switch(ops->mode) {
1817 case MTD_OOB_PLACE:
1818 case MTD_OOB_AUTO:
1819 case MTD_OOB_RAW:
1820 break;
1821
1822 default:
1823 goto out;
1824 }
1825
1826 if (!ops->datbuf)
1827 ret = nand_do_write_oob(mtd, to, ops);
1828 else
1829 ret = nand_do_write_ops(mtd, to, ops);
1830
1831 out:
1832 nand_release_device(mtd);
1833 return ret;
1834 }
1835
1836 /**
1837 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1838 * @mtd: MTD device structure
1839 * @page: the page address of the block which will be erased
1840 *
1841 * Standard erase command for NAND chips
1842 */
1843 static void single_erase_cmd(struct mtd_info *mtd, int page)
1844 {
1845 struct nand_chip *chip = mtd->priv;
1846 /* Send commands to erase a block */
1847 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1848 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1849 }
1850
1851 /**
1852 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1853 * @mtd: MTD device structure
1854 * @page: the page address of the block which will be erased
1855 *
1856 * AND multi block erase command function
1857 * Erase 4 consecutive blocks
1858 */
1859 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1860 {
1861 struct nand_chip *chip = mtd->priv;
1862 /* Send commands to erase a block */
1863 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1864 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1865 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1866 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1867 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1868 }
1869
1870 /**
1871 * nand_erase - [MTD Interface] erase block(s)
1872 * @mtd: MTD device structure
1873 * @instr: erase instruction
1874 *
1875 * Erase one ore more blocks
1876 */
1877 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1878 {
1879 return nand_erase_nand(mtd, instr, 0);
1880 }
1881
1882 #define BBT_PAGE_MASK 0xffffff3f
1883 /**
1884 * nand_erase_nand - [Internal] erase block(s)
1885 * @mtd: MTD device structure
1886 * @instr: erase instruction
1887 * @allowbbt: allow erasing the bbt area
1888 *
1889 * Erase one ore more blocks
1890 */
1891 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1892 int allowbbt)
1893 {
1894 int page, len, status, pages_per_block, ret, chipnr;
1895 struct nand_chip *chip = mtd->priv;
1896 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1897 unsigned int bbt_masked_page = 0xffffffff;
1898
1899 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1900 (unsigned int)instr->addr, (unsigned int)instr->len);
1901
1902 /* Start address must align on block boundary */
1903 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1904 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1905 return -EINVAL;
1906 }
1907
1908 /* Length must align on block boundary */
1909 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1910 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1911 "Length not block aligned\n");
1912 return -EINVAL;
1913 }
1914
1915 /* Do not allow erase past end of device */
1916 if ((instr->len + instr->addr) > mtd->size) {
1917 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1918 "Erase past end of device\n");
1919 return -EINVAL;
1920 }
1921
1922 instr->fail_addr = 0xffffffff;
1923
1924 /* Grab the lock and see if the device is available */
1925 nand_get_device(chip, mtd, FL_ERASING);
1926
1927 /* Shift to get first page */
1928 page = (int)(instr->addr >> chip->page_shift);
1929 chipnr = (int)(instr->addr >> chip->chip_shift);
1930
1931 /* Calculate pages in each block */
1932 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1933
1934 /* Select the NAND device */
1935 chip->select_chip(mtd, chipnr);
1936
1937 /* Check, if it is write protected */
1938 if (nand_check_wp(mtd)) {
1939 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1940 "Device is write protected!!!\n");
1941 instr->state = MTD_ERASE_FAILED;
1942 goto erase_exit;
1943 }
1944
1945 /*
1946 * If BBT requires refresh, set the BBT page mask to see if the BBT
1947 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1948 * can not be matched. This is also done when the bbt is actually
1949 * erased to avoid recusrsive updates
1950 */
1951 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1952 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1953
1954 /* Loop through the pages */
1955 len = instr->len;
1956
1957 instr->state = MTD_ERASING;
1958
1959 while (len) {
1960 /*
1961 * heck if we have a bad block, we do not erase bad blocks !
1962 */
1963 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1964 chip->page_shift, 0, allowbbt)) {
1965 printk(KERN_WARNING "nand_erase: attempt to erase a "
1966 "bad block at page 0x%08x\n", page);
1967 instr->state = MTD_ERASE_FAILED;
1968 goto erase_exit;
1969 }
1970
1971 /*
1972 * Invalidate the page cache, if we erase the block which
1973 * contains the current cached page
1974 */
1975 if (page <= chip->pagebuf && chip->pagebuf <
1976 (page + pages_per_block))
1977 chip->pagebuf = -1;
1978
1979 chip->erase_cmd(mtd, page & chip->pagemask);
1980
1981 status = chip->waitfunc(mtd, chip);
1982
1983 /*
1984 * See if operation failed and additional status checks are
1985 * available
1986 */
1987 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1988 status = chip->errstat(mtd, chip, FL_ERASING,
1989 status, page);
1990
1991 /* See if block erase succeeded */
1992 if (status & NAND_STATUS_FAIL) {
1993 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1994 "Failed erase, page 0x%08x\n", page);
1995 instr->state = MTD_ERASE_FAILED;
1996 instr->fail_addr = (page << chip->page_shift);
1997 goto erase_exit;
1998 }
1999
2000 /*
2001 * If BBT requires refresh, set the BBT rewrite flag to the
2002 * page being erased
2003 */
2004 if (bbt_masked_page != 0xffffffff &&
2005 (page & BBT_PAGE_MASK) == bbt_masked_page)
2006 rewrite_bbt[chipnr] = (page << chip->page_shift);
2007
2008 /* Increment page address and decrement length */
2009 len -= (1 << chip->phys_erase_shift);
2010 page += pages_per_block;
2011
2012 /* Check, if we cross a chip boundary */
2013 if (len && !(page & chip->pagemask)) {
2014 chipnr++;
2015 chip->select_chip(mtd, -1);
2016 chip->select_chip(mtd, chipnr);
2017
2018 /*
2019 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2020 * page mask to see if this BBT should be rewritten
2021 */
2022 if (bbt_masked_page != 0xffffffff &&
2023 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2024 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2025 BBT_PAGE_MASK;
2026 }
2027 }
2028 instr->state = MTD_ERASE_DONE;
2029
2030 erase_exit:
2031
2032 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2033 /* Do call back function */
2034 if (!ret)
2035 mtd_erase_callback(instr);
2036
2037 /* Deselect and wake up anyone waiting on the device */
2038 nand_release_device(mtd);
2039
2040 /*
2041 * If BBT requires refresh and erase was successful, rewrite any
2042 * selected bad block tables
2043 */
2044 if (bbt_masked_page == 0xffffffff || ret)
2045 return ret;
2046
2047 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2048 if (!rewrite_bbt[chipnr])
2049 continue;
2050 /* update the BBT for chip */
2051 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2052 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2053 chip->bbt_td->pages[chipnr]);
2054 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2055 }
2056
2057 /* Return more or less happy */
2058 return ret;
2059 }
2060
2061 /**
2062 * nand_sync - [MTD Interface] sync
2063 * @mtd: MTD device structure
2064 *
2065 * Sync is actually a wait for chip ready function
2066 */
2067 static void nand_sync(struct mtd_info *mtd)
2068 {
2069 struct nand_chip *chip = mtd->priv;
2070
2071 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2072
2073 /* Grab the lock and see if the device is available */
2074 nand_get_device(chip, mtd, FL_SYNCING);
2075 /* Release it and go back */
2076 nand_release_device(mtd);
2077 }
2078
2079 /**
2080 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2081 * @mtd: MTD device structure
2082 * @offs: offset relative to mtd start
2083 */
2084 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2085 {
2086 /* Check for invalid offset */
2087 if (offs > mtd->size)
2088 return -EINVAL;
2089
2090 return nand_block_checkbad(mtd, offs, 1, 0);
2091 }
2092
2093 /**
2094 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2095 * @mtd: MTD device structure
2096 * @ofs: offset relative to mtd start
2097 */
2098 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2099 {
2100 struct nand_chip *chip = mtd->priv;
2101 int ret;
2102
2103 if ((ret = nand_block_isbad(mtd, ofs))) {
2104 /* If it was bad already, return success and do nothing. */
2105 if (ret > 0)
2106 return 0;
2107 return ret;
2108 }
2109
2110 return chip->block_markbad(mtd, ofs);
2111 }
2112
2113 /**
2114 * nand_suspend - [MTD Interface] Suspend the NAND flash
2115 * @mtd: MTD device structure
2116 */
2117 static int nand_suspend(struct mtd_info *mtd)
2118 {
2119 struct nand_chip *chip = mtd->priv;
2120
2121 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2122 }
2123
2124 /**
2125 * nand_resume - [MTD Interface] Resume the NAND flash
2126 * @mtd: MTD device structure
2127 */
2128 static void nand_resume(struct mtd_info *mtd)
2129 {
2130 struct nand_chip *chip = mtd->priv;
2131
2132 if (chip->state == FL_PM_SUSPENDED)
2133 nand_release_device(mtd);
2134 else
2135 printk(KERN_ERR "nand_resume() called for a chip which is not "
2136 "in suspended state\n");
2137 }
2138
2139 /*
2140 * Set default functions
2141 */
2142 static void nand_set_defaults(struct nand_chip *chip, int busw)
2143 {
2144 /* check for proper chip_delay setup, set 20us if not */
2145 if (!chip->chip_delay)
2146 chip->chip_delay = 20;
2147
2148 /* check, if a user supplied command function given */
2149 if (chip->cmdfunc == NULL)
2150 chip->cmdfunc = nand_command;
2151
2152 /* check, if a user supplied wait function given */
2153 if (chip->waitfunc == NULL)
2154 chip->waitfunc = nand_wait;
2155
2156 if (!chip->select_chip)
2157 chip->select_chip = nand_select_chip;
2158 if (!chip->read_byte)
2159 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2160 if (!chip->read_word)
2161 chip->read_word = nand_read_word;
2162 if (!chip->block_bad)
2163 chip->block_bad = nand_block_bad;
2164 if (!chip->block_markbad)
2165 chip->block_markbad = nand_default_block_markbad;
2166 if (!chip->write_buf)
2167 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2168 if (!chip->read_buf)
2169 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2170 if (!chip->verify_buf)
2171 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2172 if (!chip->scan_bbt)
2173 chip->scan_bbt = nand_default_bbt;
2174
2175 if (!chip->controller) {
2176 chip->controller = &chip->hwcontrol;
2177 spin_lock_init(&chip->controller->lock);
2178 init_waitqueue_head(&chip->controller->wq);
2179 }
2180
2181 }
2182
2183 /*
2184 * Get the flash and manufacturer id and lookup if the type is supported
2185 */
2186 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2187 struct nand_chip *chip,
2188 int busw, int *maf_id)
2189 {
2190 struct nand_flash_dev *type = NULL;
2191 int i, dev_id, maf_idx;
2192
2193 /* Select the device */
2194 chip->select_chip(mtd, 0);
2195
2196 /* Send the command for reading device ID */
2197 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2198
2199 /* Read manufacturer and device IDs */
2200 *maf_id = chip->read_byte(mtd);
2201 dev_id = chip->read_byte(mtd);
2202
2203 /* Lookup the flash id */
2204 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2205 if (dev_id == nand_flash_ids[i].id) {
2206 type = &nand_flash_ids[i];
2207 break;
2208 }
2209 }
2210
2211 if (!type)
2212 return ERR_PTR(-ENODEV);
2213
2214 if (!mtd->name)
2215 mtd->name = type->name;
2216
2217 chip->chipsize = type->chipsize << 20;
2218
2219 /* Newer devices have all the information in additional id bytes */
2220 if (!type->pagesize) {
2221 int extid;
2222 /* The 3rd id byte holds MLC / multichip data */
2223 chip->cellinfo = chip->read_byte(mtd);
2224 /* The 4th id byte is the important one */
2225 extid = chip->read_byte(mtd);
2226 /* Calc pagesize */
2227 mtd->writesize = 1024 << (extid & 0x3);
2228 extid >>= 2;
2229 /* Calc oobsize */
2230 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2231 extid >>= 2;
2232 /* Calc blocksize. Blocksize is multiples of 64KiB */
2233 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2234 extid >>= 2;
2235 /* Get buswidth information */
2236 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2237
2238 } else {
2239 /*
2240 * Old devices have chip data hardcoded in the device id table
2241 */
2242 mtd->erasesize = type->erasesize;
2243 mtd->writesize = type->pagesize;
2244 mtd->oobsize = mtd->writesize / 32;
2245 busw = type->options & NAND_BUSWIDTH_16;
2246 }
2247
2248 /* Try to identify manufacturer */
2249 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2250 if (nand_manuf_ids[maf_idx].id == *maf_id)
2251 break;
2252 }
2253
2254 /*
2255 * Check, if buswidth is correct. Hardware drivers should set
2256 * chip correct !
2257 */
2258 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2259 printk(KERN_INFO "NAND device: Manufacturer ID:"
2260 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2261 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2262 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2263 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2264 busw ? 16 : 8);
2265 return ERR_PTR(-EINVAL);
2266 }
2267
2268 /* Calculate the address shift from the page size */
2269 chip->page_shift = ffs(mtd->writesize) - 1;
2270 /* Convert chipsize to number of pages per chip -1. */
2271 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2272
2273 chip->bbt_erase_shift = chip->phys_erase_shift =
2274 ffs(mtd->erasesize) - 1;
2275 chip->chip_shift = ffs(chip->chipsize) - 1;
2276
2277 /* Set the bad block position */
2278 chip->badblockpos = mtd->writesize > 512 ?
2279 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2280
2281 /* Get chip options, preserve non chip based options */
2282 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2283 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2284
2285 /*
2286 * Set chip as a default. Board drivers can override it, if necessary
2287 */
2288 chip->options |= NAND_NO_AUTOINCR;
2289
2290 /* Check if chip is a not a samsung device. Do not clear the
2291 * options for chips which are not having an extended id.
2292 */
2293 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2294 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2295
2296 /* Check for AND chips with 4 page planes */
2297 if (chip->options & NAND_4PAGE_ARRAY)
2298 chip->erase_cmd = multi_erase_cmd;
2299 else
2300 chip->erase_cmd = single_erase_cmd;
2301
2302 /* Do not replace user supplied command function ! */
2303 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2304 chip->cmdfunc = nand_command_lp;
2305
2306 printk(KERN_INFO "NAND device: Manufacturer ID:"
2307 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2308 nand_manuf_ids[maf_idx].name, type->name);
2309
2310 return type;
2311 }
2312
2313 /**
2314 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2315 * @mtd: MTD device structure
2316 * @maxchips: Number of chips to scan for
2317 *
2318 * This is the first phase of the normal nand_scan() function. It
2319 * reads the flash ID and sets up MTD fields accordingly.
2320 *
2321 * The mtd->owner field must be set to the module of the caller.
2322 */
2323 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2324 {
2325 int i, busw, nand_maf_id;
2326 struct nand_chip *chip = mtd->priv;
2327 struct nand_flash_dev *type;
2328
2329 /* Get buswidth to select the correct functions */
2330 busw = chip->options & NAND_BUSWIDTH_16;
2331 /* Set the default functions */
2332 nand_set_defaults(chip, busw);
2333
2334 /* Read the flash type */
2335 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2336
2337 if (IS_ERR(type)) {
2338 printk(KERN_WARNING "No NAND device found!!!\n");
2339 chip->select_chip(mtd, -1);
2340 return PTR_ERR(type);
2341 }
2342
2343 /* Check for a chip array */
2344 for (i = 1; i < maxchips; i++) {
2345 chip->select_chip(mtd, i);
2346 /* Send the command for reading device ID */
2347 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2348 /* Read manufacturer and device IDs */
2349 if (nand_maf_id != chip->read_byte(mtd) ||
2350 type->id != chip->read_byte(mtd))
2351 break;
2352 }
2353 if (i > 1)
2354 printk(KERN_INFO "%d NAND chips detected\n", i);
2355
2356 /* Store the number of chips and calc total size for mtd */
2357 chip->numchips = i;
2358 mtd->size = i * chip->chipsize;
2359
2360 return 0;
2361 }
2362
2363
2364 /**
2365 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2366 * @mtd: MTD device structure
2367 * @maxchips: Number of chips to scan for
2368 *
2369 * This is the second phase of the normal nand_scan() function. It
2370 * fills out all the uninitialized function pointers with the defaults
2371 * and scans for a bad block table if appropriate.
2372 */
2373 int nand_scan_tail(struct mtd_info *mtd)
2374 {
2375 int i;
2376 struct nand_chip *chip = mtd->priv;
2377
2378 if (!(chip->options & NAND_OWN_BUFFERS))
2379 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2380 if (!chip->buffers)
2381 return -ENOMEM;
2382
2383 /* Set the internal oob buffer location, just after the page data */
2384 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2385
2386 /*
2387 * If no default placement scheme is given, select an appropriate one
2388 */
2389 if (!chip->ecc.layout) {
2390 switch (mtd->oobsize) {
2391 case 8:
2392 chip->ecc.layout = &nand_oob_8;
2393 break;
2394 case 16:
2395 chip->ecc.layout = &nand_oob_16;
2396 break;
2397 case 64:
2398 chip->ecc.layout = &nand_oob_64;
2399 break;
2400 default:
2401 printk(KERN_WARNING "No oob scheme defined for "
2402 "oobsize %d\n", mtd->oobsize);
2403 BUG();
2404 }
2405 }
2406
2407 if (!chip->write_page)
2408 chip->write_page = nand_write_page;
2409
2410 /*
2411 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2412 * selected and we have 256 byte pagesize fallback to software ECC
2413 */
2414 if (!chip->ecc.read_page_raw)
2415 chip->ecc.read_page_raw = nand_read_page_raw;
2416 if (!chip->ecc.write_page_raw)
2417 chip->ecc.write_page_raw = nand_write_page_raw;
2418
2419 switch (chip->ecc.mode) {
2420 case NAND_ECC_HW:
2421 /* Use standard hwecc read page function ? */
2422 if (!chip->ecc.read_page)
2423 chip->ecc.read_page = nand_read_page_hwecc;
2424 if (!chip->ecc.write_page)
2425 chip->ecc.write_page = nand_write_page_hwecc;
2426 if (!chip->ecc.read_oob)
2427 chip->ecc.read_oob = nand_read_oob_std;
2428 if (!chip->ecc.write_oob)
2429 chip->ecc.write_oob = nand_write_oob_std;
2430
2431 case NAND_ECC_HW_SYNDROME:
2432 if (!chip->ecc.calculate || !chip->ecc.correct ||
2433 !chip->ecc.hwctl) {
2434 printk(KERN_WARNING "No ECC functions supplied, "
2435 "Hardware ECC not possible\n");
2436 BUG();
2437 }
2438 /* Use standard syndrome read/write page function ? */
2439 if (!chip->ecc.read_page)
2440 chip->ecc.read_page = nand_read_page_syndrome;
2441 if (!chip->ecc.write_page)
2442 chip->ecc.write_page = nand_write_page_syndrome;
2443 if (!chip->ecc.read_oob)
2444 chip->ecc.read_oob = nand_read_oob_syndrome;
2445 if (!chip->ecc.write_oob)
2446 chip->ecc.write_oob = nand_write_oob_syndrome;
2447
2448 if (mtd->writesize >= chip->ecc.size)
2449 break;
2450 printk(KERN_WARNING "%d byte HW ECC not possible on "
2451 "%d byte page size, fallback to SW ECC\n",
2452 chip->ecc.size, mtd->writesize);
2453 chip->ecc.mode = NAND_ECC_SOFT;
2454
2455 case NAND_ECC_SOFT:
2456 chip->ecc.calculate = nand_calculate_ecc;
2457 chip->ecc.correct = nand_correct_data;
2458 chip->ecc.read_page = nand_read_page_swecc;
2459 chip->ecc.write_page = nand_write_page_swecc;
2460 chip->ecc.read_oob = nand_read_oob_std;
2461 chip->ecc.write_oob = nand_write_oob_std;
2462 chip->ecc.size = 256;
2463 chip->ecc.bytes = 3;
2464 break;
2465
2466 case NAND_ECC_NONE:
2467 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2468 "This is not recommended !!\n");
2469 chip->ecc.read_page = nand_read_page_raw;
2470 chip->ecc.write_page = nand_write_page_raw;
2471 chip->ecc.read_oob = nand_read_oob_std;
2472 chip->ecc.write_oob = nand_write_oob_std;
2473 chip->ecc.size = mtd->writesize;
2474 chip->ecc.bytes = 0;
2475 break;
2476
2477 default:
2478 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2479 chip->ecc.mode);
2480 BUG();
2481 }
2482
2483 /*
2484 * The number of bytes available for a client to place data into
2485 * the out of band area
2486 */
2487 chip->ecc.layout->oobavail = 0;
2488 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2489 chip->ecc.layout->oobavail +=
2490 chip->ecc.layout->oobfree[i].length;
2491
2492 /*
2493 * Set the number of read / write steps for one page depending on ECC
2494 * mode
2495 */
2496 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2497 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2498 printk(KERN_WARNING "Invalid ecc parameters\n");
2499 BUG();
2500 }
2501 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2502
2503 /*
2504 * Allow subpage writes up to ecc.steps. Not possible for MLC
2505 * FLASH.
2506 */
2507 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2508 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2509 switch(chip->ecc.steps) {
2510 case 2:
2511 mtd->subpage_sft = 1;
2512 break;
2513 case 4:
2514 case 8:
2515 mtd->subpage_sft = 2;
2516 break;
2517 }
2518 }
2519 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2520
2521 /* Initialize state */
2522 chip->state = FL_READY;
2523
2524 /* De-select the device */
2525 chip->select_chip(mtd, -1);
2526
2527 /* Invalidate the pagebuffer reference */
2528 chip->pagebuf = -1;
2529
2530 /* Fill in remaining MTD driver data */
2531 mtd->type = MTD_NANDFLASH;
2532 mtd->flags = MTD_CAP_NANDFLASH;
2533 mtd->ecctype = MTD_ECC_SW;
2534 mtd->erase = nand_erase;
2535 mtd->point = NULL;
2536 mtd->unpoint = NULL;
2537 mtd->read = nand_read;
2538 mtd->write = nand_write;
2539 mtd->read_oob = nand_read_oob;
2540 mtd->write_oob = nand_write_oob;
2541 mtd->sync = nand_sync;
2542 mtd->lock = NULL;
2543 mtd->unlock = NULL;
2544 mtd->suspend = nand_suspend;
2545 mtd->resume = nand_resume;
2546 mtd->block_isbad = nand_block_isbad;
2547 mtd->block_markbad = nand_block_markbad;
2548
2549 /* propagate ecc.layout to mtd_info */
2550 mtd->ecclayout = chip->ecc.layout;
2551
2552 /* Check, if we should skip the bad block table scan */
2553 if (chip->options & NAND_SKIP_BBTSCAN)
2554 return 0;
2555
2556 /* Build bad block table */
2557 return chip->scan_bbt(mtd);
2558 }
2559
2560 /* module_text_address() isn't exported, and it's mostly a pointless
2561 test if this is a module _anyway_ -- they'd have to try _really_ hard
2562 to call us from in-kernel code if the core NAND support is modular. */
2563 #ifdef MODULE
2564 #define caller_is_module() (1)
2565 #else
2566 #define caller_is_module() \
2567 module_text_address((unsigned long)__builtin_return_address(0))
2568 #endif
2569
2570 /**
2571 * nand_scan - [NAND Interface] Scan for the NAND device
2572 * @mtd: MTD device structure
2573 * @maxchips: Number of chips to scan for
2574 *
2575 * This fills out all the uninitialized function pointers
2576 * with the defaults.
2577 * The flash ID is read and the mtd/chip structures are
2578 * filled with the appropriate values.
2579 * The mtd->owner field must be set to the module of the caller
2580 *
2581 */
2582 int nand_scan(struct mtd_info *mtd, int maxchips)
2583 {
2584 int ret;
2585
2586 /* Many callers got this wrong, so check for it for a while... */
2587 if (!mtd->owner && caller_is_module()) {
2588 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2589 BUG();
2590 }
2591
2592 ret = nand_scan_ident(mtd, maxchips);
2593 if (!ret)
2594 ret = nand_scan_tail(mtd);
2595 return ret;
2596 }
2597
2598 /**
2599 * nand_release - [NAND Interface] Free resources held by the NAND device
2600 * @mtd: MTD device structure
2601 */
2602 void nand_release(struct mtd_info *mtd)
2603 {
2604 struct nand_chip *chip = mtd->priv;
2605
2606 #ifdef CONFIG_MTD_PARTITIONS
2607 /* Deregister partitions */
2608 del_mtd_partitions(mtd);
2609 #endif
2610 /* Deregister the device */
2611 del_mtd_device(mtd);
2612
2613 /* Free bad block table memory */
2614 kfree(chip->bbt);
2615 if (!(chip->options & NAND_OWN_BUFFERS))
2616 kfree(chip->buffers);
2617 }
2618
2619 EXPORT_SYMBOL_GPL(nand_scan);
2620 EXPORT_SYMBOL_GPL(nand_scan_ident);
2621 EXPORT_SYMBOL_GPL(nand_scan_tail);
2622 EXPORT_SYMBOL_GPL(nand_release);
2623
2624 static int __init nand_base_init(void)
2625 {
2626 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2627 return 0;
2628 }
2629
2630 static void __exit nand_base_exit(void)
2631 {
2632 led_trigger_unregister_simple(nand_led_trigger);
2633 }
2634
2635 module_init(nand_base_init);
2636 module_exit(nand_base_exit);
2637
2638 MODULE_LICENSE("GPL");
2639 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2640 MODULE_DESCRIPTION("Generic NAND flash driver code");